JPH03110331A - Heat storage device - Google Patents

Heat storage device

Info

Publication number
JPH03110331A
JPH03110331A JP24617189A JP24617189A JPH03110331A JP H03110331 A JPH03110331 A JP H03110331A JP 24617189 A JP24617189 A JP 24617189A JP 24617189 A JP24617189 A JP 24617189A JP H03110331 A JPH03110331 A JP H03110331A
Authority
JP
Japan
Prior art keywords
heat storage
latent heat
bodies
detection
detecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24617189A
Other languages
Japanese (ja)
Inventor
Takao Yamada
山田 隆生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP24617189A priority Critical patent/JPH03110331A/en
Publication of JPH03110331A publication Critical patent/JPH03110331A/en
Pending legal-status Critical Current

Links

Landscapes

  • Central Heating Systems (AREA)

Abstract

PURPOSE:To enable reduction of a running cost by a method wherein, based on the detection result of a body for detecting the interval between adjacent latent heat storage bodies, the phase change state of each latent heat storage body in a heat storage tank is grasped. CONSTITUTION:A pair of right and a left moving bodies 3 for detection are supported slidably in the axial direction of a float preventing stay 2. A detecting body 19 comprises first swing arms 6 following movement of the moving bodies 3 for detection, a second swing arm 9 connected to a rack pinion 8 for driving a rotation detecting sensor 7, and a link mechanism 18 coupled to two swing arms 6 and 9. Thus, when a latent heat storage body 1 is expanded by a change in a phase, the moving body 3 for detecting is moved. Frames for supporting a rack 8A and a pinion 8B are moved in the reverse direction to each other, and the interval L between adjacent latent heat storage bodies 1 and 1 can be taken out as a rotation angle. The rotation angle is outputted to a control means 20, and a control mode in which a heat pump and a heating medium fluid circulating pump are stopped can be employed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は潜熱蓄熱材を可撓性の容器に封入になる複数個
の潜熱蓄熱体を蓄熱槽内に並置してある、又は、複数個
の前記潜熱蓄熱体を宵する蓄熱槽を複数個設けてある蓄
熱装置であって、詳しくは、前記蓄熱装置とヒートポン
プとを併用し、夜間電力を利用してヒートポンプを運転
し蓄熱体に対して蓄熱し、昼間の空調負荷に対して蓄熱
装置の単独又は蓄熱装置とヒートポンプとの同時運転に
よってヒートポンプのみの運転に比べてトータルランニ
ングコストの低減化を図ることのできる蓄熱装置に関す
る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a flexible container in which a plurality of latent heat storage materials are arranged side by side in a heat storage tank, or a plurality of latent heat storage materials are enclosed in a flexible container. A heat storage device is provided with a plurality of heat storage tanks in which the latent heat storage body is stored overnight, and more specifically, the heat storage device and a heat pump are used together, and the heat pump is operated using nighttime electricity to cool the heat storage body. The present invention relates to a heat storage device that stores heat and can reduce the total running cost by operating the heat storage device alone or by operating the heat storage device and a heat pump simultaneously for daytime air conditioning loads, compared to operating only the heat pump.

〔従来の技術〕[Conventional technology]

この種の蓄熱装置において、蓄熱を行う際に蓄熱体に対
してどれ位蓄熱が進んでいるか、又反対に、蓄熱を使用
する場合に蓄熱残量がどれ位あるかを知ることは、ヒー
トポンプの運転停止時等を適確に制御する為に重要な要
件である。
In this type of heat storage device, when performing heat storage, it is important to know how much heat has been stored in the heat storage body, and conversely, when using heat storage, it is important to know how much heat storage remains. This is an important requirement for accurately controlling operations such as when stopping operations.

