JPH03109941A - Catalyst for purifying exhaust gas - Google Patents

Catalyst for purifying exhaust gas

Info

Publication number
JPH03109941A
JPH03109941A JP1246421A JP24642189A JPH03109941A JP H03109941 A JPH03109941 A JP H03109941A JP 1246421 A JP1246421 A JP 1246421A JP 24642189 A JP24642189 A JP 24642189A JP H03109941 A JPH03109941 A JP H03109941A
Authority
JP
Japan
Prior art keywords
catalyst
cerium oxide
activated alumina
alcohol
catalyst layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1246421A
Other languages
Japanese (ja)
Inventor
Shigeyoshi Taniguchi
茂良 谷口
Eiichi Shiraishi
英市 白石
Kazuo Tsuchiya
一雄 土谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP1246421A priority Critical patent/JPH03109941A/en
Publication of JPH03109941A publication Critical patent/JPH03109941A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To simultaneously remove NO, CO, NOX and furthermore to purify unburnt alcohol and aldehydes from a low-temp. range by providing a specified catalytic layer on a monolithic carrier and providing a catalytic layer having three-dimensional performance thereon. CONSTITUTION:A catalytic layer (an inner layer) having capacity for purifying alcohol and/or aldehyde is provided on a monolithic carrier and furthermore the catalytic layer (an outer layer) having threedimensional performance is provided thereon. This monolithic carrier is constituted of a metallic or ceramic honeycomb monolithic carrier. Further the inner layer is constituted of catalytic component which incorporates at least one kind selected from among Pd, Pt, Ag and at least one kind selected from the group consisting of cerium oxide, activated alumina and rare earth elements-contg. activated alumina. The outer layer is constituted of catalytic composition contg. Pd, and/or Pt, Rh, activated alumina and cerium oxide. This catalyst for purifying exhaust gas simultaneously removes NO, CO, NOX and furthermore can purify unburnt alcohol and aldehydes from a low-temp. range.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、アルコールを含有する燃料を用いる内燃機関
の排ガス中に含まれる有害物質を浄化する触媒に関する
。詳しくは、アルコールを含有する燃料を用いる内燃機
関の排ガス中の未燃アルコール、−酸化炭素(Go>、
炭化水素(HC)およびアルデヒド類を酸化し、同時に
発生する窒素酸化物(NOx>を還元し、かつ、これら
の浄化能が低温域から優れた触媒に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a catalyst for purifying harmful substances contained in the exhaust gas of an internal combustion engine using fuel containing alcohol. In detail, unburned alcohol, -carbon oxide (Go>,
The present invention relates to a catalyst that oxidizes hydrocarbons (HC) and aldehydes, simultaneously reduces generated nitrogen oxides (NOx), and has excellent purifying ability from low temperatures.

〈従来の技術〉 自動車等の内燃機関に使用される燃料としては、ガソリ
ンが用いられてきた。しかし、排ガス等の問題、燃料の
供給の問題により、近年ガソリンに替え、クリーンな燃
料であるメタノールを主成分とした燃料、たとえば10
0%メタノール、メタノールにガソリンを50=50で
加えた燃料またはメタノールにガソリンを85:15で
加えた燃料等の混合燃料の使用が検討されている。
<Prior Art> Gasoline has been used as a fuel for internal combustion engines such as automobiles. However, due to problems such as exhaust gas and fuel supply, in recent years gasoline has been replaced with fuels mainly composed of methanol, which is a clean fuel, such as 10
The use of mixed fuels such as 0% methanol, methanol and gasoline at a ratio of 50:50, or methanol and gasoline at a ratio of 85:15 are being considered.

これらの燃料を使用した場合、内燃機関から発生する排
ガスには、通常のガソリンを燃料とした場合に比べ未燃
アルコールおよびアルデヒド類等種々の成分が含まれ、
これらの排ガス成分が新たな問題となっている。
When these fuels are used, the exhaust gas generated from the internal combustion engine contains various components such as unburned alcohol and aldehydes compared to when normal gasoline is used as fuel.
These exhaust gas components have become a new problem.

これらの排ガスの浄化方法として、ガソリン燃料用の触
媒として一般的に用いられる三元性能を有する触媒を使
用した場合、)−IC,COおよびNOxの浄化はでき
るが、低温域でのアルデヒド類および未燃焼アルコール
等を浄化することができないという欠点がある。
As a method for purifying these exhaust gases, if a catalyst with three-way performance, which is commonly used as a catalyst for gasoline fuel, is used, it is possible to purify )-IC, CO, and NOx, but aldehydes and The disadvantage is that unburned alcohol and the like cannot be purified.

一方、メタノール、エタノールを燃料とした内燃機関の
排ガス浄化方法として、γ−アルミナに銀およびパラジ
ウムを担持した触媒(特開昭62129125号)、ラ
ンタンおよびネオジウムを含有するアルミナにパラジウ
ムを担持した触媒(特開昭58−79554号)等が提
案されているが、いずれの触媒においても、未燃メタノ
ール等には有効なものであるが、HC,CoおよびNO
xの浄化に関しては、はとんど効果がみられないもので
ある。
On the other hand, as exhaust gas purification methods for internal combustion engines using methanol and ethanol as fuel, there are catalysts in which silver and palladium are supported on γ-alumina (Japanese Patent Application Laid-open No. 62129125), catalysts in which palladium is supported on alumina containing lanthanum and neodymium ( JP-A No. 58-79554), etc. have been proposed, but all of these catalysts are effective against unburned methanol, etc., but they are effective against HC, Co, and NO.
Regarding the purification of x, there is hardly any effect.

〈発明が解決しようとする課題〉 したがって、HClCoおよびNOxを同時に除去し、
さらに低温域から未燃アルコールおよびアルデヒド類を
浄化できる触媒を提案する目的で、本発明はなされたも
のである。
<Problem to be solved by the invention> Therefore, HClCo and NOx are removed simultaneously,
Furthermore, the present invention was made for the purpose of proposing a catalyst that can purify unburned alcohol and aldehydes from a low temperature range.

く課題を解決するための手段〉 本発明者らは、上記の課題に対処するために鋭意研究の
結果、モノリス担体上にアルコールおよび/またはアル
デヒド浄化能を有する触媒層を設け、さらに該触媒層上
に三元性能を有する触媒層を設けたことを特徴とするア
ルコール燃料またはアルコールガソリン混合燃料を用い
る内燃機関排出ガスの浄化用触媒を見い比すことにより
本発明を完成するに至ったのである。
Means for Solving the Problems In order to solve the above problems, the present inventors, as a result of intensive research, provided a catalyst layer having an ability to purify alcohol and/or aldehyde on a monolithic carrier, and The present invention was completed by comparing a catalyst for purifying exhaust gas from an internal combustion engine using alcohol fuel or alcohol-gasoline mixed fuel, which is characterized by having a catalyst layer having three-way performance provided thereon. be.

本発明にかかるモノリス担体は、一般的に排ガス浄化用
触媒担体に用いられるものであればよく、特に、金属性
またはセラミック性のハニカムモノリス担体が好ましい
The monolithic carrier according to the present invention may be one that is generally used as a catalyst carrier for exhaust gas purification, and a metallic or ceramic honeycomb monolithic carrier is particularly preferred.

