JPH0311296A - Heat accumulator - Google Patents

Heat accumulator

Info

Publication number
JPH0311296A
JPH0311296A JP1146200A JP14620089A JPH0311296A JP H0311296 A JPH0311296 A JP H0311296A JP 1146200 A JP1146200 A JP 1146200A JP 14620089 A JP14620089 A JP 14620089A JP H0311296 A JPH0311296 A JP H0311296A
Authority
JP
Japan
Prior art keywords
heat
heat storage
tank
storage tank
surface level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1146200A
Other languages
Japanese (ja)
Inventor
Susumu Katou
加藤 駸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP1146200A priority Critical patent/JPH0311296A/en
Publication of JPH0311296A publication Critical patent/JPH0311296A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Central Heating Systems (AREA)

Abstract

PURPOSE:To simplify a heat accumulator by maintaining a liquid surface level in a heat accumulation tank of heat medium fluid in a reference state in which heat is not accumulated in latent heat accumulation material, and calculating accumulation heat quantity according to the liquid surface level rise based on state change of the latent material due to heat accumulation. CONSTITUTION:A float type operation member 8 to be vertically operated based on the vertical deviation of the liquid surface level of heat medium fluid 3 is supported to a holder 9 near the upper end of a heat accumulation tank 10, an arm 17 is pin-coupled to the upper end of the member 8, and the vertical movements of the member 8 is switched to a rotating deviation. A potentiometer type tachometer 18 is provided to compose a liquid surface level deviation detection meter 19 for collecting the liquid surface level deviation of the fluid 3. On the other hand, in order to maintain the level in the tank 10 in a state before the heat accumulation constant, the discharge amount of a circulation pump 6 is maintained constantly to hold the flow rate of the fluid 3 to be circulated in the tank 10 constant. Then, of the surface level position becomes a deviation corresponding to a predetermined heat accumulation amount, an output is produced from the tachometer 18 to control a heat pump 21 through control means 20. Thus, heat accumulation quantity can be grasped by a simple device without using an expensive flowmeter irrespective of a heat loss due to heat dissipation from the tank.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は夜間電力を利用して蓄熱し、昼間にその蓄熱を
使用する蓄熱装置であって、詳しくは、潜熱蓄熱材を可
撓性容器に封入してなる複数個の潜熱蓄熱体を蓄熱槽内
に載置するとともに、蓄熱槽と熱負荷との間で循環作動
する熱媒流体との熱交換によって前記潜熱蓄熱体に蓄熱
すべく構成してある蓄熱装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a heat storage device that stores heat using electricity at night and uses the stored heat during the day. A plurality of latent heat storage bodies sealed in a heat storage body are placed in a heat storage tank, and the heat storage body is configured to store heat in the latent heat storage body by heat exchange with a heat transfer fluid that circulates between the heat storage tank and the heat load. The present invention relates to a heat storage device.

〔従来の技術〕[Conventional technology]

この種の蓄熱装置においては、蓄熱完了時点にヒートポ
ンプを停止する等の運転制御を必要とする為に、蓄熱量
を何らかの方法で知る必要がある。そこで、従来は、前
記熱媒流体の蓄熱槽出入口の温度差と流量より、単位時
間毎の熱交換量を積算して蓄熱量を算出把握していた。
This type of heat storage device requires operational control such as stopping the heat pump when heat storage is completed, so it is necessary to know the amount of heat storage by some method. Therefore, conventionally, the amount of heat storage has been calculated and grasped by integrating the amount of heat exchanged per unit time based on the temperature difference between the entrance and exit of the heat storage tank and the flow rate of the heat medium fluid.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしこの場合は、前記熱媒流体の流量を正確に測定し
ようとすると、データ送信用発信器を装備した高価な流
量計が必要になると共に、時間経過につれて蓄熱槽から
の放熱によるロスがあり、正確さをきすことかできなか
った。
However, in this case, in order to accurately measure the flow rate of the heat transfer fluid, an expensive flowmeter equipped with a transmitter for transmitting data is required, and there is a loss due to heat radiation from the heat storage tank over time. I just couldn't get enough of the accuracy.

本発明は簡便でより正確に蓄熱量を把握できるものを提
供する点にある。
An object of the present invention is to provide a method that allows the amount of heat storage to be grasped easily and more accurately.

