JPH03109765A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH03109765A
JPH03109765A JP1248642A JP24864289A JPH03109765A JP H03109765 A JPH03109765 A JP H03109765A JP 1248642 A JP1248642 A JP 1248642A JP 24864289 A JP24864289 A JP 24864289A JP H03109765 A JPH03109765 A JP H03109765A
Authority
JP
Japan
Prior art keywords
insulating film
storage electrode
forming
film
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1248642A
Other languages
Japanese (ja)
Inventor
Shinichirou Ikemasu
慎一郎 池増
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP1248642A priority Critical patent/JPH03109765A/en
Publication of JPH03109765A publication Critical patent/JPH03109765A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To prevent drop in a manufacture yield caused by a residual accumulated electrode material by selectively removing an insulation film on a region except a part required for forming a gap under a storage electrode prior to attaching a conductor layer. CONSTITUTION:Prior to patterning of a storage electrode 12, a region which is not needed to form a gap 13 under the electrode 12, for example an SiO2 film 16 for forming the gap on a region A2 for forming a peripheral transistor Tr2, is selectively removed. Therefore at the time of patterning the storage electrode 12, a residual caused by dust at the time of exposing a residual 112B of a polysilicon layer being a material of the electrode 12 to be left and attached to a step on a region other than a memory cell forming region A1 is immediately attached onto an Si3N4 film 10 which does not solve in HF solution. Therefore the device is free from lift-off due to wet etching treatment with the HF solution at the time of forming the gap 13, as well as the Si layer residual 112B, etc., can be prevented from attaching via etching solution to an important part on a substrate such as under the electrode 12. Thus a manufacture yield can be improved.

Description

【発明の詳細な説明】 〔概 要〕 半導体装置の製造方法、特にスタックドキャパシタを有
するDRAMの製造方法の改良に関し、蓄積電極下部に
空隙部をウェットエツチングで形成する際に、蓄積電極
材料の残渣がエツチング液内に混入されるのを防止して
この蓄積電極材料残渣が要部に付着することに起因する
製造歩留りの低下を防止することを目的とし、 半導体基板上に酸化シリコン系の第1の絶縁膜と、弗酸
系の液に溶解しない第2の絶縁膜と、弗酸系の液に溶解
する第3の絶縁膜とを順次積層して形成する工程、該第
3、第2、第1の絶縁膜を貫通して該半導体基板面を表
出する開孔を形成する工程、該開孔の内面を含む該第3
の絶縁膜上に導電体層を被着する工程、該導電体層をパ
ターニングして、該開孔内に表出する半導体基板面から
該第3の絶縁膜上に延在し該第3の絶縁膜上に端部を有
する蓄積電極を形成する工程、該第3の絶縁膜を弗酸系
の液により選択的に溶解除去し該蓄積電極の該第3の絶
縁膜上に延在していた部分の下部に空隙部を形成する工
程、該蓄積電極の表出面に誘電体膜を形成する工程、該
第2の絶縁膜上に、該蓄積電極下部の空隙部を埋め且つ
該蓄積電極の上部を覆って延在する導電体層からなる対
向電極を形成する工程を有する半導体装置の製造方法に
おいて、前記導電体層の被着に先立って、少なくとも該
蓄積電極の下部に該空隙部を形成するのに必要な部分を
除く領域の第3の絶縁膜を選択的に除去する工程を加え
て構成する。
[Detailed Description of the Invention] [Summary] Regarding the improvement of the manufacturing method of semiconductor devices, especially the manufacturing method of DRAM having stacked capacitors, when forming a void part under the storage electrode by wet etching, the storage electrode material is The purpose of this method is to prevent the residue from being mixed into the etching solution and to prevent the reduction in manufacturing yield caused by the accumulation of storage electrode material residue on important parts. a step of sequentially laminating and forming a first insulating film, a second insulating film that does not dissolve in a hydrofluoric acid-based liquid, and a third insulating film that dissolves in a hydrofluoric acid-based liquid; , forming an opening that penetrates the first insulating film and exposes the surface of the semiconductor substrate;
a step of depositing a conductive layer on the third insulating film, patterning the conductive layer so that the conductive layer extends from the semiconductor substrate surface exposed in the opening onto the third insulating film; A step of forming a storage electrode having an end on an insulating film, selectively dissolving and removing the third insulating film with a hydrofluoric acid solution to extend the third insulating film of the storage electrode. a step of forming a dielectric film on the exposed surface of the storage electrode; a step of filling the void under the storage electrode on the second insulating film; In a method for manufacturing a semiconductor device, the method includes the step of forming a counter electrode made of a conductor layer that extends to cover the upper part of the semiconductor device. The third insulating film is configured by adding a step of selectively removing the third insulating film in a region other than a portion necessary for the third insulating film.