そこで、蓄熱残量を知る装置として、例えば、特願昭6
3−239292号において本出願人らは、相変化によ
って体積膨脹する潜熱蓄熱体群における並置方向でのト
ータル膨脹量を検出して蓄熱残量を知る蓄熱装置を提案
した。
Therefore, as a device to know the remaining amount of heat storage, for example,
In No. 3-239292, the present applicants proposed a heat storage device that detects the total amount of expansion in the juxtaposition direction of a group of latent heat storage bodies whose volume expands due to a phase change to determine the remaining amount of heat storage.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、潜熱蓄熱体の蓄熱・放熱速度は、熱媒流体等の
偏流や速度変動の為に、各潜熱蓄熱体で一定しない。又
、容器の可撓仕度によって蓄熱量が同じであっても膨脹
量が若干異なるといった潜熱蓄熱体側々の個体差が解消
できないものである。
However, the heat storage and heat dissipation rates of the latent heat storage bodies are not constant for each latent heat storage body due to drifting and speed fluctuations of the heat medium fluid. Moreover, it is impossible to eliminate individual differences between latent heat storage bodies, such as the amount of expansion slightly differing even if the amount of stored heat is the same depending on the flexibility of the container.

したがって、全潜熱蓄熱体が完全に所期状態まで膨脹し
た時点でセンサーがトータル膨脹量を検出するように設
定すると、センサが検出する以前に所定腫脹を行った潜
熱蓄熱体に対してはその後の熱交換が無駄になり、又、
前記トータル膨脹量を小さく設定すると全潜熱蓄熱体の
何割かは十分な蓄熱が行なえないといったことがあり、
何れにしてもそのような蓄熱速度の個体差を見込んでセ
ンサの検出時期を設定するのも難しいものであった。
Therefore, if the sensor is set to detect the total expansion amount when all the latent heat storage bodies have completely expanded to the desired state, the latent heat storage body that has undergone the specified expansion before the sensor detects the expansion will be Heat exchange is wasted, and
If the total expansion amount is set small, some percentage of the total latent heat storage body may not be able to store sufficient heat.
In any case, it is difficult to set the detection timing of the sensor in consideration of such individual differences in heat storage rate.

本発明の目的は従来の問題点を解消し乍ら、かつ、蓄熱
効率の悪い潜熱蓄熱体を見付は出す点にある。
An object of the present invention is to solve the conventional problems and to find a latent heat storage body with poor heat storage efficiency.

〔課題を解決するための手段〕[Means to solve the problem]

本発明による特徴構成は前記潜熱蓄熱体同志の隣接間隔
を検出する検出体を設けるとともに、相変化する前記潜
熱蓄熱材の体積膨脹収縮に追従して前記潜熱蓄熱体が膨
脹・収縮することによる前記隣接間隔の変化に対する前
記検出体の検出結果に基づいて、前記蓄熱槽内の各潜熱
蓄熱体の相変化状態を把握する手段を設けてある点にあ
り、その作用効果は次の通りである。
The characteristic structure according to the present invention is that a detecting body is provided for detecting the distance between adjacent latent heat storage bodies, and the latent heat storage body expands and contracts in accordance with the volumetric expansion and contraction of the latent heat storage material that changes phase. There is provided a means for grasping the phase change state of each latent heat storage body in the heat storage tank based on the detection result of the detection body with respect to a change in the adjacent spacing, and its effects are as follows.

〔作 用〕[For production]

つまり、潜熱蓄熱、体が膨脹又は収縮して隣接する潜熱
蓄熱体の間隔が、所定基準間隔になると、検出体が感知
し、潜熱蓄熱体が所定の蓄熱量又は放熱量になったこと
がわかる。
In other words, when the body expands or contracts and the distance between adjacent latent heat storage bodies reaches a predetermined standard interval, the detection body senses it, indicating that the latent heat storage body has reached a predetermined amount of heat storage or heat release. .

〔発明の効果〕〔Effect of the invention〕

その結果、隣接する二つの潜熱蓄熱体を対象として膨脹
量等を測定するので、それだけ従来の検出構造に比べて
個体差の影響を少なくした状態で膨脹量を知ることがで
きるとともに、同一蓄熱槽内の潜熱蓄熱体群すべてに対
して検出体を設けることもでき、従来の検出構造に比べ
て個々の蓄熱速度等を詳細に知ることができる。
As a result, since the amount of expansion, etc. is measured for two adjacent latent heat storage bodies, it is possible to determine the amount of expansion with less influence of individual differences compared to conventional detection structures, and it is possible to measure the amount of expansion between two adjacent latent heat storage bodies. It is also possible to provide a detection body for all of the latent heat storage body groups within, and it is possible to know the individual heat storage rate etc. in detail compared to the conventional detection structure.

