JPH0289995A - Heat accumulating device - Google Patents

Heat accumulating device

Info

Publication number
JPH0289995A
JPH0289995A JP63239292A JP23929288A JPH0289995A JP H0289995 A JPH0289995 A JP H0289995A JP 63239292 A JP63239292 A JP 63239292A JP 23929288 A JP23929288 A JP 23929288A JP H0289995 A JPH0289995 A JP H0289995A
Authority
JP
Japan
Prior art keywords
heat storage
latent heat
heat accumulating
bodies
latent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63239292A
Other languages
Japanese (ja)
Other versions
JP2554718B2 (en
Inventor
Takao Yamada
山田 隆生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP63239292A priority Critical patent/JP2554718B2/en
Publication of JPH0289995A publication Critical patent/JPH0289995A/en
Application granted granted Critical
Publication of JP2554718B2 publication Critical patent/JP2554718B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Central Heating Systems (AREA)

Abstract

PURPOSE:To know heat accumulating condition surely by a method wherein the amount of displacement of the outermost side latent heat accumulating body, pushed by the expansion of the latent heat accumulating body, positioned at the outermost side of the group of latent heat accumulating bodies, itself and the expansions of the other latent heat accumulating bodies, is measured by a detecting body such as a piezoelectric element or the like. CONSTITUTION:Latent heat accumulating bodies 1 are arranged so as to be brought into contact closely and projections 1a on the side surfaces thereof are abutted actually against each other whereby the flow passage of heat medium fluid is provided. When heat accumulation is started from a condition before starting the heat accumulation, the volume of respective latent heat accumulating bodies is expanded by the change of the phase of latent heat accumulating material. Then, the latent heat accumulating body 1, positioned at the outermost side of the group of the latent heat accumulating bodies 1 and specified as the detecting object of a detecting sensor 3, is proximated to the detecting sensor 3 by receiving moving forces of the volumetric expansion of itself as well as the volumetric expansions of the other neighboring latent heat accumulating bodies 1 whereby the same is brought into contact with the detecting sensor 3 when the amount of accumulated heat has arrived at a set value. The ON-OFF control of the operation of a heat pump may be effected by receiving the signal of the detecting sensor 3 and judging that the amount of accumulated heat has arrived at the set value.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、潜熱蓄熱材を容器内に封入してなる複数個の
潜熱蓄熱体を蓄熱槽内に密接並置している蓄熱装置であ
って、更に詳しくは、前記蓄熱装置とヒートポンプとを
併用し、夜間電力を利用してヒートポンプを運転し蓄熱
体に対して蓄熱し、昼間の空調負荷に対して蓄熱装置の
単独又は蓄熱装置ヒートポンプとの同時運転によってヒ
ートポンプのみの運転に比べてトークルランニングコス
トの低減化を図ることのできる蓄熱装置に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a heat storage device in which a plurality of latent heat storage bodies each formed by enclosing a latent heat storage material in a container are closely juxtaposed in a heat storage tank. More specifically, the heat storage device and a heat pump are used in combination, the heat pump is operated using nighttime electricity to store heat in the heat storage body, and the heat storage device alone or in combination with the heat storage device heat pump is used for daytime air conditioning loads. The present invention relates to a heat storage device that can reduce running costs by operating heat pumps at the same time compared to operating only heat pumps.

〔従来の技術〕[Conventional technology]