〔産業上の利用分野〕 本発明は半導体装置の製造方法、特にスタックドキャパ
シタを有するDRAMの製造方法の改良に関する。
[Industrial Field of Application] The present invention relates to a method for manufacturing a semiconductor device, and particularly to an improvement in a method for manufacturing a DRAM having a stacked capacitor.

高集積度のDRAMにおいては、信頼度を向上するため
に、微小なセルサイズで大きな蓄積容量が得られるキャ
パシタ構造が望まれ、近時、蓄積電極が誘電体膜を介し
て対向電極内に埋め込まれた構造を有し、蓄積電極の上
面及び側面以外に下面も容量として寄与するスタックド
キャパシタ構造が提供されている。
In highly integrated DRAM, in order to improve reliability, a capacitor structure that can obtain large storage capacitance with a small cell size is desired. A stacked capacitor structure is provided in which the lower surface of the storage electrode in addition to the upper surface and side surfaces of the storage electrode also contributes to the capacitance.

第2図は上記構造のスタックドキャパシタを有するメモ
リセルの模式側断面図で、■は例えばp型のシリコン(
St)基板、2は素子間を分離するフィールド酸化膜、
3はゲート酸化膜、4はポリSi−等からなるゲート電
極(ワード線)、5はビット線が接続される第1のnI
型ソース/ドレイン研域、6はキャパシタに接続される
第2のn0型ソース/ドレイン領域、7Aは二酸化シリ
コン(SiOz)等からなる第1の眉間絶縁膜、8はビ
ット線接続用の第1のコンタクト窓、9はポリサイド等
からなるビット線、7Bは5i02等からなる第2の眉
間絶縁膜、10は窒化シリコン(SisNa)膜、11
はキャパシタ接続用の第2のコンタクト窓、12はポリ
Si等からなる蓄積電極、13は蓄積電極12とSi3
N4膜10との間に形成される空隙部、14は例えばS
t、N、と5i02とからなる誘電体膜、15はポリS
i等からなる対向電極、TrはMO3構造を有するセル
トランジスタ、C□は蓄積電極が対向電極内に誘電体膜
を介して埋め込まれたスタックド構造を存するセルキャ
パシタを示す。
FIG. 2 is a schematic side sectional view of a memory cell having a stacked capacitor with the above structure, where ■ is, for example, p-type silicon (
St) substrate, 2 is a field oxide film that isolates elements;
3 is a gate oxide film, 4 is a gate electrode (word line) made of poly-Si, etc., and 5 is a first nI to which a bit line is connected.
6 is the second n0 type source/drain region connected to the capacitor, 7A is the first glabella insulating film made of silicon dioxide (SiOz), etc., and 8 is the first bit line connection. 9 is a bit line made of polycide or the like, 7B is a second glabella insulating film made of 5i02 or the like, 10 is a silicon nitride (SisNa) film, 11
12 is a storage electrode made of poly-Si, etc., and 13 is a storage electrode 12 and Si3.
The void 14 formed between the N4 film 10 and the N4 film 10 is made of, for example, S
t, N, and 5i02, 15 is polyS
Tr indicates a cell transistor having an MO3 structure, and C□ indicates a cell capacitor having a stacked structure in which a storage electrode is embedded in the counter electrode via a dielectric film.

〔従来の技術〕[Conventional technology]

上記構造を有するDRAMセルにおけるセルキャパシタ
は従来、以下に示す方法により形成されていた。
A cell capacitor in a DRAM cell having the above structure has conventionally been formed by the method shown below.