〔課題を解決するための手段〕[Means to solve the problem]

本発明による特徴構成は ■ 蓄熱槽に投入される熱媒流体の流入量及び蓄熱槽よ
り流出する流出量を設定量にする流量調節機構を設ける
点と、 ■ 前記潜熱蓄熱材の相変化に起因する前記容器の体積
膨張・収縮に基づく、前記蓄熱槽の熱媒流体液面変位を
検出する液面変位検出計を設ける点と、 ■ 前記検出計の検出結果に基づいて蓄熱装置の蓄熱量
を把握する制御手段を設けてある点と、 にあり、その作用効果は次の通りである。
The characteristics of the present invention are as follows: (1) A flow rate adjustment mechanism is provided to adjust the inflow amount of the heat medium fluid into the heat storage tank and the outflow amount from the heat storage tank to set amounts; (2) This is due to the phase change of the latent heat storage material. (1) A liquid level displacement detector is provided to detect a displacement of the heat medium fluid level in the heat storage tank based on the volumetric expansion/contraction of the container; The functions and effects are as follows.

〔作 用〕[For production]

潜熱蓄熱体に蓄熱されていない基準状態で、熱媒流体の
蓄熱槽内での液面を一定にする。この場合には流量調節
機構として例えば熱媒流体を循環させるポンプの吐出量
を一定にして循環流量を定めて液面を一定にする。その
状態を維持し乍ら、蓄熱を行うと、熱媒流体との熱交換
によって、潜熱蓄熱材のが相変化して膨張し、液面が上
昇する。
The liquid level of the heat medium fluid in the heat storage tank is kept constant in a reference state in which no heat is stored in the latent heat storage body. In this case, as a flow rate adjustment mechanism, for example, the discharge amount of a pump that circulates the heat medium fluid is fixed to determine the circulating flow rate and the liquid level is kept constant. When heat is stored while maintaining this state, the latent heat storage material undergoes a phase change and expands due to heat exchange with the heat transfer fluid, and the liquid level rises.

すると、例えば第1図に示すように、液面が基準高さに
なると感知するリミットスイッチ式又はポテンショメー
タ式の液面計や連続測定が可能な光距離計等で液面を測
定し、この液面上昇量より第3図のグラフで示すように
、蓄熱量を算出できる。
Then, as shown in Figure 1, for example, the liquid level is measured using a limit switch type or potentiometer type liquid level gauge that detects when the liquid level reaches the standard height, an optical distance meter that can perform continuous measurement, etc. As shown in the graph of FIG. 3, the amount of heat storage can be calculated from the amount of surface rise.

〔発明の効果〕〔Effect of the invention〕

その結果、蓄熱量に応じて一義的に決定される潜熱蓄熱
体の体積膨張に基づいた液面変位を制御対象とすること
によって、蓄熱槽から放熱による熱ロスとは無関係に、
かつ、高価な流量計を用いることなく簡便な装置で蓄熱
量を把握することができる蓄熱装置を提供できるに至っ
た。
As a result, by controlling the liquid level displacement based on the volumetric expansion of the latent heat storage body, which is uniquely determined according to the amount of heat storage, it is possible to
Moreover, it has become possible to provide a heat storage device that can measure the amount of heat storage with a simple device without using an expensive flow meter.

〔実施例〕〔Example〕

暖房を行う場合のヒートポンプシステムについて説明す
る。第2図に示すように、蒸発器(2]、a)、圧縮機
(21b)、凝縮器(21c)、膨張弁(21d)を備
えたヒートポンプ(21)から、空調負荷(5)の熱交
換器(5A)及び蓄熱槽(lO)を循環する熱媒流体(
3)循環経路を構成するとともに、この経路に熱媒流体
(3)を循環させる循環ポンプ(6)を設けて、ヒート
ポンプシステムを構成してある。
A heat pump system for heating will be explained. As shown in Fig. 2, the heat pump (21) equipped with an evaporator (2), a compressor (21b), a condenser (21c), and an expansion valve (21d) supplies heat to the air conditioning load (5). The heat medium fluid (
3) A heat pump system is constructed by providing a circulation pump (6) that forms a circulation path and circulates the heat medium fluid (3) in this path.