上記のような蓄熱装置において、蓄熱量を把握する方法
として、第5図に示すように、チューブ式の熱交換器(
9)を水式蓄熱槽内に浸し、このチューブ(18)内に
冷媒を循環させデユープ外表面に着氷させる構成を採っ
て、この蓄熱槽(10)の水位を水位計(19)で測定
して蓄熱量を把握する方法を採用していた。
In the heat storage device as described above, as a method of grasping the amount of heat storage, as shown in Fig. 5, a tube-type heat exchanger (
9) is immersed in a water-type heat storage tank, a refrigerant is circulated in this tube (18), and ice is formed on the outer surface of the duplex, and the water level of this heat storage tank (10) is measured with a water level meter (19). A method was used to determine the amount of heat stored.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしこの場合には、着氷にかかる水位上昇が余り大き
くとれない為に精密な水位検出計が必要になるとともに
、振動源が近(にあると水面が波打って正確な測定が行
なえず、かつ、基準水位を常に管理しなければならない
といった種々の問題点があった。
However, in this case, a precise water level detector is required because the water level rise due to icing cannot be taken too much, and if the vibration source is nearby, the water surface will ripple and accurate measurements cannot be made. In addition, there were various problems such as the need to constantly control the reference water level.

本発明の目的は従来に比べてより確実に蓄熱状態を知る
ことができるものを提供する点にある。
An object of the present invention is to provide a device that allows the state of heat storage to be known more reliably than in the past.

〔課題を解決するための手段〕[Means to solve the problem]

本発明による特徴構成は ■ 相変化する潜熱蓄熱材の体積膨張に追従して膨脹す
る潜熱蓄熱体群における密接方向でのトータル膨張型を
検出する検出体を、前記潜熱蓄熱体群の最外側に位置す
る前記潜熱蓄熱体を測定対象とする位置に配置する点と
、■ 前記検出体の検出結果に基づいて、前記蓄熱槽内
の各潜熱蓄熱体の相変化状態を把握する点と、 にあり、その作用効果は次の通りである。
The characteristic configuration according to the present invention is as follows: (1) A detection body for detecting the total expansion type in the close contact direction in a group of latent heat storage bodies that expands following the volumetric expansion of the latent heat storage material undergoing a phase change is placed at the outermost side of the group of latent heat storage bodies. (1) arranging the latent heat storage body at a position to be measured; and (2) determining the phase change state of each latent heat storage body in the heat storage tank based on the detection result of the detection body. , its functions and effects are as follows.

〔作 用〕[For production]

つまり、潜熱蓄熱材が相変化を起して体積膨張するとそ
の容器も膨脹する。そして、この潜熱蓄熱材の相変化が
総ての潜熱蓄熱体の容器内で起るので、例えば、第2図
に示すように、前記潜熱蓄熱体群の最外側に位置する潜
熱蓄熱体自体の膨脹及び他の潜熱蓄熱体の膨脹によって
押圧される前記最外側潜熱体の移動量を圧電素子等の検
出体で測定することによって、全潜熱蓄熱体のトータル
膨張型ひいては蓄熱量を知ることができる。
In other words, when the latent heat storage material undergoes a phase change and expands in volume, the container also expands. Since this phase change of the latent heat storage material occurs within the containers of all the latent heat storage materials, for example, as shown in FIG. By measuring the amount of movement of the outermost latent heat body that is pressed by the expansion and the expansion of other latent heat storage bodies with a detection body such as a piezoelectric element, the total expansion type of all latent heat storage bodies and the amount of heat storage can be determined. .

〔発明の効果〕〔Effect of the invention〕

したがって、従来のように水位を通して間接的に水着量
を知るのではなく、直接膨脹量を図る方法であるから、
より正確に蓄熱量を知ることができる。しかも、単一の
検出体であり乍ら全潜熱蓄熱体の蓄熱状態を把握できる
利点もある。
Therefore, instead of knowing the amount of swimwear indirectly through the water level as in the past, this method directly measures the amount of expansion.
It is possible to know the amount of heat storage more accurately. Moreover, there is an advantage that the heat storage state of the total latent heat storage body can be grasped even though it is a single detection object.