アルコールおよび/またはアルデヒド浄化能を有する触
媒層には、通常メタノール、一般的なアルデヒド類を完
全酸化しうる触媒組成物であれば良く、例えば鉄(Fe
)、ニッケル<N i ) 、コバルト(CO)、白金
(Pt)、パラジウム(Pd)、ロジウム(Rh)、ア
ルカリ金属、アルカリ土類金(AU)、銀(Ao>、銅
(Cu)、ペロブスカイト(例えばランタン・コバルト
複合酸化物等)等の触媒組成物を単独あるいは、多孔質
担体(例えば、アルミナ、シリカ、ジルコニア等)に担
持して用いることができる。
For the catalyst layer having alcohol and/or aldehyde purification ability, any catalyst composition that can completely oxidize methanol and general aldehydes may be used, for example, iron (Fe
), nickel <N i ), cobalt (CO), platinum (Pt), palladium (Pd), rhodium (Rh), alkali metals, alkaline earth gold (AU), silver (Ao>, copper (Cu), perovskite) A catalyst composition such as (for example, lanthanum-cobalt composite oxide, etc.) can be used alone or supported on a porous carrier (for example, alumina, silica, zirconia, etc.).

これらの触媒組成物のうち、好ましくはパラジウム、白
金および銀からなる群から選ばれる少なくとも1種の金
属と、酸化セリウム、活性アルミナおよび希土類を含有
した活性アルミナからなる群から選ばれる少なくとも1
種の酸化物とを含有してなる触媒組成物であり、さらに
好ましくはパラジウムおよび/または白金と、銀並びに
酸化セリウム、活性アルミナおよび希土類を含有した活
性アルミナからなる群から選ばれる少なくとも1種の酸
化物とを含有してなる触媒組成物である。
Among these catalyst compositions, preferably at least one metal selected from the group consisting of palladium, platinum, and silver, and at least one metal selected from the group consisting of cerium oxide, activated alumina, and activated alumina containing rare earth elements.
A catalyst composition comprising a species oxide, more preferably palladium and/or platinum, and at least one species selected from the group consisting of silver and cerium oxide, activated alumina and rare earth-containing activated alumina. This is a catalyst composition containing an oxide.

三元性能を有する触媒層には一般的な三元性能を有する
触媒組成物であれば良く、好ましくはパラジウムおよび
/または白金と、ロジウムと、活性アルミナと、酸化セ
リウムを含有する触媒組成物である。
The catalyst layer having three-way performance may be a catalyst composition having general three-way performance, preferably a catalyst composition containing palladium and/or platinum, rhodium, activated alumina, and cerium oxide. be.

また、活性アルミナに希土類、アルカリ金属、アルカリ
土類金属を含有して用いることもできる。
Furthermore, activated alumina may contain rare earth metals, alkali metals, and alkaline earth metals.

本発明による触媒は、モノリス担体の内層として、アル
デヒド類およびアルコール浄化性能を有する異種又は同
一の触媒組成物を少なくとも1層以上被覆し、次いで三
元性能を有する異種又は同一の触媒組成物を少なくとも
1層以上被覆されてなる。
In the catalyst of the present invention, a monolithic carrier is coated with at least one layer of different or the same catalyst composition having aldehyde and alcohol purification performance as an inner layer, and then at least one layer of different or the same catalyst composition having ternary performance is coated. It is coated with one or more layers.

これらアルデヒドおよび/またはアルコール浄化性能を
有する触媒組成物と三元性能を有する触媒組成物の層は
明確に分離され、両層の組成物を混合、または内層の組
成物と外層の組成物を逆に被覆することでは、本発明に
よる効果は得ることができないものである。
The layers of the catalyst composition with aldehyde and/or alcohol purification performance and the catalyst composition with ternary performance are clearly separated, and the compositions of both layers can be mixed, or the compositions of the inner layer and the outer layer can be reversed. However, the effects of the present invention cannot be obtained by coating the surface of the substrate.

以下に、本発明にかかる触媒の製造方法の具体的実施態
様として、アルデヒド類および/またはアルコール浄化
性能を有する触媒組成物(以下「アルコール用触媒」と
する)として、パラジウム、銀および酸化セリウム、ざ
らに活性アルミナを用い、また三元性能を有する触媒組
成物(以下「三元触媒」とする)として、白金、ロジウ
ム、酸化セリウムおよび活性アルミナを用いた場合につ
いて、以下に例示するが、本発明の趣旨に反しない限り
、これらの方法に限定されるものではない。
Below, as a specific embodiment of the method for producing a catalyst according to the present invention, a catalyst composition having aldehyde and/or alcohol purification performance (hereinafter referred to as "alcohol catalyst") includes palladium, silver and cerium oxide, Examples are given below of cases in which activated alumina is used, and platinum, rhodium, cerium oxide, and activated alumina are used as a catalyst composition having three-way performance (hereinafter referred to as a "three-way catalyst"). The method is not limited to these methods unless it goes against the spirit of the invention.

(1)Pdの水溶性塩の水溶液と八9の水溶性塩の水溶
液を混合し、これに酸化セリウム粉体を加え、充分混ぜ
合せた後、乾燥、焼成し、Pdへg担持酸化セリウム粉
体を調製した。このえられた粉体をボールミルで湿式粉
砕することにより水性スラリーを調製し、このスラリー
にモノリス担体を浸し、次いで余分なスラリーを吹きは
らい、乾燥、焼成し、Pd−ACI担持酸化セリウムを
被覆した担体(アルコール触媒)を得た。
(1) Mix an aqueous solution of a water-soluble salt of Pd and an aqueous solution of a water-soluble salt of 89, add cerium oxide powder to this, mix thoroughly, dry and bake, and transfer g-supported cerium oxide powder to Pd. body was prepared. The obtained powder was wet-pulverized in a ball mill to prepare an aqueous slurry, and the monolithic carrier was immersed in this slurry, and then the excess slurry was blown off, dried, and fired to coat Pd-ACI-supported cerium oxide. A carrier (alcohol catalyst) was obtained.

次に、Ptの水溶性塩の水溶液とRhの水溶性塩の水溶
液を混合し、これに活性アルミナ粉体を加え、充分混ぜ
合せ、乾燥、焼成し、PtRh担持アルミナ粉体を調製
した。この粉体と酸化セリウムをボールミルで湿式粉砕
することによりスラリーを調製し、このスラリーにPd
−Ag担持酸化セリウムを被覆した担体を浸し、次いで
余分なスラリーを吹きはらった後、乾燥、焼成し、外層
に三元触媒を被覆することにより完成触媒を得た。
Next, an aqueous solution of a water-soluble salt of Pt and an aqueous solution of a water-soluble salt of Rh were mixed, and activated alumina powder was added thereto, thoroughly mixed, dried, and fired to prepare a PtRh-supported alumina powder. A slurry was prepared by wet-pulverizing this powder and cerium oxide in a ball mill, and this slurry was mixed with Pd.
The carrier coated with -Ag-supported cerium oxide was immersed, the excess slurry was blown off, the slurry was dried and fired, and the outer layer was coated with a three-way catalyst to obtain a finished catalyst.