次に、蓄熱装置について説明する。Next, the heat storage device will be explained.

第4図において、(lO)は潜熱蓄熱材の相変化、具体
的にはその凝固に係る潜熱を蓄える蓄熱装置の蓄熱槽を
示しており、該蓄熱槽(10)は、縦横に仕切られた隔
壁(17)によって4分割された第1蓄熱槽(11)、
第2蓄熱槽(12)、第3蓄熱槽(13)及び第4蓄熱
槽(14)からなっている。更に詳しくは、該蓄熱槽(
10)は、熱媒流体供給口(15)から熱媒流体が供給
され該熱媒流体を内部通流させる第1蓄熱槽(11)と
、該第1蓄熱槽(11)を通流した上で濫用する熱媒流
体が導入され該熱媒流体を内部通流させる第2蓄熱槽(
12)と、該第2蓄熱槽(12)を通流した上で送出さ
れる熱媒流体が導入され該熱媒流体を内部通流させる第
3蓄熱槽(13)と、該第3蓄熱槽(13)を通流した
上で濫用する熱媒流体が導入され該熱媒流体を内部通流
させた上で熱媒流体排出口(16)から排出する第4蓄
熱槽(14)とからなっており、その各種(11)、 
(12)、 (13)、 (14)には夫々、潜熱蓄熱
体(1)が整列状態で収納配置されている。
In FIG. 4, (lO) indicates the heat storage tank of the heat storage device that stores the phase change of the latent heat storage material, specifically the latent heat related to its solidification, and the heat storage tank (10) is partitioned vertically and horizontally. a first heat storage tank (11) divided into four by a partition wall (17);
It consists of a second heat storage tank (12), a third heat storage tank (13), and a fourth heat storage tank (14). More specifically, the heat storage tank (
10) is a first heat storage tank (11) to which a heat medium fluid is supplied from a heat medium fluid supply port (15) and allows the heat medium fluid to flow inside; A second heat storage tank (in which a heating medium fluid to be abused is introduced and the heating medium fluid is made to flow inside)
12), a third heat storage tank (13) into which a heat medium fluid sent out after passing through the second heat storage tank (12) is introduced, and the third heat storage tank (13) allows the heat medium fluid to flow therethrough; (13) A fourth heat storage tank (14) in which a heat medium fluid to be abused is introduced after flowing through it, and is discharged from a heat medium fluid discharge port (16) after passing through the heat medium fluid inside the tank. There are various types (11),
In (12), (13), and (14), latent heat storage bodies (1) are housed and arranged in an aligned manner, respectively.

前記潜熱蓄熱体(1)について詳述するに、該潜熱蓄熱
体(1)は、第1図に示すように、潜熱蓄熱材を封入す
るための空隙が形成された軟性材料製の板状容器の内部
に熱媒流体よりも比重が小さい潜熱蓄熱材が空気と共に
封入されてなっている。そして該潜熱蓄熱体(1)は、
前記蓄熱槽(10)の各種(11)、 (12)、 (
13)、 (14)に夫々最密状態で配置されるように
、複数列に(各検電に2列に)縦列配置された上で、中
間にスペーサ(4)を介装しつつ多段に積層配置され、
もって整列状態に収納配置されている。しかも各潜熱蓄
熱体(1)の横側面には凸部(1a)が設けてあリ、こ
れら凸部(la)同士が接当して相互間には適宜スペー
スを有する熱媒流体の通流域が形成されている。
To explain the latent heat storage body (1) in detail, the latent heat storage body (1) is, as shown in FIG. A latent heat storage material having a specific gravity lower than that of the heat transfer fluid is sealed together with air inside the heat transfer medium. And the latent heat storage body (1) is
Various types (11), (12), (
13) and (14) are arranged in tandem in multiple rows (two rows for each voltage detector) so that they are arranged in a close-packed state, respectively, and then in multiple stages with spacers (4) interposed in the middle. Arranged in layers,
They are stored and arranged in an aligned state. Moreover, a protrusion (1a) is provided on the side surface of each latent heat storage body (1). is formed.