第3図(a)参照 即ち、フィールド酸化膜2で画定されたSi基板1上に
前記ゲート酸化膜3、ゲート電極4、第11第2のソー
ス/ドレイン領域5.6からなるセルトランジスタ(T
r)が形成され、このトランジスタを覆う第1の眉間絶
縁膜7Aが形成され、この第1の眉間絶縁膜7に第1の
ソース/ドレイン領域5を表出する第1のコンタクト窓
8が形成され、このコンタクト窓8上にポリサイド等か
らなるビット線9が形成され、その面上に第2の眉間絶
縁膜7Bを形成した後、この第1の眉間絶縁膜7Aと第
2の眉間絶縁膜7Bとからなる第1の絶縁膜7上に、弗
酸(HF)系の液に溶解されない第2の絶縁膜に相当す
る5iJn膜10と、HF系の液に溶解する第3の絶縁
膜に相当する5i02膜16を形成した後上記Sing
膜16.5iJ4膜15及び第1、第2の層間絶縁膜7
A、7Bを貫通して第2のソース/ドレイン領域6を表
出する第2のコンタクト窓11を形成する。
Referring to FIG. 3(a), a cell transistor (T
r) is formed, a first glabellar insulating film 7A is formed to cover this transistor, and a first contact window 8 exposing the first source/drain region 5 is formed in this first glabellar insulating film 7. A bit line 9 made of polycide or the like is formed on this contact window 8, and after forming a second glabellar insulating film 7B on that surface, this first glabellar insulating film 7A and a second glabellar insulating film 7A are formed. 7B, a 5iJn film 10 corresponding to a second insulating film that is not dissolved in hydrofluoric acid (HF)-based liquid, and a third insulating film 7 that is soluble in HF-based liquid. After forming the corresponding 5i02 film 16, the above Sing
Film 16.5iJ4 film 15 and first and second interlayer insulating films 7
A second contact window 11 is formed to penetrate through A and 7B and expose the second source/drain region 6.

第3図(b)参照 次いで、この基板上にポリSi層を形成し、このポリS
i層にn型不純物を高濃度に導入して導電性を付与した
後パターニングを行って、第2のコンタクト窓ll上に
端部がワード線4の上部まで延在する蓄積電極12を形
成する。
Refer to FIG. 3(b) Next, a poly-Si layer is formed on this substrate, and this poly-Si layer is
After introducing conductivity into the i-layer by introducing n-type impurities at a high concentration, patterning is performed to form a storage electrode 12 whose end extends to the top of the word line 4 on the second contact window ll. .

第3図(C)参照 次いでこの基板をHF系の液中に浸漬し、前記5in2
膜16を選択的にエツチング除去する。ここで5iOz
膜16上に延在していた蓄積電極12の下部には空隙部
13が形成される。
Refer to FIG. 3(C) Next, this substrate was immersed in an HF-based liquid, and the 5in2
Film 16 is selectively etched away. Here 5iOz
A void portion 13 is formed below the storage electrode 12 extending on the film 16 .

第2図参照 次いで少な(とも蓄積電極12の表出面にSi、N。See Figure 2 Next, there is a small amount of Si and N on the exposed surface of the storage electrode 12.

とSiO□等からなる誘電体膜14を形成し、この基板
上にポリ5iJiを気相成長して、前記蓄積電極12下
部の空隙部13を埋め且つ蓄積電極12上を覆い基板上
に延在する対向電極15を形成する方法によっていた。
A dielectric film 14 made of and SiO□, etc. is formed, and poly 5iJi is vapor-phase grown on this substrate to fill the void 13 under the storage electrode 12, cover the storage electrode 12, and extend over the substrate. A method of forming the counter electrode 15 was used.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし上記従来の方法には次のような問題があった。 However, the above conventional method has the following problems.

即ち、前記蓄積電極12のパターニング(第3図(b)
参照)に際してのレジスト膜の露光工程において、第4
図(a)に示すように、露光マスク(レチクル)17に
おけるポリSi層の除去される例えばスクライブライン
18上に異物19が付着していてその下部のポジレジス
ト膜20に未露光領域21が形成された場合、現像後に
その部分がレジスト残渣として残留するので、このレジ
スト膜をマスクにして蓄積電極のパターニングを行った
後に第4図Cb)に示すようにスクライブライン18上
のSiO2膜16上に島状ポリSi残渣112Aが付着
残留する。
That is, the patterning of the storage electrode 12 (FIG. 3(b)
In the resist film exposure step (see), the fourth
As shown in Figure (a), foreign matter 19 is attached to, for example, the scribe line 18 where the poly-Si layer in the exposure mask (reticle) 17 is removed, and an unexposed region 21 is formed in the positive resist film 20 below. If this happens, that portion will remain as a resist residue after development, so after patterning the storage electrode using this resist film as a mask, a pattern is formed on the SiO2 film 16 on the scribe line 18 as shown in FIG. 4Cb). Island-shaped poly-Si residues 112A remain attached.