(2)Pdの水溶性塩の水溶液に酸化[リウムを加え混
合した後、乾燥、焼成し、Pd−酸化セリウム粉体を調
製した。得られた粉体をボールミ0 ルで湿式粉砕することにより、水性スラリーを調製し、
このスラリーにモノリス担体を浸し、余分なスラリーを
吹きはらい、乾燥、焼成し、Pd−酸化セリTクムを被
覆した担体を得た。この担体をActの水溶性塩の水溶
液に浸漬し、余分の水溶液を吹きはらい、乾燥、焼成し
、PdACI−酸化セリウムを被覆した担体(アルコー
ル用触媒)を得た。
(2) After adding and mixing [rium oxide] to an aqueous solution of a water-soluble salt of Pd, the mixture was dried and fired to prepare a Pd-cerium oxide powder. The obtained powder was wet-milled using a ball mill to prepare an aqueous slurry.
A monolithic carrier was immersed in this slurry, excess slurry was blown off, dried, and fired to obtain a carrier coated with Pd-seri oxide T cum. This carrier was immersed in an aqueous solution of a water-soluble salt of Act, the excess aqueous solution was blown off, dried and fired to obtain a PdACI-cerium oxide coated carrier (alcohol catalyst).

次に、ptの水溶性塩の水溶液とRhの水溶性塩の水溶
液を混合し、これに活性アルミナを加え混合した後、乾
燥、焼成し、Pt−Rh担持アルミナ粉体を調製した。
Next, an aqueous solution of a water-soluble salt of PT and an aqueous solution of a water-soluble salt of Rh were mixed, and activated alumina was added thereto and mixed, followed by drying and firing to prepare a Pt-Rh supported alumina powder.

この粉体と酸化セリウムをボールミルで湿式粉砕するこ
とによりスラリーを調製し、該スラリーにptj−AC
+酸化セリウムを被覆した担体を浸し、余分なスラリー
を吹きはらい、乾燥、焼成し、外層に三元触媒を被覆す
ることにより完成触媒を得た。
A slurry was prepared by wet-pulverizing this powder and cerium oxide in a ball mill, and ptj-AC was added to the slurry.
+ The carrier coated with cerium oxide was immersed, excess slurry was blown off, dried and fired, and the outer layer was coated with a three-way catalyst to obtain a completed catalyst.

(3)酸化セリウム粉体をボールミルで湿式粉砕するこ
とにより水性スラリーを調製し、このスラリーにモノリ
ス担体を浸し、余分なスラリーを1 吹きはらい、乾燥、焼成し、酸化セリウムを被覆した担
体を得た。次にPdの水溶性塩の水溶液とACIの水溶
性塩の水溶液を混合し、混合溶液に上記酸化セリウム被
覆担体を浸漬し、余分の水溶液を吹きはらい、乾燥、焼
成し、P’dAQ−酸化セリウムを被覆した担体くアル
コール用触媒)を得た。
(3) Prepare an aqueous slurry by wet-pulverizing cerium oxide powder in a ball mill, immerse a monolithic carrier in this slurry, blow off excess slurry, dry, and sinter to obtain a cerium oxide-coated carrier. Ta. Next, an aqueous solution of a water-soluble salt of Pd and an aqueous solution of a water-soluble salt of ACI are mixed, the above-mentioned cerium oxide-coated carrier is immersed in the mixed solution, the excess aqueous solution is blown off, and the P'dAQ-oxidized A cerium-coated carrier (alcohol catalyst) was obtained.

次にP tの水溶性塩の水溶液とRhの水溶性塩の水溶
液を混合し、これに活性アルミナを加え混合し、乾燥、
焼成し、Pt−Rh担持アルミナ粉体を調製する。この
粉体と酸化セリウムをボールミルで湿式粉砕することに
よりスラリーを調製し、このスラリーを上記のpd−/
’1−酸化セリウムを被覆した担体を浸し、余分なスラ
リーを吹きはらい、乾燥し焼成し、三元触媒を被覆する
ことにより完成触媒を得た。
Next, an aqueous solution of a water-soluble salt of Pt and an aqueous solution of a water-soluble salt of Rh are mixed, activated alumina is added thereto, mixed, dried,
Calcinate to prepare Pt-Rh supported alumina powder. A slurry was prepared by wet-pulverizing this powder and cerium oxide in a ball mill, and this slurry was mixed with the above pd-/
The carrier coated with '1-cerium oxide was immersed, excess slurry was blown off, dried and calcined, and a three-way catalyst was coated to obtain a finished catalyst.

(4)Pdの水溶性塩の水溶液と△qの水溶性塩の水溶
液を混合し、これに酸化セリウムを加え混合し、乾燥、
焼成し、pd−Act担持酸化セリウム粉体を調製した
。この粉体をボールミルで2 湿式乾燥することにより水性スラリーを調製し、このス
ラリーにモノリス担体を浸し、余分なスラリーを吹きは
らい、乾燥し焼成し、PdACI−酸化セリウムを被覆
した担体(アルコール用触媒)を得た。
(4) Mix the aqueous solution of the water-soluble salt of Pd and the aqueous solution of the water-soluble salt of △q, add cerium oxide to this, mix, dry,
By firing, a pd-Act-supported cerium oxide powder was prepared. An aqueous slurry was prepared by wet-drying this powder in a ball mill for 2 hours, a monolithic support was immersed in this slurry, excess slurry was blown off, dried and calcined, and a PdACI-cerium oxide coated support (alcohol catalyst) was prepared. ) was obtained.

次にptの水溶性塩の水溶液に活性アルミナを加え混合
し、乾燥、焼成し、Pt担持アルミナ粉体を調製した。
Next, activated alumina was added to an aqueous solution of a water-soluble salt of PT, mixed, dried, and fired to prepare a Pt-supported alumina powder.

この粉体と酸化セリウムをボールミルで湿式粉砕するこ
とにより水性スラリーを調製し、このスラリーにPd−
Aq担持酸化セリウムを被覆した担体を浸し、余分なス
ラリーを吹きはらい、乾燥、焼成し、Pd−Aq担持酸
化セリウムにPt−活性アルミナー酸化セリウムを被覆
した担体を得た。さらにRhの水溶性塩の水溶液を活性
アルミナに含浸担持し、乾燥、焼成し、Rh担持アルミ
ナ粉体を調製した。この粉体をボールミルで湿式粉砕す
ることにより、水性スラリーを調製し、このスラリーに
pd−AQ担持酸化セリウムにpt−活性アルミナー酸
化セリウムを追加被覆した担体3 を浸し、余分なスラリーを吹きはらい乾燥、焼成するこ
とにより完成触媒を得た(三元触媒が2層に被覆された
もの)。
An aqueous slurry was prepared by wet-pulverizing this powder and cerium oxide in a ball mill, and this slurry was mixed with Pd-
The carrier coated with Aq-supported cerium oxide was immersed, excess slurry was blown off, dried, and fired to obtain a carrier in which Pd-Aq-supported cerium oxide was coated with Pt-activated alumina cerium oxide. Furthermore, an aqueous solution of a water-soluble salt of Rh was impregnated and supported on activated alumina, dried, and fired to prepare Rh-supported alumina powder. This powder is wet-milled in a ball mill to prepare an aqueous slurry, and the carrier 3, which is an additional coating of PT-activated alumina cerium oxide on PD-AQ-supported cerium oxide, is immersed in this slurry, and the excess slurry is blown off and dried. A completed catalyst was obtained by calcination (three-way catalyst coated in two layers).