〔実施例〕〔Example〕

第3図において、(10)は潜熱蓄熱材の相変化、具体
的にはその凝固に係る潜熱を蓄える蓄熱装置の蓄熱槽を
示しており、該蓄熱槽(10)は、縦横に仕切られた隔
壁(17)によって4分割された第1蓄熱槽(11)、
第2蓄熱槽(12)、第3蓄熱槽(13)及び第4蓄熱
槽(14)からなっている。更に詳しくは、該蓄熱槽(
10)は、熱媒流体供給口(15)から熱媒流体が供給
され該熱媒流体を内部通流させる第1蓄熱槽(11)と
、該第1蓄熱槽(11)を通流した上で濡出する熱媒流
体が導入され該熱媒流体を内部通流させる第2蓄熱槽(
12)と、該第2蓄熱槽(12)を通流した上で送出さ
れる熱媒流体が導入され該熱媒流体を内部通流させる第
3蓄熱槽(13)と、該第3蓄熱槽(13)を通流した
上で濡出する熱媒流体が導入され該熱媒流体を内部通流
させた上で熱媒流体排出口(16)から排出する第4蓄
熱槽(14)とからなっており、その各種(11) 、
 (12) 、 (13) 、 (14)には夫々、潜
熱蓄熱体(1)が整列状態で収納配置されている。
In FIG. 3, (10) indicates a heat storage tank of a heat storage device that stores the phase change of the latent heat storage material, specifically the latent heat related to its solidification, and the heat storage tank (10) is partitioned vertically and horizontally. a first heat storage tank (11) divided into four by a partition wall (17);
It consists of a second heat storage tank (12), a third heat storage tank (13), and a fourth heat storage tank (14). More specifically, the heat storage tank (
10) is a first heat storage tank (11) to which a heat medium fluid is supplied from a heat medium fluid supply port (15) and allows the heat medium fluid to flow inside; A second heat storage tank (in which the heat medium fluid wetting out is introduced and the heat medium fluid is made to flow inside)
12), a third heat storage tank (13) into which a heat medium fluid sent after passing through the second heat storage tank (12) is introduced, and the third heat storage tank (13) allows the heat medium fluid to flow therethrough; (13) from a fourth heat storage tank (14) into which a heat medium fluid that flows through and wets out is introduced and is discharged from a heat medium fluid discharge port (16) after passing the heat medium fluid inside; There are various types (11),
In (12), (13), and (14), latent heat storage bodies (1) are housed and arranged in an aligned state, respectively.

前記潜熱蓄熱体(1)について詳述するに、該潜熱蓄熱
体(1)は、第1図に示すように、潜熱蓄熱材を封入す
るための空隙が形成された軟性材料製の板状容器の内部
に熱媒流体よりも比重が小さい潜熱蓄熱材が空気と共に
封入されてなっている。そして咳潜熱蓄熱体(1)は、
前記蓄熱槽(10)の各種(11) 、 (12) 、
 (13) 、 (14)に夫々最密状態で配置される
ように、複数列に(各槽毎に2列に)縦列配置された上
で、中間にスペーサ(4)を介装しつつ多段に積層配置
され、もって整列状態に収納配置されている。しかも各
潜熱蓄熱体(1)の横側面には凸部(la)が設けてあ
り、これら凸部(la)同士が接当して相互間には適宜
スペースを有する熱媒流体の通流域が形成されている。
To explain the latent heat storage body (1) in detail, the latent heat storage body (1) is, as shown in FIG. A latent heat storage material having a specific gravity lower than that of the heat transfer fluid is sealed together with air inside the heat transfer medium. And the cough latent heat storage body (1) is
Various types (11), (12), of the heat storage tank (10),
(13) and (14) are arranged in multiple rows (two rows for each tank) in a close-packed state, respectively, and then multi-tiered with spacers (4) interposed in the middle. They are stacked on top of each other and are housed in an aligned state. Moreover, a convex portion (la) is provided on the side surface of each latent heat storage body (1), and these convex portions (la) are in contact with each other, creating a flow area for the heat medium fluid with an appropriate space between them. It is formed.