かくして整列状態に収納配置された潜熱蓄熱体(1)は
、それらのうちの最も上段に位置する潜熱蓄熱体(1)
の上に各種(11)、 (12)、 (13)、 (1
4)毎に4個宛割り当てられて設置された浮止めステー
(2)によってその浮力による浮上が防止されるように
なっている。なお第4図中の(7)は、蓄熱槽(10)
の上面開口部に配置される落とし棚である。又、前記熱
媒流体(3)は水やブライン等が使用され、一方、潜熱
蓄熱材としてはNazSO4・10H20等が使用され
、この潜熱蓄熱材は略49°C位で融解し液化した状態
で温熱を保有し、体積膨張を行う。
The latent heat storage bodies (1) thus arranged in an array are the latent heat storage bodies (1) located in the uppermost stage among them.
Various (11), (12), (13), (1
The buoyancy of the stays (2), which are allocated to each of the four floating stays (2), prevents them from floating due to their buoyancy. Note that (7) in Figure 4 is the heat storage tank (10)
This is a drop shelf placed in the top opening of the . In addition, water, brine, etc. are used as the heat transfer fluid (3), and NazSO4.10H20, etc. are used as the latent heat storage material, and this latent heat storage material melts and liquefies at approximately 49°C. It retains heat and expands in volume.

又、熱媒流体の蓄熱槽内帯留量と潜熱蓄熱体(1)との
収納個数とは密接な関係があり、蓄熱槽内帯留量(6T
ON>に対して潜熱蓄熱体(1)の収納個数が1000
個といった具合である。
In addition, there is a close relationship between the amount of heat transfer fluid retained in the heat storage tank and the number of latent heat storage bodies (1) stored, and the amount of retained heat medium fluid in the heat storage tank (6T
ON>, the number of stored latent heat storage bodies (1) is 1000
It is like this.

次に、蓄熱量の把握方法について説明する。Next, a method of understanding the amount of heat storage will be explained.

第1図に示すように、蓄熱槽(10)の上端近くに、熱
媒流体(3)液面の上下変位に基づいて上下作動するフ
ロート式作動部材(8)を、上下作動のみ可能にホルダ
ー(9)に支持するとともに、前記フロート式作動部材
(8)の上端に揺動操作アーム(17)をピン連結し、
もって前記フロート式作動部材(8)の上下動を回転変
位に切換え、前記揺動操作アーム(17)の揺動軸心位
置に設けたポテンショメータ式の回転計(I8)を設け
て揺動操作アーム(17)の回転変位を捉え、熱媒流体
(3)の液面変位を捉える液面変位検出計(19)を構
成している。一方、蓄熱以前の状態では蓄熱槽(10)
内の液面を一定に維持する必要があるので、循環ポンプ
(6)による吐出量を一定にして、蓄熱槽(10)を循
環する熱媒流体(3)流量を一定にする。この循環ポン
プ(6)を蓄熱槽(10)への流出・流入量を一定にす
る流量調節機構と称する。
As shown in Figure 1, near the upper end of the heat storage tank (10), a float type actuating member (8) that moves up and down based on the up and down displacement of the heat medium fluid (3) level is placed in a holder that allows only up and down movement. (9), and a swing operation arm (17) is connected with a pin to the upper end of the float type operating member (8);
Thereby, the vertical movement of the float-type actuating member (8) is switched to rotational displacement, and a potentiometer-type tachometer (I8) provided at the pivot axis position of the swing operation arm (17) is provided to change the swing operation arm. (17) constitutes a liquid level displacement detector (19) that detects the rotational displacement of the heat transfer fluid (3) and detects the liquid level displacement of the heat transfer fluid (3). On the other hand, in the state before heat storage, the heat storage tank (10)
Since it is necessary to maintain a constant liquid level in the heat storage tank (10), the discharge amount by the circulation pump (6) is made constant, and the flow rate of the heat medium fluid (3) circulating through the heat storage tank (10) is made constant. This circulation pump (6) is called a flow rate adjustment mechanism that keeps the amount of outflow and inflow into the heat storage tank (10) constant.