(5)Pdの水溶性塩の水溶液とActの水溶性塩の水
溶液を混合し、これに酸化セリウムを加え混合し、乾燥
、焼成し、P(j−AQ担持酸化セリウム粉体を調製し
た。この粉体をボールミルで湿式粉砕することにより水
性スラリーを調製し、このスラリーにモノリス担体を浸
し、余分なスラリーを吹きはらい、乾燥、焼成し、Pd
−AQ担持酸化セリウムを塗布した担体(アルコール用
触媒)を得た。
(5) An aqueous solution of a water-soluble salt of Pd and an aqueous solution of a water-soluble salt of Act were mixed, cerium oxide was added thereto, mixed, dried, and fired to prepare P(j-AQ-supported cerium oxide powder). An aqueous slurry is prepared by wet-pulverizing this powder in a ball mill, a monolithic carrier is immersed in this slurry, excess slurry is blown off, the Pd is
A carrier (alcohol catalyst) coated with -AQ-supported cerium oxide was obtained.

次に、Pdの水溶性塩の水溶液とActの水溶性塩の水
溶液を混合し、これに活性アルミナを加え混合し、乾燥
、焼成し、Pd−ACI担持アルミナ粉体を調製した。
Next, an aqueous solution of a water-soluble salt of Pd and an aqueous solution of a water-soluble salt of Act were mixed, activated alumina was added thereto, mixed, dried, and fired to prepare a Pd-ACI-supported alumina powder.

この粉体をボールミルで湿式粉砕することにより水性ス
ラリーを調製し、このスラリーにpd−AQ担持酸化セ
リウムを被覆した担体を浸し、余分なスラリーを吹きは
らい、乾燥、焼成し、Pd−AQ担持酸化4 セリウムにPd−Act担持活性アルミナを追加被覆し
た担体を得た(アルコール用触媒が2層被覆されたもの
)。
An aqueous slurry is prepared by wet-pulverizing this powder in a ball mill, and a carrier coated with pd-AQ-supported cerium oxide is immersed in this slurry, excess slurry is blown off, dried, calcined, and Pd-AQ-supported cerium oxide is immersed in the slurry. 4 A carrier was obtained in which cerium was additionally coated with Pd-Act-supported activated alumina (coated with two layers of alcohol catalyst).

次に、ptの水溶性塩の水溶液とRhの水溶性塩の水溶
液を混合し、これに活性アルミナを加え混合し、乾燥、
焼成し、Pt−Rh担持アルミナ粉体を調製した。この
粉体ど酸化セリウムをボールミルで湿式粉砕することに
よりスラリーを調製し、該スラリーにpd−AQ担持酸
化セリウムにpd−ACI担持活性アルミナを被覆した
担体を浸し、余分なスラリーを吹きはらい、乾燥、焼成
し、三元触媒を被覆することにより完成触媒を得た。
Next, an aqueous solution of a water-soluble salt of PT and an aqueous solution of a water-soluble salt of Rh are mixed, activated alumina is added thereto, mixed, dried,
This was fired to prepare Pt-Rh supported alumina powder. A slurry is prepared by wet-pulverizing this powdered cerium oxide in a ball mill, and a carrier in which pd-AQ-supported cerium oxide is coated with pd-ACI-supported activated alumina is immersed in the slurry, excess slurry is blown away, and the slurry is dried. A finished catalyst was obtained by calcination and coating with a three-way catalyst.

〈発明の効果〉 本発明の排気ガス浄化用触媒の製造方法は、モノリス担
体表面に形成する触媒コーティング層が少なくとも2層
以上の触媒組成の異なるコーティング層からなり、少な
くとも1層以上のアルデヒドおよび/またはアルコール
浄化性能を有する触5 媒コーティング層が内層にあり、少なくとも1層以上の
三元性能を有する触媒コーティング層が外層にある構成
としたものである。この触媒は、アルデヒド浄化性能を
有する触媒組成物と三元性能を有する触媒組成物とを分
離し、互いの触媒が活性に悪影響を与えないようにし、
また三元性能を有する触媒コーティング層を外層にする
ことによって、Co、HC,NOxのガス拡散が律速に
ならないようにすることによりCo、HCSN。
<Effects of the Invention> In the method for producing an exhaust gas purification catalyst of the present invention, the catalyst coating layer formed on the surface of the monolithic carrier is composed of at least two coating layers having different catalyst compositions, and at least one layer of aldehyde and/or Alternatively, a catalyst coating layer having alcohol purification performance is provided as an inner layer, and at least one catalyst coating layer having ternary performance is provided as an outer layer. This catalyst separates a catalyst composition having aldehyde purification performance and a catalyst composition having three-way performance, so that the catalysts do not adversely affect the activity of each other,
In addition, by using a catalyst coating layer with ternary performance as the outer layer, the gas diffusion of Co, HC, and NOx is prevented from becoming rate-determining.

Xを除去と同時に低温域から未燃メタノールおよびアル
デヒド類を浄化できるものである。
It can remove X and simultaneously purify unburned methanol and aldehydes from a low temperature range.

く実 施 例〉 以下、実施例および比較例にて本発明の詳細な説明して
いくが、本発明はこれらに限定さるものではない。
EXAMPLES The present invention will be described in detail below using Examples and Comparative Examples, but the present invention is not limited thereto.

実施例 1 市販のコージェライト質ハニカム担体(日本碍子製、以
下「ハニカム担体」という)を用いて触6 媒を調製した。用いたハニカム担体は、横断面が1イン
チ平方当り約400個のガス流通セルを右する24Hφ
、長さ120sLの円柱状のもので54−の体積を有す
るものを用い1ζ。パラジウム(Pd)として1.50
を含有する硝酸パラジウム水溶液と銀(ACI)として
150を含有する硝酸銀水溶液を混合し、これと酸化セ
リウム(市販品)150qを混合し、150°Cで2時
間乾燥した後、空気中500°Cで1時間焼成した。こ
のPd−Aq担持酸化セリウム粉体(A)をボールミル
で湿式粉砕することにより、コーティング用水性スラリ
ーを調製した。このコーティング用水性スラリーに前記
モノリス担体を浸漬し、取り出した後、セル内の過剰ス
ラリーを空気でブローして、全てのセルの目詰りを除去
した。
Example 1 A catalyst was prepared using a commercially available cordierite honeycomb carrier (manufactured by Nippon Insulators, hereinafter referred to as "honeycomb carrier"). The honeycomb carrier used had a cross section of 24Hφ with approximately 400 gas flow cells per square inch.
, 1ζ using a cylindrical one with a length of 120 sL and a volume of 54-. 1.50 as palladium (Pd)
A palladium nitrate aqueous solution containing 150 as silver (ACI) was mixed with a silver nitrate aqueous solution containing 150 as silver (ACI), and this was mixed with 150q of cerium oxide (commercial product), dried at 150°C for 2 hours, and then heated at 500°C in air. Baked for 1 hour. An aqueous slurry for coating was prepared by wet-pulverizing this Pd-Aq-supported cerium oxide powder (A) in a ball mill. After the monolithic carrier was immersed in this aqueous coating slurry and taken out, the excess slurry in the cells was blown out with air to remove clogging from all cells.

次いで、150℃で2時間乾燥し、500°Cで1時間
焼成して、pd−ACI担持酸化セリウムを被覆した担
体(B)が得られた。
Next, it was dried at 150°C for 2 hours and calcined at 500°C for 1 hour to obtain a carrier (B) coated with pd-ACI-supported cerium oxide.