かくして整列状態に収納配置された潜熱蓄熱体(1)は
、それらのうちの最も上段に位置する潜熱蓄熱体(1)
の上に各種(11) 、 (12) 、 (13) 、
 (14)毎に4個宛割り当てられて設置された浮止め
ステー(2)によってその浮力による浮上が防止される
ようになっている。なお第3図中の(5)は、蓄熱槽(
10)の上面開口部に配置される落とし棚である。
The latent heat storage bodies (1) thus arranged in an array are the latent heat storage bodies (1) located in the uppermost stage among them.
Various types (11), (12), (13),
(14) Four floating stays (2) are allocated and installed to prevent floating due to their buoyancy. Note that (5) in Figure 3 is a heat storage tank (
10) A drop shelf placed in the top opening.

次に、各種(11) 、 (12) 、 (13) 、
 (14)における蓄熱量を知る手段を説明する。第2
図(イ)、(ロ)に示すように、各種(11)、 (1
2)、 (13)、 (14)の外壁(11^)、 (
12A) 、 (13A) 、 (14A)内面に凹部
を形成し、・その凹部内に圧電素子等検出体(3)を固
着した取付台(6)を装着している。一方、蓄熱槽(1
1)。
Next, various (11), (12), (13),
The means for knowing the amount of heat storage in (14) will be explained. Second
As shown in figures (a) and (b), various types (11), (1
2), (13), (14) outer wall (11^), (
12A), (13A), (14A) A recess is formed on the inner surface, and a mounting base (6) to which a detecting body (3) such as a piezoelectric element is fixed is mounted in the recess. On the other hand, the heat storage tank (1
1).

(12) 、 (13) 、 (14)内の潜熱蓄熱体
(1)は長幅の横側面同志を接する状態で密接配置され
、それら横側面の突出部(1a)同志を実際に接当させ
ることによって熱媒流体の通流路を設けである。したが
って、第2図の(ロ)で示すように、蓄熱の始まる前状
態から蓄熱が始まると各潜熱蓄熱体(1)は、第2図の
(イ)で示すように、潜熱蓄熱材の相変化によって体積
膨張を行う。すると、前記検出体としての検出センサ(
3)の検出対象とされている潜熱蓄熱体(1)群の最外
側に位置する潜熱蓄熱体(1)は自己の体積膨張と隣接
する他の潜熱蓄熱体(1)の体積膨張による密接方向へ
の移動力を受けて検出センサ(3)に近接し、設定蓄熱
量で検出センサ(3)に接触作用する。したがって、こ
の検出センサ(3)からの信号を受けて設定蓄熱量にな
ったと判断してヒートポンプの運転を止める0N−OF
F制御が行なえる。ただし、前記検出センサ(3)を固
着している取付台(6)は樹脂製で、潜熱蓄熱体(1)
が設定量以上膨出した場合に、その膨出量を吸収するよ
うに弾性変形する。
The latent heat storage bodies (1) in (12), (13), and (14) are closely arranged with their long lateral sides touching each other, and the protrusions (1a) of these lateral sides are actually brought into contact with each other. This provides a passage for heat transfer fluid. Therefore, as shown in (b) of Fig. 2, when heat storage starts from the state before heat storage starts, each latent heat storage body (1) changes the phase of the latent heat storage material as shown in (a) of Fig. 2. Volume expansion occurs due to change. Then, the detection sensor (
The latent heat storage body (1) located at the outermost side of the group of latent heat storage bodies (1) that is the object of detection in 3) has a close contact direction due to its own volumetric expansion and the volumetric expansion of other adjacent latent heat storage bodies (1). It approaches the detection sensor (3) due to the moving force, and contacts and acts on the detection sensor (3) with the set amount of heat storage. Therefore, upon receiving the signal from this detection sensor (3), it is determined that the set heat storage amount has been reached and the operation of the heat pump is stopped.
F control can be performed. However, the mounting base (6) to which the detection sensor (3) is fixed is made of resin, and the latent heat storage body (1)
If it bulges out by more than a set amount, it will elastically deform to absorb the amount of bulge.