例えば、このことによって、熱媒流体の偏流度合等を把
握でき、偏流度合を修正する為の整流機構等を設けると
いった対策を講じることもできる。
For example, this makes it possible to grasp the degree of unbalanced flow of the heat transfer fluid, and it is also possible to take measures such as providing a rectifying mechanism or the like to correct the degree of unbalanced flow.

又、個々の潜熱蓄熱体の蓄熱効率も検出でき、特に蓄熱
効率の悪いものについては取り替える等の改善を行うこ
とができる。
The heat storage efficiency of each latent heat storage body can also be detected, and improvements such as replacing those with particularly poor heat storage efficiency can be made.

更には、各蓄熱槽毎にその蓄熱槽内の潜熱蓄熱体の蓄熱
効率を把握でき、従来のように、全蓄熱槽に対して固定
の検出体を常設することな(、必要な蓄熱槽に対しての
み限定して検出体を設置することができる。
Furthermore, the heat storage efficiency of the latent heat storage body in each heat storage tank can be determined for each heat storage tank. The detection object can be installed only in a limited manner.

〔実施例〕〔Example〕

第3図において、(10)は潜熱蓄熱材の相変化、具体
的にはその凝固に係る潜熱を蓄える蓄熱装置の蓄熱槽を
示しており、該蓄熱槽(lO)は、縦横に仕切られた隔
壁(17)によって4分割された第1蓄熱槽(11)、
第2蓄熱槽(12)、第3蓄熱槽(13)及び第4蓄熱
槽(14)からなっている。更に詳しくは、該蓄熱槽(
10)は、熱媒流体供給口(15)から熱媒流体が供給
され該熱媒流体を内部通流させる第1蓄熱槽(11)と
、該第1蓄熱槽(11)を通流した上で濡出する熱媒流
体が導入され該熱媒流体を内部通流させる第2蓄熱槽(
12)と、該第2蓄熱槽(12)を通流した上で送出さ
れる熱媒流体が導入され該熱媒流体を内部通流させる第
3蓄熱槽(13)と、該第3蓄熱槽(13)を通流した
上で濡出する熱媒流体が導入され該熱媒流体を内部通流
させた上で熱媒流体排出口(16)から排出する第4蓄
熱槽(14)とからなっており、その多槽(11)、 
(12)、 (13)、 (14)には夫々、潜熱蓄熱
体(1)が整列状態で収納配置されている。
In Fig. 3, (10) indicates a heat storage tank of a heat storage device that stores the phase change of the latent heat storage material, specifically, the latent heat related to its solidification. a first heat storage tank (11) divided into four by a partition wall (17);
It consists of a second heat storage tank (12), a third heat storage tank (13), and a fourth heat storage tank (14). More specifically, the heat storage tank (
10) is a first heat storage tank (11) to which a heat medium fluid is supplied from a heat medium fluid supply port (15) and allows the heat medium fluid to flow inside; A second heat storage tank (in which the heat medium fluid wetting out is introduced and the heat medium fluid is made to flow inside)
12), a third heat storage tank (13) into which a heat medium fluid sent out after passing through the second heat storage tank (12) is introduced, and the third heat storage tank (13) allows the heat medium fluid to flow therethrough; (13) From a fourth heat storage tank (14) into which a heat medium fluid that flows through and wets out is introduced and is discharged from a heat medium fluid outlet (16) after passing through the heat medium fluid inside. The multi-tank (11),
In (12), (13), and (14), latent heat storage bodies (1) are housed and arranged in an aligned manner, respectively.

前記潜熱蓄熱体(1)について詳述するに、該潜熱蓄熱
体(1)は、第2図に示すように、潜熱蓄熱材を封入す
るための空隙が形成された軟性材料製の可撓性板状容器
の内部に潜熱蓄熱材が空気と共に封入されてなっている
。そして該潜熱蓄熱体(1)は、前記蓄熱槽(10)の
多槽(11)。
To describe the latent heat storage body (1) in detail, the latent heat storage body (1) is, as shown in FIG. A latent heat storage material is sealed together with air inside a plate-shaped container. The latent heat storage body (1) is a multi-tank (11) of the heat storage tank (10).