次に、白金(Pt)1.5gを含有するジニトロジアン
ミン白金の硝酸水溶液とロジウム(Rh)7 0.3gを含有する硝酸ロジウム水溶液を混合し、この
水溶液と比表面積100m2/qの活性アルミナ100
gを混合し、充分に乾燥した後、空気中400℃で2時
間焼成して、Pt−Rh含有アルミナ(C)を調製した
。このPl、Rh含有アルミナと市販の酸化セリウム粉
体5C1とをボールミルで湿式粉砕することによりコー
ティング用水性スラリーを調製した。このコーティング
用水性スラリーに該p(IAg担持酸化セリウムを被覆
した担体を浸漬し、取り出した後、セル内の過剰スラリ
ーを空気でブローして、全てのセルの目詰りを除去した
。次いで、150℃で2時間乾燥して触媒(a)を得た
Next, a nitric acid aqueous solution of dinitrodiammine platinum containing 1.5 g of platinum (Pt) and a rhodium nitrate aqueous solution containing 0.3 g of rhodium (Rh) 7 were mixed, and this aqueous solution and activated alumina 100 with a specific surface area of 100 m2/q were mixed.
After thoroughly drying, Pt-Rh-containing alumina (C) was prepared by baking in air at 400°C for 2 hours. An aqueous slurry for coating was prepared by wet-pulverizing this Pl- and Rh-containing alumina and commercially available cerium oxide powder 5C1 in a ball mill. The carrier coated with the p(IAg-supported cerium oxide) was immersed in this aqueous slurry for coating, and after being taken out, the excess slurry in the cells was blown with air to remove clogging from all the cells. The catalyst (a) was obtained by drying at ℃ for 2 hours.

この触媒は11当り、Pd1.Oq、Ag10g、酸化
セリウム133.3q、活性アルミナ66.7 a、P
t1.OgおよびRhO,2C]が担持されていた。
This catalyst has Pd1. Oq, Ag10g, cerium oxide 133.3q, activated alumina 66.7a, P
t1. Og and RhO, 2C] were supported.

実施例 2 実施例1のPd−A a担持酸化セリウム粉体(八)に
おいてパラジウム(Pd)として1.5gを8 用いる代りに白金(Pt)として1,5Qを含有するジ
ニトロジアミン白金の水溶液を用いる以外は同様の方法
で、Pt−AQ担持酸化セリウムを被覆した担体を得た
Example 2 Instead of using 1.5 g of palladium (Pd) in the Pd-A a-supported cerium oxide powder (8) of Example 1, an aqueous solution of dinitrodiamine platinum containing 1,5Q as platinum (Pt) was used. A carrier coated with Pt-AQ-supported cerium oxide was obtained in the same manner except for the use of Pt-AQ-supported cerium oxide.

次に、実施例1と同様の操作を行ってPI、Rh担持ア
ルミナ(C)を調製し、このPt−Rh担持粉体100
oと実施例1で用いた酸化セリウム5C1とをボールミ
ルで湿式粉砕し、水性スラリーを調製した。該スラリー
にPt−ACt担持酸化セリウムを被覆した担体を浸漬
し、以下実施例1と同様の操作を行って触媒(b)を得
た。
Next, the same operation as in Example 1 was carried out to prepare PI and Rh-supported alumina (C), and this Pt-Rh-supported powder 100
o and the cerium oxide 5C1 used in Example 1 were wet-milled in a ball mill to prepare an aqueous slurry. A carrier coated with Pt-ACt-supported cerium oxide was immersed in the slurry, and the same operations as in Example 1 were performed to obtain a catalyst (b).

L、(7)触媒は11当り、Pt2.Oq、Ag1Oc
+、酸化セリウム133.3(J、活性アルミナ66.
7g、P t 1.OaおよびRh0.2CIが担持さ
れていた。
L, (7) catalyst per 11, Pt2. Oq, Ag1Oc
+, cerium oxide 133.3 (J, activated alumina 66.
7g, Pt1. Oa and Rh0.2CI were supported.

実施例 3 実施例1のPt−Rh担持アルミナ(C)においてPt
として1.5gを用いる代りに、Pdとして1.59を
含有する硝酸パラジウムの水溶液を用いる以外は同様の
方法でPd−Rh担持アルミナを 9 調製した。
Example 3 Pt in the Pt-Rh supported alumina (C) of Example 1
Pd-Rh supported alumina was prepared in a similar manner except that instead of using 1.5 g of Pd, an aqueous solution of palladium nitrate containing 1.59 Pd was used.

このPd−Rh担持アルミナ100gと実施例1で用い
た酸化セリウム50oとをボールミルで湿式粉砕し、水
性スラリーを調製した。該スラリーに実施例1と同様の
操作を行って得たPd−Aq担持酸化セリウムを被覆し
た担体(B)を浸漬し、以下実施例1と同様の操作を行
って触媒(C)を得た。
100 g of this Pd-Rh supported alumina and 50 o of cerium oxide used in Example 1 were wet-pulverized in a ball mill to prepare an aqueous slurry. A carrier (B) coated with Pd-Aq-supported cerium oxide obtained by performing the same operation as in Example 1 was immersed in the slurry, and a catalyst (C) was obtained by performing the same operation as in Example 1. .

コノ触媒Lt1j2当り、Pd1.Oo、AO10C]
、活性アルミナ100g、酸化セリウム133.3Q、
Pt1゜OqおよびPh0.2gが担持されていた。
Per Kono catalyst Lt1j2, Pd1. Oo, AO10C]
, activated alumina 100g, cerium oxide 133.3Q,
1°Oq of Pt and 0.2g of Ph were supported.

実施例 4 Pt1.5gを含有するジニトロジアンミン白金の硝酸
水溶液と実施例1で用いた活性アルミナ100gを混合
し、充分乾燥した後、空気中400℃で2時間焼成して
、pt担持アルミナを調製した。
Example 4 A nitric acid aqueous solution of dinitrodiammine platinum containing 1.5 g of Pt was mixed with 100 g of the activated alumina used in Example 1, thoroughly dried, and then calcined in air at 400°C for 2 hours to prepare PT-supported alumina. did.

このPt担持アルミナと実施例1で用いた酸化セリウム
50gとをボールミルで湿式乾燥し、水0 性スラリーを調製した。該スラリーに実施例1と同様の
操作を行って得たpci−Ao担持酸化セリウムを被覆
した担体(B)を浸漬し、以下実施例1と同様の操作を
行ってpd−AQ担持酸化セリウムの上にpt−活性ア
ルミナ担持酸化セリウムを被覆した担体が得られた。
This Pt-supported alumina and 50 g of cerium oxide used in Example 1 were wet-dried in a ball mill to prepare a water-free slurry. The carrier (B) coated with pci-Ao-supported cerium oxide obtained by performing the same operation as in Example 1 was immersed in the slurry, and then the same operation as in Example 1 was performed to obtain pd-AQ-supported cerium oxide. A support was obtained on which cerium oxide supported on pt-activated alumina was coated.

次に、Rh0.3CIを含有する硝酸ロジウム水溶液と
実施例1で用いた活性アルミナ66.70を混合し、充
分乾燥した後空気中400°Cで2時間焼成して、Rh
担持アルミナをIIした。このRh含有アルミナをボー
ルミルで湿式粉砕し、水性スラリーを調製した。該スラ
リーにPcj−Ag担持酸化セリウムの上にpt担持活
性アルミナ−酸化セリウムを被覆した担体を浸漬し、以
下実施例1と同様の操作を行って触媒(d)を得た。
Next, the rhodium nitrate aqueous solution containing Rh0.3CI and the activated alumina 66.70 used in Example 1 were mixed, thoroughly dried, and then calcined in air at 400°C for 2 hours.
Supported alumina was used as II. This Rh-containing alumina was wet-pulverized in a ball mill to prepare an aqueous slurry. A carrier in which Pcj-Ag-supported cerium oxide was coated with PT-supported activated alumina-cerium oxide was immersed in the slurry, and the same operations as in Example 1 were carried out to obtain a catalyst (d).