〔別実施例〕[Another example]

■ 前記検出体(3)としては体積膨脹量を−・点だけ
で促える構造のものを示したが、例えば、第4図に示す
ように、センサロッド(7)を最外側の潜熱蓄熱体(1
)に接当させ、体積膨脹量に応じてセンサロッド(7)
を外方に押し出し移動させる構成を採り、このセンサロ
ッド(7)に連結したアーム(8)を介してポテンショ
メータ等の回転センサに連結し、体積膨脹量を連続的に
検出することができる。
■ The above-mentioned detecting body (3) has a structure that can promote the volumetric expansion only at the - point, but for example, as shown in Fig. 4, the sensor rod (7) is connected to the outermost latent heat storage body. (1
) in contact with the sensor rod (7) according to the amount of volumetric expansion.
The sensor rod (7) is connected to a rotation sensor such as a potentiometer via an arm (8) connected to the sensor rod (7), and the amount of volumetric expansion can be continuously detected.

■ また、前記検出体(3)としては光センサ式距離計
を採用して、槽外壁(116) 、 (12A) 、 
(13A) 。
■ In addition, an optical sensor type distance meter is adopted as the detection object (3), and the outer wall of the tank (116), (12A),
(13A).

(14A)内面からの最外側の潜熱蓄熱体(1)までの
間隔を測定して、体積膨脹量を知る構成を採ってもよい
(14A) A configuration may be adopted in which the amount of volumetric expansion is determined by measuring the distance from the inner surface to the outermost latent heat storage body (1).

■ 潜熱蓄熱体(1)の密接並置する状態とじては各潜
熱蓄熱体(1)の体積膨脹量を見込んだ並置状態を採っ
てもよい。
(2) As for the state in which the latent heat storage bodies (1) are closely juxtaposed, a juxtaposed state may be adopted that takes into account the amount of volumetric expansion of each latent heat storage body (1).

■ 潜熱蓄熱体(1)としては球形等信の形状を採って
もよい。
■ The latent heat storage body (1) may have a spherical shape.

尚、特許請求の範囲の項に図面との対照を便利にする為
に符号を記すが、該記入により本発明は添付図面の構造
に限定されるものではない。
Incidentally, although reference numerals are written in the claims section for convenient comparison with the drawings, the present invention is not limited to the structure shown in the accompanying drawings.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明に係る蓄熱装置の実施例を示し、第1図は
潜熱蓄熱体を示す斜視向、第2図(イ)は潜熱蓄熱体が
相変化して体積膨張した状態を示す縦断面図、第2図(
ロ)は潜熱蓄熱体が相変化する前の状態を示す縦断面図
、第3図は蓄熱槽を示す斜視図、第4図は潜熱蓄熱体の
相変化状態を検出する検出体の別実施例を示す縦断面図
、第5図は従来の蓄熱法における蓄熱方法を示す縦断面
図である。 (1)・・・・・・潜熱蓄熱体、(3)・・・・・・検
出体、(10)・・・・・・蓄熱槽。 第5図 イ込理人弁理士 北 村  修
The drawings show an embodiment of the heat storage device according to the present invention, in which Fig. 1 is a perspective view showing a latent heat storage body, and Fig. 2 (A) is a longitudinal cross-sectional view showing a state in which the latent heat storage body undergoes a phase change and volumetric expansion. , Figure 2 (
B) is a vertical cross-sectional view showing the state before the latent heat storage body undergoes a phase change, FIG. 3 is a perspective view showing the heat storage tank, and FIG. 4 is another embodiment of the detection body for detecting the phase change state of the latent heat storage body. FIG. 5 is a vertical cross-sectional view showing a conventional heat storage method. (1)... Latent heat storage body, (3)... Detection body, (10)... Heat storage tank. Figure 5 Ikomi Patent Attorney Osamu Kitamura

Claims (1)