(12)、 (13)、 (14)に夫々最密状態で配
置されるように、複数列に(各検電に2列に)縦列配置
された上で、中間にスペーサ(4)を介装しつつ多段に
積層配置され、もって整列状態に収納配置されている。
(12), (13), and (14) are arranged in tandem in multiple rows (two rows for each voltage detector), with a spacer (4) interposed in between. They are arranged in a stacked manner in multiple stages, and are housed in an aligned state.

しかも各潜熱蓄熱体(1)の横側面には凸部(Ia)が
設けてあり、これら凸部(laン同士が接当するまでに
近接するとしても相互間には適宜スペースを有する熱媒
流体の通流域が形成されている。
Moreover, a protrusion (Ia) is provided on the side surface of each latent heat storage body (1). A fluid flow area is formed.

かくして整列状態に収納配置された潜熱蓄熱体(1)は
、それらのうちの最も上段に位置する潜熱蓄熱体(1)
の上に各種(11)、 (12)、 (13)、 (1
4)毎に4個宛割り当てられて設置された浮止めステー
(2)によってその浮力による浮上が防止されるように
なっている。なお第3図中の(5)は、蓄熱槽(10)
の上面開口部に配置される落とし棚である。
The latent heat storage bodies (1) thus arranged in an array are the latent heat storage bodies (1) located in the uppermost stage among them.
Various (11), (12), (13), (1
The buoyancy of the stays (2), which are allocated to each of the four floating stays (2), prevents them from floating due to their buoyancy. Note that (5) in Figure 3 is the heat storage tank (10)
This is a drop shelf placed in the top opening of the .

次に、各潜熱蓄熱体(1)における蓄熱量を知る手段を
説明する。
Next, a means for knowing the amount of heat stored in each latent heat storage body (1) will be explained.

第1図に示すように、前記浮止めステー(2)に対して
その軸心方向にスライド可能に一対の左右の検出用移動
体(3)を支持するとともに、この検出用移動体(3)
の移動に追従して揺動する第1揺動アーム(6)と、回
転検出センサ(7)を駆動するラック・ピニオン(8)
に各々つながる第2揺動アーム(9)と、第1揺動アー
ム(6)と第2揺動アーム(9)とを連結するリンク機
構(18)とを設けて、検出体(19)を構成しである
As shown in FIG. 1, a pair of left and right detection movable bodies (3) are supported so as to be slidable in the axial direction of the floating stay (2), and the detection movable bodies (3)
a first swing arm (6) that swings following the movement of the rack and pinion (8) that drives the rotation detection sensor (7);
and a link mechanism (18) connecting the first swing arm (6) and the second swing arm (9) to detect the detection object (19). It is composed.

したがって、相変化によって潜熱蓄熱体(1)が膨脹す
ると、前記検出用移動体(3)が移動し、それにつれて
、ラック(8A)とピニオン(8B)を支持したフレー
ムが互いに反対向きに移動して、隣接する潜熱蓄熱体(
1)、(1)同志の隣接間隔(L)を回転角として取出
すことができる。この回転角を制御手段(20)に出力
して、ヒートポンプ(図外)や熱媒流体循環ポンプ等を
停止させる制御形態を採ることができる。
Therefore, when the latent heat storage body (1) expands due to a phase change, the detection moving body (3) moves, and accordingly, the frame supporting the rack (8A) and pinion (8B) moves in opposite directions. and the adjacent latent heat storage body (
1), (1) The adjacent spacing (L) between the two can be extracted as a rotation angle. A control form can be adopted in which this rotation angle is output to the control means (20) to stop a heat pump (not shown), a heat medium fluid circulation pump, or the like.

〔別実施例〕[Another example]

■ 前記検出体(19)としては次のようなものでもよ
い。
(2) The detection object (19) may be as follows.