この触媒は11当り、PdLOQ、 AgI OQ。This catalyst has 11 per cent, PdLOQ, AgI OQ.

酸化セリウム133.3g、活性アルミナ116.70
、Pt1.OCl、Rh 0.2 CIが担持されてい
た。
Cerium oxide 133.3g, activated alumina 116.70g
, Pt1. OCl and Rh 0.2 CI were supported.

1 実施例 5 実施例1のPd−Ag担持酸化セリウム粉体(^)にお
いて、酸化セリウム150Qを用いる代りに実施例1で
用いた活性アルミナ150gを用いる以外は同様の方法
でPd−Act担持活性アルミナ粉体(D)を調製した
1 Example 5 In the Pd-Ag-supported cerium oxide powder (^) of Example 1, Pd-Ac supported activity was obtained in the same manner except that 150 g of activated alumina used in Example 1 was used instead of cerium oxide 150Q. Alumina powder (D) was prepared.

この粉体をボールミルで湿式粉砕し、水性スラリーを調
製した。該スラリーにアルミニウム含有フェライト系ク
ロムスチールからなる渦巻状金属モノリス担体を浸漬し
、実施例1と同様の操作を行ってPd−Aq担持アルミ
ナを被覆した担体が得られた。
This powder was wet-milled using a ball mill to prepare an aqueous slurry. A spiral metal monolithic support made of aluminum-containing ferritic chromium steel was immersed in the slurry, and the same operation as in Example 1 was performed to obtain a support coated with Pd-Aq-supported alumina.

次に、実施例1と同様の方法で1qたPt、Rh含有ア
ルミナ(CMOOCIと実施例1で用いた酸化セリウム
50gとをボールミルで湿式粉砕し、水性スラリーを調
製した。該スラリーに該PdAQ担持アルミナを被覆し
た担体を浸漬し、以下実施例1と同様の操作を行って触
媒(e)を得た。
Next, in the same manner as in Example 1, 1 q of Pt and Rh-containing alumina (CMOOCI) and 50 g of cerium oxide used in Example 1 were wet-pulverized in a ball mill to prepare an aqueous slurry. A carrier coated with alumina was immersed, and the same operations as in Example 1 were performed to obtain a catalyst (e).

コノ触媒は11当り、Pd1.OQ、Aqloq。Kono catalyst is 11 per cent, Pd1. OQ, Aqloq.

活性アルミナ166.7CI、酸化セリウム33.3C
I、2 ptl、OcI、Rh0.2C]が担持されていた。
Activated alumina 166.7CI, cerium oxide 33.3C
I, 2ptl, OcI, Rh0.2C] were carried.

実施例 6 実施例5のp(j−Ag担持活性アルミナ粉体(D)に
おいて、pdi、sqを用いない以外は同様の方法でA
ct担持活性アルミナ粉体を調製した。
Example 6 A was prepared in the same manner as in Example 5 except that pdi and sq were not used in the p(j-Ag-supported activated alumina powder (D)).
A ct-supported activated alumina powder was prepared.

この粉体をボールミルで湿式粉砕し、水性スラリーを調
製した。該スラリーに実流例1と同様の操作を行ってA
ct担持アルミナを被覆した担体が得られた。次に実施
例1と同様の方法で得たPtRh担持アルミナ(C)1
00CIと実施例1で用いた酸化セリウム50CJとを
ボールミルで湿式粉砕し、水性スラリーを調製した。該
スラリーに該AO−アルミナを被覆した担体と浸漬し、
以下実施例1と同様の操作を行って触媒mを得た。
This powder was wet-milled using a ball mill to prepare an aqueous slurry. The slurry was subjected to the same operation as in Actual Flow Example 1 to obtain A.
A support coated with ct-supported alumina was obtained. Next, PtRh-supported alumina (C) 1 obtained in the same manner as in Example 1
00CI and cerium oxide 50CJ used in Example 1 were wet-pulverized in a ball mill to prepare an aqueous slurry. immersing the AO-alumina-coated carrier in the slurry;
Thereafter, the same operation as in Example 1 was performed to obtain catalyst m.

この触媒は11当り、Ao10c+、活性アルミナ16
6.70.酸化セリウム33.3C1、Pt1.Oa、
Rh0.2gが担持されていた。
This catalyst is 11 per cent, Ao10c+, activated alumina 16
6.70. Cerium oxide 33.3C1, Pt1. Oa,
0.2 g of Rh was supported.

3 実施例 7 硝酸ランタン[La (NO3)3 ・6H20]6.
51Qと硝酸ネオジウム[Nb (NO3)a6H20
]2.74gを純水200 ccに溶液したものを実施
例1で用いた活性アルミナ150gと混合し、150℃
で2時間乾燥した後、空気中700℃で2時間焼成した
。この粉体にPd1.5Qを含有する硝酸パラジウム水
溶液と混合し、150℃で2時間乾燥した後、空気中5
00℃で1時間焼成し、Pd−ランタン−ネオジウム担
持アルミナを調製した。このPd−ランタン−ネオジウ
ム担持アルミナをボールミルで湿式粉砕し、水性スラリ
ーを調製した。該スラリーに実施例1で用いたモノリス
担体を浸漬し、以下実施例1と同様の操作を行ってPd
−ランタン−ネオジウム担持アルミナを被覆した担体が
得られた。次に、実施例1と同様の方法で得たPt−R
h担持アルミナ(C)10C1と実施例1で用いた酸化
セリウム50C1とをボールミルで湿式粉砕し、水性ス
ラリーを調製した。該スラリーに該Pd−ランタン4 ネオジウム担持アルミナを被覆した担体を浸漬し、以下
実施例1と同様の操作を行って触媒(g)を得た。
3 Example 7 Lanthanum nitrate [La (NO3)3 ・6H20]6.
51Q and neodymium nitrate [Nb (NO3)a6H20
]2.74g in 200cc of pure water was mixed with 150g of activated alumina used in Example 1, and heated at 150°C.
After drying for 2 hours, it was fired in air at 700°C for 2 hours. This powder was mixed with a palladium nitrate aqueous solution containing Pd1.5Q, dried at 150°C for 2 hours, and then
The mixture was fired at 00° C. for 1 hour to prepare Pd-lanthanum-neodymium-supported alumina. This Pd-lanthanum-neodymium-supported alumina was wet-pulverized in a ball mill to prepare an aqueous slurry. The monolithic support used in Example 1 was immersed in the slurry, and the same operation as in Example 1 was performed to obtain Pd.
A support coated with -lanthanum-neodymium supported alumina was obtained. Next, Pt-R obtained in the same manner as in Example 1
h-supported alumina (C) 10C1 and cerium oxide 50C1 used in Example 1 were wet-pulverized in a ball mill to prepare an aqueous slurry. A carrier coated with the Pd-lanthanum 4 neodymium-supported alumina was immersed in the slurry, and the same operation as in Example 1 was carried out to obtain a catalyst (g).

こ(D触媒は1.12当り、Pd1.Og、Nd203
1.05QSLa2032.45Q、活性アルミナ16
6、7 g、酸化セリウム33.3gが担持されていた
(D catalyst per 1.12, Pd1.Og, Nd203
1.05QSLa2032.45Q, activated alumina 16
6.7 g of cerium oxide and 33.3 g of cerium oxide were supported.