以上の構成より、例えば第3図で示すように、液面の変
位(△H)と蓄熱量(Q)との関係は略−次関数Q=f
(△H)で表わされ、液面の変位(△H)を検出するこ
とによって一義的に蓄熱量を把握できる。そこで、液面
位置が所定の蓄熱量に相当する変位量になった場合には
、前記回転計(18)より出力して制御手段(20)を
介してヒートポンプ(21)を停止する制御を行う。
From the above configuration, for example, as shown in Fig. 3, the relationship between the liquid level displacement (ΔH) and the amount of heat storage (Q) is approximately a -order function Q = f
(ΔH), and the amount of heat storage can be uniquely determined by detecting the displacement (ΔH) of the liquid level. Therefore, when the liquid level position reaches a displacement amount corresponding to a predetermined amount of heat storage, control is performed to output from the tachometer (18) and stop the heat pump (21) via the control means (20). .

尚、第3図の点(A)から点(B)は顕熱にかかる体積
膨張域を表わし、これは潜熱蓄熱材の温熱保有によって
可撓性容器及び容器内の保有空気の膨張に起因するもの
であり、点(8)から点(C)までは潜熱蓄熱材自身に
よる潜熱体積膨張域を表す。点(C)で基準の所定熱量
が得られる。
Note that points (A) and (B) in Figure 3 represent the volumetric expansion region related to sensible heat, which is caused by the expansion of the flexible container and the air retained in the container due to the thermal retention of the latent heat storage material. The area from point (8) to point (C) represents the region of latent heat volumetric expansion due to the latent heat storage material itself. A reference predetermined amount of heat is obtained at point (C).

〔別実施例〕[Another example]

■ 前記液面変位検出計(19)としては、前記ポテン
ショメータの替りにリミットスイッチでもよく、或いは
、光・超音波等の非接触式センサを利用してもよい。
(2) As the liquid level displacement detector (19), a limit switch may be used instead of the potentiometer, or a non-contact type sensor such as light or ultrasound may be used.

■ 流量調節機構(6)としては、熱媒流体循環経路内
の仕切弁の開弁調節による形態を採ってもよい。
(2) The flow rate adjustment mechanism (6) may be configured by adjusting the opening of a gate valve in the heat medium fluid circulation path.

■ 相変化によって体積膨張するものであれば、水等他
の潜熱蓄熱材であってもよい。
(2) Other latent heat storage materials such as water may be used as long as they expand in volume due to phase change.

■ 蓄熱槽(10)内の液面の上下量を拡大する為に、
蓄熱槽を上面蓋で閉塞してその蓋に小径円筒管を接続し
て、この小径円筒管を上下する液面変化によって蓄熱量
を把握する構成を採ってもよい。
■ In order to increase the amount of rise and fall of the liquid level in the heat storage tank (10),
The heat storage tank may be closed with an upper lid, a small-diameter cylindrical tube is connected to the lid, and the amount of heat storage may be determined by changes in the liquid level moving up and down the small-diameter cylindrical tube.

尚、特許請求の範囲の項に図面との対照を便利にする為
に符号を記すが、該記入により本発明は添付図面の構造
に限定されるものではない。
Incidentally, although reference numerals are written in the claims section for convenient comparison with the drawings, the present invention is not limited to the structure shown in the accompanying drawings.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明に係る蓄熱装置の実施例を示し、第1図は
液面変位検出計を示す縦断正面図、第2図は熱媒流体の
循環経路を示す構成図、第3図は液面変位と蓄熱量を示
すグラフ、第4図は全体斜視図である。 (1)・・・・・・潜熱蓄熱体、(3)・・・・・・熱
媒流体、(6)・・・・・・流量調節機構、(10)・
・・・・・蓄熱槽、(19)・・・・・・液面変位検出
計、(20)・・・・・・制御手段。
The drawings show an embodiment of the heat storage device according to the present invention, in which Fig. 1 is a longitudinal sectional front view showing a liquid level displacement detector, Fig. 2 is a configuration diagram showing a circulation path of heat medium fluid, and Fig. 3 is a liquid level A graph showing displacement and heat storage amount, and FIG. 4 is an overall perspective view. (1)...Latent heat storage body, (3)...Heating medium fluid, (6)...Flow rate adjustment mechanism, (10)...
... Heat storage tank, (19) ... Liquid level displacement detector, (20) ... Control means.