■ 第4図に示すように、隣接する潜熱蓄熱体(1)、
(1)同志に亘って、アーチ状の可撓性板状体(21)
を架渡し、相変化による膨脹によって両潜熱蓄熱体(1
)の隣接間隔(L)が縮まると、前記可撓性板状体(2
1)をより高さの高いアーチ形状に切換えるように形成
し、前記潜熱蓄熱体(1)か所定蓄熱量に相当する膨脹
を行った状態での前記可撓性板状体(21)の上端位置
に対応する高さ位置に検査用針状体(22)を張設し、
各潜熱蓄熱体(1)の蓄熱状体を作業員が目視して判断
する構成を採ってもよい。
■ As shown in Figure 4, the adjacent latent heat storage body (1),
(1) Arch-shaped flexible plate-like body (21) across the comrades
The two latent heat storage bodies (1
) decreases, the flexible plate-like body (2
1) into a higher arch shape, and the upper end of the flexible plate-like body (21) in a state where the latent heat storage body (1) has expanded to a predetermined amount of heat storage. The test needle-like body (22) is stretched at a height position corresponding to the position,
A configuration may be adopted in which an operator visually observes the heat storage body of each latent heat storage body (1) and makes the determination.

◎ 第5図に示すように、各隣接する潜熱蓄熱体(1)
、(1)肩部に電極(23)、 (23)を取付取外し
可能に装着し、静電容量変化を検出して両蓄熱体(1)
、(1)の近接間隔(L)を測定し、蓄熱量を把握する
構成を採ってもよい。図中(24)は電極(23)、 
(23)をカバーするジャバラ式カバ一体である。
◎ As shown in Figure 5, each adjacent latent heat storage body (1)
, (1) Detachably attach the electrodes (23) and (23) to the shoulders, detect changes in capacitance, and connect both heat storage bodies (1).
, (1) may be configured to measure the proximity distance (L) and grasp the amount of heat storage. In the figure (24) is an electrode (23),
It is an integrated bellows type cover that covers (23).

O単一のテレビカメラをスキャニングして各蓄熱槽(1
0)の潜熱蓄熱体(1)の膨脹収縮を画像として記録し
、この記録画像を処理することによって、蓄熱状態を知
る方法を採ってもよい。
O Each heat storage tank (1
A method may be adopted in which the expansion and contraction of the latent heat storage body (1) of 0) is recorded as an image and the recorded image is processed to determine the heat storage state.

■ 第1図に示す、移動体(3)を浮止めステー(2)
にその軸心方向にスライド移動可能に設け、この移動体
(3)の位置をレーザ式スキャニング測距装置で走査し
、相変化後の移動量を検出して、蓄熱状態を把握する方
法を採ってもよい。
■ As shown in Figure 1, the stay (2) holds the moving body (3) afloat.
A method is adopted in which the position of the moving body (3) is scanned by a laser scanning distance measuring device, the amount of movement after the phase change is detected, and the state of heat storage is ascertained. You can.

■ 上記のように個々の潜熱蓄熱体(1)を測定対象と
することによって、各蓄熱槽(lO)個々の蓄熱状態も
知ることができ、検出体(19)のもたらす情報を有効
に活用できる。
■ By measuring each latent heat storage body (1) as described above, it is possible to know the heat storage status of each heat storage tank (lO), and the information provided by the detection body (19) can be effectively utilized. .

■ 測定方法として、全潜熱蓄熱体(1)を測定対象と
してもよいが、蓄熱槽(10)毎に日を新ためて測定を
行う方法を採ってもよい。
(2) As a measurement method, the total latent heat storage body (1) may be the object of measurement, but a method may be adopted in which the measurement is performed on a new day for each heat storage tank (10).

尚、特許請求の範囲の項に図面との対照を便利にする為
に符号を記すが、該記入により本発明は添付図面の構造
に限定されるものではない。
Incidentally, although reference numerals are written in the claims section for convenient comparison with the drawings, the present invention is not limited to the structure shown in the accompanying drawings.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明に係る蓄熱装置の実施例を示し、第1図は
蓄熱量を把握する全体構成図、第2図は潜熱蓄熱体を示
す斜視図、第3図は全体構成を示す斜視図、第4図及び
第5図は、夫々、検出体の別実施例を示す構成図である
。 (1)・・・・・・潜熱蓄熱体、(10)・・・・・・
蓄熱槽、(19)・・・・・・検出体、(L)・・・・
・・隣接間隔。
The drawings show an embodiment of the heat storage device according to the present invention, FIG. 1 is an overall configuration diagram for grasping the amount of heat storage, FIG. 2 is a perspective view showing a latent heat storage body, and FIG. 3 is a perspective view showing the overall configuration. FIGS. 4 and 5 are configuration diagrams showing other embodiments of the detection object, respectively. (1)...Latent heat storage body, (10)...
Heat storage tank, (19)... Detection object, (L)...
...Adjacent spacing.