また前記のように蓄積電極12のパターニングはRIE
処理によってなされるので、同じく第4図(b)に示す
ように、スクライブライン18を画定するフィールド酸
化膜2の段差部上に形成される5iOz膜16の段差部
に側壁状のポリSiの残渣112Bが被着残留する。
Further, as described above, the patterning of the storage electrode 12 is performed by RIE.
Since this is done by processing, as shown in FIG. 4(b), sidewall-shaped poly-Si residues are formed on the stepped portion of the 5iOz film 16 formed on the stepped portion of the field oxide film 2 that defines the scribe line 18. 112B remains attached.

そのため、次いでFIF系のエツチング液により、Si
n、膜16を溶解除去して蓄積電極12の下部に空隙部
13を形成する工程(第3図(C)参照)において、第
4図(C)に示すように前記ポリStの残渣112A及
び112Bがリフトオフされて上記エツチング液中に混
入し、このポリSi残渣112A、 112B等が例え
ば蓄積電極12の下部に浸入付着し、後に蓄積電極工2
の表出面に形成される誘電体膜14の性能を劣化せしめ
たり、その他基板上の要部に付着して配線間のシシート
、配線の断線、絶縁膜の絶縁不良等を発生し、DRAM
の製造歩留りが低下するという問題があった。(第4図
(a)〜(C)において、lはSi基板、2はフィール
ド酸化膜、7は眉間絶縁膜、1゜はSt J、膜、11
2はポリ5iJiiを示す。)そこで本発明は、蓄積電
極下部に空隙部をウェットエツチングで形成する際に、
蓄積電極材料の残渣がエツチング液内に混入される−の
を防止してこの蓄積電極材料残渣に起因する製造歩留り
の低下を防止することを目的とする。
Therefore, next, a FIF-based etching solution was used to
n. In the step of dissolving and removing the film 16 to form a void 13 under the storage electrode 12 (see FIG. 3(C)), as shown in FIG. 4(C), the polySt residue 112A and 112B is lifted off and mixed into the etching solution, and the poly-Si residues 112A, 112B, etc. infiltrate and adhere to the lower part of the storage electrode 12, and are later removed from the storage electrode 2.
It may deteriorate the performance of the dielectric film 14 formed on the exposed surface of the DRAM, or it may adhere to important parts of the substrate, causing gaps between wirings, disconnection of wiring, poor insulation of the insulating film, etc.
There was a problem in that the manufacturing yield of the product decreased. (In FIGS. 4(a) to (C), l is the Si substrate, 2 is the field oxide film, 7 is the glabella insulating film, 1° is the St J film, 11
2 indicates poly5iJii. ) Therefore, in the present invention, when forming a void under the storage electrode by wet etching,
It is an object of the present invention to prevent residues of storage electrode material from being mixed into an etching solution, thereby preventing a decrease in manufacturing yield due to the residues of storage electrode material.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題は、半導体基板上に酸化シリコン系の第1の絶
縁膜と、弗酸系の液に溶解しない第2の絶縁膜と、弗酸
系の液に溶解する第3の絶縁膜とを順次積層して形成す
る工程、該第3、第2、第1の絶縁膜を貫通して該半導
体基板面を表出する開孔を形成する工程、該開孔の内面
を含む該第3の絶縁膜上に導電体層を被着する工程、該
導電体層をパターニングして、該開孔内に表出する半導
体基板面から該第3の絶縁膜上に延在し該第3の絶縁膜
上に端部を有する蓄積電極を形成する工程、該第3の絶
縁膜を弗酸系の液により選択的に溶解除去し該蓄積電極
の該第3の絶縁膜上に延在していた部分の下部に空隙部
を形成する工程、該蓄積電極の表出面に誘電体膜を形成
する工程、該第2の絶縁膜上に、該蓄積電極下部の空隙
部を埋め且つ該蓄積電極の上部を覆って延在する導電体
層からなる対向電極を形成する工程を有する半導体装置
の製造方法において、前記導電体層の被着に先立って、
少なくとも該蓄積電極の下部に該空隙部を形成するのに
必要な部分を除く領域の第3の絶縁膜を選択的に除去す
る工程を加えた本発明による半導体装置の製造方法によ
って解決される。
The above problem is to sequentially form a silicon oxide-based first insulating film, a second insulating film that does not dissolve in a hydrofluoric acid-based solution, and a third insulating film that dissolves in a hydrofluoric acid-based solution on a semiconductor substrate. a step of laminating and forming, a step of forming an opening that penetrates the third, second, and first insulating films and exposes the surface of the semiconductor substrate; and a step of forming the third insulating film including the inner surface of the opening. a step of depositing a conductive layer on the film, patterning the conductive layer so that the third insulating film extends from the semiconductor substrate surface exposed in the opening onto the third insulating film; a step of forming a storage electrode having an end portion on top, selectively dissolving and removing the third insulating film with a hydrofluoric acid-based solution, and removing a portion of the storage electrode that extended over the third insulating film; a step of forming a dielectric film on the exposed surface of the storage electrode; a step of forming a dielectric film on the exposed surface of the storage electrode; In a method for manufacturing a semiconductor device, which includes a step of forming a counter electrode made of a conductor layer that covers and extends, prior to depositing the conductor layer,
This problem is solved by the method of manufacturing a semiconductor device according to the present invention, which includes a step of selectively removing the third insulating film in a region excluding at least a portion necessary for forming the void below the storage electrode.