【特許請求の範囲】[Claims] 潜熱蓄熱材を容器内に封入してなる複数個の潜熱蓄熱体
(1)を蓄熱槽内に密接並置している蓄熱装置において
、相変化する前記潜熱蓄熱材の体積膨脹に追従して膨脹
する前記潜熱蓄熱体群における並置方向でのトータル膨
脹量を検出する検出体(3)を、前記潜熱蓄熱体群の最
外側に位置する前記潜熱蓄熱体(1)を測定対象とする
位置に配置するとともに、前記検出体(3)の検出結果
に基づいて、前記蓄熱槽(10)内の各潜熱蓄熱体の相
変化状態を把握すべく構成してある蓄熱装置。
In a heat storage device in which a plurality of latent heat storage bodies (1) formed by sealing a latent heat storage material in a container are closely juxtaposed in a heat storage tank, the latent heat storage material expands to follow the volumetric expansion of the latent heat storage material that undergoes a phase change. A detection body (3) that detects the total expansion amount in the juxtaposition direction of the latent heat storage body group is placed at a position where the latent heat storage body (1) located at the outermost side of the latent heat storage body group is to be measured. Also, a heat storage device configured to grasp the phase change state of each latent heat storage body in the heat storage tank (10) based on the detection result of the detection body (3).
JP63239292A 1988-09-24 1988-09-24 Heat storage device Expired - Lifetime JP2554718B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63239292A JP2554718B2 (en) 1988-09-24 1988-09-24 Heat storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63239292A JP2554718B2 (en) 1988-09-24 1988-09-24 Heat storage device

Publications (2)

Publication Number Publication Date
JPH0289995A true JPH0289995A (en) 1990-03-29
JP2554718B2 JP2554718B2 (en) 1996-11-13

Family

ID=17042565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63239292A Expired - Lifetime JP2554718B2 (en) 1988-09-24 1988-09-24 Heat storage device

Country Status (1)

Country Link
JP (1) JP2554718B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008144983A (en) * 2006-12-06 2008-06-26 Honda Motor Co Ltd Thermal storage device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008144983A (en) * 2006-12-06 2008-06-26 Honda Motor Co Ltd Thermal storage device
JP4726770B2 (en) * 2006-12-06 2011-07-20 本田技研工業株式会社 Heat storage device

Also Published As

Publication number Publication date
JP2554718B2 (en) 1996-11-13

Similar Documents

Publication Publication Date Title
US7650759B2 (en) Apparatus for controlling refrigerant level
US5479707A (en) Method of making an integrally formed, modular ice cuber having a stainless steel evaporator and a microcontroller
CN103486812A (en) Refrigerator
CN101506627B (en) Assembly for measuring the specific gravity and level of a liquid
JPH0289995A (en) Heat accumulating device
WO2010138559A2 (en) Pressure-sensor based liquid-level measuring device with reduced capillary effect
US6101837A (en) Ice thermal storage type air-conditioner and ice thermal storage tank
WO1989012326A1 (en) Internal hydrostatic pump for a mobile vehicle battery
JPH0311296A (en) Heat accumulator
EP3531085B1 (en) Refrigeration cycle apparatus
JPS589347B2 (en) Reitou Souchino Anzen Souchi
JPH03110331A (en) Heat storage device
JPH06500168A (en) Differential float means and sensor means having same
JPH0244237A (en) Determination of heat storage residue for heat storage apparatus
JPH01123971A (en) Measuring instrument for quantity of ice stored in ice machine
EP0283634B1 (en) An eutectic solution cold accumulator
JPS6113070Y2 (en)
CN206377789U (en) Water cold-storage air conditioning system
JPH0781796B2 (en) How to clean heat exchanger tubes
KR200258212Y1 (en) Sub tank for auto water drain system
RU2037750C1 (en) Cold accumulating device
CN118150435A (en) Device and method for testing liquid discharge efficiency of surface microstructure
AU4799001A (en) Ice thermal storage control
SU1118866A1 (en) Capacity level gauge for for symmetrical vessels
RU2116442C1 (en) Device for measuring production rate of oil wells