Claims (1)

【特許請求の範囲】[Claims] 潜熱蓄熱材を可撓性の容器に封入になる複数個の潜熱蓄
熱体(1)を蓄熱槽(10)内に並置してある、又は、
複数個の前記潜熱蓄熱体を有する蓄熱槽(10)を複数
個設けてある蓄熱装置において、前記潜熱蓄熱体(1)
同志の隣接間隔(L)を検出する検出体(19)を設け
るとともに、相変化する前記潜熱蓄熱材の体積膨脹収縮
に追従して前記潜熱蓄熱体(1)が膨脹・収縮すること
による前記隣接間隔(L)の変化に対する前記検出体(
19)の検出結果に基づいて、前記蓄熱槽(10)内の
各潜熱蓄熱体(1)の相変化状態を把握する手段を設け
てある蓄熱装置。
A plurality of latent heat storage bodies (1) each containing a latent heat storage material enclosed in a flexible container are arranged side by side in a heat storage tank (10), or
In a heat storage device including a plurality of heat storage tanks (10) each having a plurality of latent heat storage bodies, the latent heat storage body (1)
A detecting body (19) is provided for detecting the adjacent spacing (L) between the two, and the adjacency is caused by the latent heat storage material (1) expanding and contracting following the volumetric expansion and contraction of the latent heat storage material undergoing phase change. The detection object (
19) A heat storage device comprising a means for grasping the phase change state of each latent heat storage body (1) in the heat storage tank (10) based on the detection result of the heat storage tank (10).
JP24617189A 1989-09-20 1989-09-20 Heat storage device Pending JPH03110331A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24617189A JPH03110331A (en) 1989-09-20 1989-09-20 Heat storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24617189A JPH03110331A (en) 1989-09-20 1989-09-20 Heat storage device

Publications (1)

Publication Number Publication Date
JPH03110331A true JPH03110331A (en) 1991-05-10

Family

ID=17144572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24617189A Pending JPH03110331A (en) 1989-09-20 1989-09-20 Heat storage device

Country Status (1)

Country Link
JP (1) JPH03110331A (en)

Similar Documents

Publication Publication Date Title
EP2244046A3 (en) Plate fin heat exchanger
JPH03110331A (en) Heat storage device
CN111595035A (en) Method for controlling solar valve by communication means
CN105865051A (en) Solar thermal collector capable of detecting leakage
JP7127930B2 (en) High-speed blotting device and its use
CN208607112U (en) Concentration detection apparatus, concentration measurement and control device and solar water heater
JPH0289995A (en) Heat accumulating device
CN112666215A (en) Fused salt air heat exchange performance testing device
JPH0311296A (en) Heat accumulator
CN208736672U (en) A kind of water valve water frequency relation detection device
CN109204752A (en) Water-bed driving device
CN207020119U (en) A kind of device for being used to determine amberplex transport number
JPS6145110A (en) Slider equipment
CN218949865U (en) Bellows storage rack
JPH0244237A (en) Determination of heat storage residue for heat storage apparatus
CN213022720U (en) Object moisture content detection device
CN110969925A (en) Self-water-replenishing ship lock demonstration experiment device for different water delivery systems
SU1354043A1 (en) Bed for heat engineering and aerodynamic tests of heat-exchanging surfaces
Bodhe et al. Simplified techniques for elution of proteins from polyacrylamide gel, staining, destaining, and isoelectric focusing
JP2811600B2 (en) Heat pipe heat exchanger
JPH0424443Y2 (en)
CN209310726U (en) It is a kind of that displacement acquisition device is adaptively followed based on in-plane displancement sensor
CN208275446U (en) A kind of rack for test tube adapting to water level and anti-water bath top is dripped
JP2589313Y2 (en) Mass flow controller
Heinse et al. Measurement of porous media hydraulic properties during parabolic flight induced microgravity