〔作 用〕[For production]

即ち本発明の方法においては、蓄積電極の下部に空隙部
を形成するために蓄積電極の下部領域から基板面全域に
わたって延在して形成されるOF系の液に溶解する第3
の絶縁膜の上記空隙部の形成に必要のない部分を予め除
去し、との部分にIIF系の液に溶解しない第2の絶縁
膜を表出させた後、この基板上に蓄積電極形成用の導電
体層を形成し、この導電体層をパターニングして蓄積電
極を形成する。
That is, in the method of the present invention, in order to form a void in the lower part of the storage electrode, the third layer is dissolved in the OF-based liquid and is formed extending from the lower region of the storage electrode over the entire substrate surface.
After removing in advance the portions of the insulating film that are not necessary for forming the above-mentioned voids and exposing the second insulating film that does not dissolve in the IIF-based liquid in the portions of , a layer for forming storage electrodes is placed on this substrate. A conductive layer is formed, and this conductive layer is patterned to form a storage electrode.

従って蓄積電極のパターニングに際して、蓄積電極が形
成されない例えばスクライブラインその他の領域の段差
部に残留する導電体層の側壁状残渣や、露光の際のごみ
等に起因する島状残渣はIF系の液に溶解しない第2の
絶縁膜上に直に被着することになり、第3の絶縁膜をO
F系の液により除去して蓄積電極下部に空隙部を形成す
る際に、上記導電体層の残渣がリフトオフされることが
なくなる。
Therefore, when patterning the storage electrode, sidewall-like residues of the conductor layer remaining on step portions in scribe lines and other areas where the storage electrode is not formed, island-like residues caused by dust during exposure, etc., are removed by the IF system liquid. The third insulating film is deposited directly on the second insulating film, which does not dissolve in O2.
The residue of the conductive layer is not lifted off when removing it with an F-based liquid to form a void below the storage electrode.

そのため上記導電体層の残渣が蓄積電極の下部その他の
要部に付着することがなくなり、半導体装置の性能劣化
が防止されて製造歩留りが向上する。
Therefore, residues of the conductor layer will not adhere to the lower part of the storage electrode or other important parts, preventing performance deterioration of the semiconductor device and improving manufacturing yield.

〔実施例〕〔Example〕

以下本発明を一実施例について、第1図(a)〜(f)
に示す工程断面図を参照し具体的に説明する。
The following is an example of the present invention as shown in FIGS. 1(a) to (f).
A detailed description will be given with reference to the process cross-sectional diagram shown in FIG.