比較例 1 実施例1と同様の方法で得たPt−Rh担持アルミナ(
C)10C1と、実施例1で用いた酸化セリウム50g
とをボールミルで湿式粉砕し、水性スラリーを調製した
。該スラリーに実施例1ど同様の操作を行ってPt、R
h−アルミナ担持酸化セリウムを被覆した担体が得られ
た。次に、実施例1と同様の方法で得たpd−Ag担持
酸化セリウム粉体(A)1500をボールミルで湿式粉
砕し、水性スラリーを調製した。該スラリーにpt−R
h−アルミナ担持酸化セリウムを被覆した担体を浸漬し
、実施例1と同様の操作を行って触媒5 (h)を得た。
Comparative Example 1 Pt-Rh supported alumina (obtained in the same manner as in Example 1)
C) 10C1 and 50g of cerium oxide used in Example 1
was wet-milled using a ball mill to prepare an aqueous slurry. The slurry was subjected to the same operation as in Example 1 to obtain Pt, R.
A carrier coated with cerium oxide supported on h-alumina was obtained. Next, pd-Ag supported cerium oxide powder (A) 1500 obtained in the same manner as in Example 1 was wet-pulverized in a ball mill to prepare an aqueous slurry. Add pt-R to the slurry
A carrier coated with cerium oxide supported on h-alumina was immersed, and the same operation as in Example 1 was performed to obtain catalyst 5 (h).

この触媒は1j!当り、Pd1.OC]、ACllog
、活性アルミナ66.、7 Q 、酸化セリウム133
..3g、Pt1.Oq、Rh0.2CIが担持されて
いた。
This catalyst is 1j! Hit, Pd1. OC], ACllog
, activated alumina66. , 7 Q, cerium oxide 133
.. .. 3g, Pt1. Oq, Rh0.2CI was supported.

比較例 2 実施例1と同様の方法で得たPd−Ag担持酸化セリウ
ム粉体(A)150c+と、実施例1と同様の方法で得
たPt−Rh担持アルミナ(C)100qと実施例1で
用いた酸化セリウム50gとをボールミルで湿式粉砕し
、水性スラリーを調製した。
Comparative Example 2 Pd-Ag-supported cerium oxide powder (A) 150c+ obtained by the same method as Example 1, Pt-Rh-supported alumina (C) 100q obtained by the same method as Example 1, and Example 1 50 g of the cerium oxide used in the above was wet-pulverized in a ball mill to prepare an aqueous slurry.

該スラリーに実施例1で用いたモノリス担体を浸漬し、
以下実施例1と同様の操作を行って触媒1)を得た。
The monolithic carrier used in Example 1 was immersed in the slurry,
Thereafter, the same operation as in Example 1 was performed to obtain catalyst 1).

この触媒は1.i2当り、Pd1.OOlAglog、
酸化セリウム133.3CI、活性アルミナ66.7(
11、Pt1.OC]、Rh0.20が担持されていた
This catalyst is 1. per i2, Pd1. OOlAglog,
Cerium oxide 133.3 CI, activated alumina 66.7 (
11, Pt1. OC], Rh0.20 was supported.

実施例 8 実施例1〜7、比較例1〜2で調製した触媒6 (a)〜(i)について触媒性能テストを行った。Example 8 Catalyst 6 prepared in Examples 1-7 and Comparative Examples 1-2 Catalyst performance tests were conducted for (a) to (i).

25.5 ttvnφX 300 rtvn Lのステ
ンレス製反応管に触媒を充填後、−酸化炭素0.5容量
%、酸素0.65容量%、HC成分としてプロピレン4
30ppm 、−酸化窒素5QQppm、二酸化炭素1
4.5容量%、水20容量%、メタノール(M e O
H)1300ppm、ホルムアルデヒド’+ooppm
、残り窒素金含有するS、V、25,000Hr−1の
条件で導入し、触媒入口温度を150°Cから400℃
まで変化させ、触媒(a)〜(1)について触媒性能の
評価を行った。
After filling a stainless steel reaction tube of 25.5 ttvnφ
30ppm, -nitrogen oxide 5QQppm, carbon dioxide 1
4.5% by volume, 20% by volume of water, methanol (M e O
H) 1300ppm, formaldehyde'+ooppm
, S and V containing remaining nitrogen and gold were introduced under the conditions of 25,000 Hr-1, and the catalyst inlet temperature was changed from 150°C to 400°C.
The catalyst performance was evaluated for catalysts (a) to (1).

メタノールの分析はFIDガスクロマトグラフィーを用
い、ホルムアルデヒド(HCHO)の分析はクロモトロ
ープ酸を用いた比色分析で行った。
Methanol was analyzed using FID gas chromatography, and formaldehyde (HCHO) was analyzed by colorimetric analysis using chromotropic acid.

また、プロピレンの分析は、HC分析計を用いて行い、
そのプロピレンa度は全HCの値からメタノールの値を
引いた値より求めた。
In addition, propylene analysis was performed using an HC analyzer.
The propylene a degree was determined by subtracting the methanol value from the total HC value.

COは、赤外分析計により、Noは、化学発光分析によ
り濃度を測定した。
The concentration of CO was measured by an infrared analyzer, and the concentration of No was measured by chemiluminescence analysis.

CO、No、HC,MeOHおよびHCHOの評価結果
を表1に示し、表中の値は、CO,No1HC,MeO
)−1については、各々の浄化率が50%になる温度を
、HCHOについては、触媒入口温度150°Cでの浄
化率を示した。
The evaluation results for CO, No. 1HC, MeOH and HCHO are shown in Table 1, and the values in the table are CO, No.1HC, MeO
)-1, the temperature at which each purification rate becomes 50% is shown, and for HCHO, the purification rate at a catalyst inlet temperature of 150°C is shown.

8 2つ 手続主甫正書(自艶) 平成に年夕月kz日8 two Procedural Master Fu Seisho (Seishin) Heisei year, evening moon kz day

Claims (10)