Claims (1)

【特許請求の範囲】[Claims] 潜熱蓄熱材を可撓性容器に封入してなる複数個の潜熱蓄
熱体(1)を蓄熱槽(10)内に載置するとともに、蓄
熱槽(10)と熱負荷との間で循環作動する熱媒流体(
3)との熱交換によって前記潜熱蓄熱体(1)に蓄熱す
べく構成してある蓄熱装置であって、蓄熱槽(10)に
投入される熱媒流体(3)の流入量及び蓄熱槽(3)よ
り流出する流出量を設定量にする流量調節機構(6)を
設け、前記潜熱蓄熱材の相変化に起因する前記容器の体
積膨張・収縮に基づく、前記蓄熱槽(10)の熱媒流体
(3)液面変位を検出する液面変位検出計(19)を設
け、この検出計(19)の検出結果に基づいて蓄熱装置
の蓄熱量を把握する制御手段(20)を設けてある蓄熱
装置。
A plurality of latent heat storage bodies (1) formed by enclosing latent heat storage materials in flexible containers are placed in a heat storage tank (10), and circulated between the heat storage tank (10) and the heat load. Heat transfer fluid (
The heat storage device is configured to store heat in the latent heat storage body (1) by heat exchange with the heat storage tank (10), and is configured to store heat in the latent heat storage body (1) through heat exchange with the heat storage tank (10). 3) A flow rate adjustment mechanism (6) is provided to adjust the outflow amount to a set amount, and the heat medium of the heat storage tank (10) is adjusted based on the volumetric expansion and contraction of the container caused by the phase change of the latent heat storage material. Fluid (3) A liquid level displacement detector (19) for detecting liquid level displacement is provided, and a control means (20) is provided for determining the amount of heat stored in the heat storage device based on the detection result of this detector (19). Heat storage device.
JP1146200A 1989-06-07 1989-06-07 Heat accumulator Pending JPH0311296A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1146200A JPH0311296A (en) 1989-06-07 1989-06-07 Heat accumulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1146200A JPH0311296A (en) 1989-06-07 1989-06-07 Heat accumulator

Publications (1)

Publication Number Publication Date
JPH0311296A true JPH0311296A (en) 1991-01-18

Family

ID=15402390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1146200A Pending JPH0311296A (en) 1989-06-07 1989-06-07 Heat accumulator

Country Status (1)

Country Link
JP (1) JPH0311296A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004043787A (en) * 2002-05-21 2004-02-12 Nippon Shokubai Co Ltd Heat accumulating material and its installation method
JP2009052854A (en) * 2007-08-29 2009-03-12 Tokyo Electric Power Co Inc:The Thermal storage body and heat pump type water heater

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004043787A (en) * 2002-05-21 2004-02-12 Nippon Shokubai Co Ltd Heat accumulating material and its installation method
JP2009052854A (en) * 2007-08-29 2009-03-12 Tokyo Electric Power Co Inc:The Thermal storage body and heat pump type water heater

Similar Documents

Publication Publication Date Title
JP2542518Y2 (en) Liquid constant pressure supply device
TWI429883B (en) Assembly for measuring the specific gravity and level of a liquid
EP0034396B1 (en) Method of controlling the energy management of an energy system and energy system based on said method
US3930411A (en) Fluid measuring device
JPH04501912A (en) Method and apparatus for monitoring efficiency of heat exchanger
US4064750A (en) Gas flow totalizer
JPH0311296A (en) Heat accumulator
US6058719A (en) Heat pump apparatus having refrigerant level indication and associated methods
US4418576A (en) Apparatus and method for automatically replenishing liquid and measuring the rate of evaporation of a liquid
JP2554718B2 (en) Heat storage device
US2614578A (en) Buoyancy type liquid metering device
US3332283A (en) Fluid metering system and apparatus
JPH02251030A (en) Heat accumulating device
JPH0244237A (en) Determination of heat storage residue for heat storage apparatus
JPS6157565B2 (en)
CN204903336U (en) Poiseuille control by temperature change viscosity apparatus
CN217554241U (en) Liquid filling equipment
US606601A (en) Sylvania
JPH03110331A (en) Heat storage device
JPH02309141A (en) Controlling method for ice thermal accumulation type air conditioning system
JP2003315117A (en) Method and device for detecting flow rate of fluid, and supplying device thereof
SU750293A1 (en) Apparatus for measuring temperature
JPH1137916A (en) Specific gravity measuring device
JPH0849886A (en) Cold heat accumulating tank
US79559A (en) William b