【特許請求の範囲】[Claims] (1)モノリス担体上にアルコールおよび/またはアル
デヒド浄化能を有する触媒層を設け、さらに該触媒層上
に三元性能を有する触媒層を設けたことを特徴とするア
ルコール燃料またはアルコール−ガソリン混合燃料を用
いる内燃機関排出ガスの浄化用触媒。
(1) Alcohol fuel or alcohol-gasoline mixed fuel characterized by providing a catalyst layer having alcohol and/or aldehyde purification ability on a monolithic carrier, and further providing a catalyst layer having three-way performance on the catalyst layer. A catalyst for purifying internal combustion engine exhaust gas.
(2)アルコールおよび/またはアルデヒド浄化能を有
する触媒層が複層である請求項(1)記載の触媒。
(2) The catalyst according to claim (1), wherein the catalyst layer having alcohol and/or aldehyde purifying ability is multi-layered.
(3)三元性能を有する触媒層が複層である請求項(1
)記載の触媒。
(3) Claim (1) wherein the catalyst layer having three-way performance is a multi-layered catalyst layer.
) described catalyst.
(4)アルコールおよび/またはアルデヒド浄化能を有
する触媒層が複層で、かつ三元性能を有する触媒層が複
層である請求項(1)記載の触媒。
(4) The catalyst according to claim (1), wherein the catalyst layer having alcohol and/or aldehyde purifying ability is multilayered, and the catalyst layer having three-way performance is multilayered.
(5)アルコールおよび/またはアルデヒド浄化能を有
する触媒層が、パラジウム、白金および銀からなる群か
ら選ばれる少なくとも1種の金属と、酸化セリウム、活
性アルミナおよび希土類を含有した活性アルミナからな
る群から選ばれる少なくとも1種の酸化物とを含有して
なる請求項(1)、(2)または(4)記載の触媒。
(5) The catalyst layer having alcohol and/or aldehyde purifying ability is selected from the group consisting of at least one metal selected from the group consisting of palladium, platinum, and silver, and activated alumina containing cerium oxide, activated alumina, and rare earth elements. The catalyst according to claim 1, comprising at least one selected oxide.
(6)アルコールおよび/またはアルデヒド浄化能を有
する触媒層が、パラジウムおよび/または白金と、銀並
びに酸化セリウム、活性アルミナおよび希土類を含有し
た活性アルミナからなる群から選ばれる少なくとも1種
の 酸化物とを含有してなる請求項(1)、(2)、(4)
または(5)記載の触媒。
(6) The catalyst layer having alcohol and/or aldehyde purification ability is made of at least one oxide selected from the group consisting of palladium and/or platinum, silver, and activated alumina containing cerium oxide, activated alumina, and rare earth elements. Claims (1), (2), (4) containing
Or the catalyst described in (5).
(7)三元性能を有する触媒層がパラジウムおよび/ま
たは白金と、ロジウム、活性アルミナおよび酸化セリウ
ムを含有する請求項(1)、(3)または(4)記載の
触媒。
(7) The catalyst according to claim (1), (3) or (4), wherein the catalyst layer having ternary performance contains palladium and/or platinum, rhodium, activated alumina and cerium oxide.
(8)アルコールおよび/またはアルデヒド浄化能を有
する触媒層が、パラジウム、白金および銀からなる群か
ら選ばれる少なくとも1種の金属と、酸化セリウム、活
性アルミナおよび希土類を含有した活性アルミナからな
る群から選ばれる少なくとも1種の酸化物とを含有し、
三元性能を有する触媒層がパラジウムおよび/または白
金と、ロジウム、活性アルミナおよび酸化セリウムを含
有する請求項(1)または(4)記載の触媒。
(8) The catalyst layer having alcohol and/or aldehyde purifying ability is selected from the group consisting of at least one metal selected from the group consisting of palladium, platinum, and silver, and activated alumina containing cerium oxide, activated alumina, and rare earth elements. and at least one selected oxide,
The catalyst according to claim 1 or 4, wherein the catalyst layer having ternary performance contains palladium and/or platinum, rhodium, activated alumina, and cerium oxide.
(9)アルコールおよび/またはアルデヒド浄化能を有
する触媒層が、パラジウムおよび/または白金と、銀並
びに酸化セリウム、活性アルミナおよび希土類を含有し
た活性アルミナからなる群から選ばれる少なくとも1種
の酸化物を含有し、三元性能を有する触媒層が、パラジ
ウムおよび/または白金と、ロジウム、活性アルミナお
よび酸化セリウムを含有する請求項(1)または(4)
記載の触媒。
(9) The catalyst layer having alcohol and/or aldehyde purification ability contains at least one oxide selected from the group consisting of palladium and/or platinum, silver, and activated alumina containing cerium oxide, activated alumina, and rare earth elements. Claim (1) or (4), wherein the catalyst layer containing ternary performance contains palladium and/or platinum, rhodium, activated alumina, and cerium oxide.
Catalysts as described.
(10)モノリス担体が、金属性またはセラミック性で
あるハニカムモノリス担体である請求項(1)記載の触
媒。
(10) The catalyst according to claim (1), wherein the monolithic carrier is a metallic or ceramic honeycomb monolithic carrier.
JP1246421A 1989-09-25 1989-09-25 Catalyst for purifying exhaust gas Pending JPH03109941A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1246421A JPH03109941A (en) 1989-09-25 1989-09-25 Catalyst for purifying exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1246421A JPH03109941A (en) 1989-09-25 1989-09-25 Catalyst for purifying exhaust gas

Publications (1)

Publication Number Publication Date
JPH03109941A true JPH03109941A (en) 1991-05-09

Family

ID=17148230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1246421A Pending JPH03109941A (en) 1989-09-25 1989-09-25 Catalyst for purifying exhaust gas

Country Status (1)

Country Link
JP (1) JPH03109941A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU677534B2 (en) * 1994-12-16 1997-04-24 Toyota Jidosha Kabushiki Kaisha Catalyst for exhaust gases

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50145381A (en) * 1974-05-14 1975-11-21
JPS57105240A (en) * 1980-12-24 1982-06-30 Mitsui Toatsu Chem Inc Exhaust gas purifying catalyst and preparation thereof
JPS637845A (en) * 1986-06-30 1988-01-13 Nippon Shokubai Kagaku Kogyo Co Ltd Catalyst for purifying exhaust gas from internal combustion engine using alcohol as fuel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50145381A (en) * 1974-05-14 1975-11-21
JPS57105240A (en) * 1980-12-24 1982-06-30 Mitsui Toatsu Chem Inc Exhaust gas purifying catalyst and preparation thereof
JPS637845A (en) * 1986-06-30 1988-01-13 Nippon Shokubai Kagaku Kogyo Co Ltd Catalyst for purifying exhaust gas from internal combustion engine using alcohol as fuel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU677534B2 (en) * 1994-12-16 1997-04-24 Toyota Jidosha Kabushiki Kaisha Catalyst for exhaust gases

Similar Documents

Publication Publication Date Title
US20090232714A1 (en) Particulate combustion catalyst, particulate filter, and exhaust gas clean-up system
JPS63100919A (en) Purifying method for exhaust gas and catalyst
JPH02293047A (en) Catalyst for purification of exhaust gas
JPH04193345A (en) Catalyst for purification of exhaust gas
JPH0262301B2 (en)
JPH0663403A (en) Exhaust gas cleaning catalyst
JPH01127044A (en) Catalyst for clarifying exhaust gas
JPH06378A (en) Catalyst for purification of exhaust gas
JPH03109941A (en) Catalyst for purifying exhaust gas
JPH04122447A (en) Catalyst for cleaning exhaust gas
JP3505739B2 (en) Exhaust gas purification catalyst
JPS6339633A (en) Catalyst for cleaning exhaust gas
JPS58146441A (en) Catalyst for purification of exhaust gas
JP3332369B2 (en) Engine exhaust gas purification catalyst
JP2837864B2 (en) Exhaust gas purifying catalyst for purifying exhaust gas from internal combustion engines using alcohol as fuel
JPS61293550A (en) Catalyst for purifying exhaust gas
JPH04180835A (en) Production of catalyst for purifying exhaust gas
JPS6268545A (en) Monolithic catalyst for purifying exhaust gas
JPH0966223A (en) Catalyst mechanism for purifying exhaust gas and purification of exhaust gas
JPH0777612B2 (en) Exhaust gas purification catalyst
JPH06142523A (en) Waste gas purifying material and waste gas purifying method
JPH062229B2 (en) Exhaust gas purification catalyst
JPH04145943A (en) Catalyst for purification of exhaust gas
JPH06190246A (en) Exhaust gas purifying device for automobile
JPH0639280A (en) Catalyst for purifying aldehyde