第1図(a)参照 本発明の方法によりスタックドキャパシタを有するDR
AMを形成するに際しては、例えばp型Si基板1上に
メモリセル形成領域A忙周辺トランジスタ形成領域A!
を分離表出するフィールド酸化膜2が形成され、従来同
様の方法によりメモリセル形成領域A1にゲート酸化膜
3、ワード線4、第1のn+型ソース/ドレイン領域5
及び第2のn0型ソース/ドレイン領域6からなるセル
トランジスタTr、が形成され、周辺トランジスタ形成
領域A2にゲート酸化膜103、ゲート電極104、n
1型ソース領域105及びn0型ドレイン領域106か
らなる周辺トランジスタTr、が形成された基板上に、
通常の気相成長法により例えば厚さ1000人程度0S
iO□膜からなる第1の層間絶縁膜7^を形成し、この
第1の眉間絶縁膜7AにセルトランジスタTr、の第1
のソース/ドレイン領域5を表出する第1のコンタクト
窓8を形成し、このコンタクト窓8上にポリサイド等よ
りなるビット線9を接続し、このビット線9が形成面上
に例えば厚さ1000人程度0SiO2膜からなる第2
の眉間絶縁膜7Bを形成しく第1、第2の層間絶縁膜7
A、7Bが第1の絶縁膜に相当)、次いでこの第2の層
間絶縁膜7B上にIP系の液に溶解されない第2の絶縁
膜として例えば厚さ500人程変色Si3N、膜IOを
気相成長により形成し、次いでこのSi、N、膜10上
にIP系の液に溶解される第3の絶縁膜として例えば厚
さ500〜1000人程度のSiO変色16を気相成長
法により形成し、次いでRIE処理を用いる通常のフォ
トリソグラフィ手段により上記SiO□膜16、Si3
N4膜lO及び第1の層間絶縁膜7Aと第2の層間絶縁
膜7Bからなる眉間絶縁膜7を貫通しセルトランジスタ
Trl の第2のソース/ドレイン領域6を表出するキ
ャパシタ接続用の第2のコンタクト窓11を形成する。
DR with stacked capacitors according to the method of the present invention, see FIG. 1(a).
When forming the AM, for example, on the p-type Si substrate 1, there is a memory cell formation area A, a peripheral transistor formation area A!
A field oxide film 2 is formed to separate and expose the gate oxide film 3, a word line 4, and a first n+ type source/drain region 5 in the memory cell formation area A1 using a method similar to the conventional method.
and a second n0 type source/drain region 6 are formed, and a gate oxide film 103, a gate electrode 104, and a gate electrode 104 are formed in the peripheral transistor formation region A2.
On a substrate on which a peripheral transistor Tr consisting of a 1 type source region 105 and an n0 type drain region 106 is formed,
For example, a thickness of about 1,000 0S is produced using the normal vapor phase growth method.
A first interlayer insulating film 7^ made of an iO□ film is formed, and the first interlayer insulating film 7A of the cell transistor Tr is
A first contact window 8 that exposes the source/drain region 5 is formed, and a bit line 9 made of polycide or the like is connected to the contact window 8. The second layer is made of 0SiO2 film.
The first and second interlayer insulating films 7 form a glabellar insulating film 7B.
A and 7B correspond to the first insulating film), and then a discolored Si3N film IO with a thickness of about 500 mm is deposited on the second interlayer insulating film 7B as a second insulating film that is not dissolved in the IP-based liquid. A third insulating film 16 is formed by phase growth, and then, as a third insulating film, which is dissolved in an IP-based liquid, an SiO discoloration film 16 having a thickness of about 500 to 1000 layers is formed by vapor phase growth on the Si, N film 10. Then, the above SiO□ film 16, Si3
A second capacitor connection capacitor penetrating the N4 film IO and the glabella insulating film 7 consisting of the first interlayer insulating film 7A and the second interlayer insulating film 7B to expose the second source/drain region 6 of the cell transistor Trl. A contact window 11 is formed.

なおここまでの工程は従来方法と同様である。Note that the steps up to this point are the same as the conventional method.

第1図い)参照 次いで上記基板上に蓄積電極の下部に空隙部を形成する
のに必要な例えばメモリセル形成領域へ。
Referring to FIG. 1), a gap is then formed on the substrate under the storage electrode, for example, to a memory cell forming area.

を覆うレジストマスク22を形成し、IP系の液による
ウェットエツチング処理を行って上記空隙部の形成に必
要ない領域(図では周辺トランジスタTrtの形成領域
Atのみ例示)上のSing膜16を選択的に除去する
A resist mask 22 is formed to cover the Sing film 16, and a wet etching process is performed using an IP-based liquid to selectively remove the Sing film 16 on a region not necessary for forming the above-mentioned void (in the figure, only the formation region At of the peripheral transistor Trt is shown as an example). to be removed.

第1図(C)参照 次いでレジストマスク22を除去した後、この基板上に
厚さ1000人程度0SリSi層を気相成長し、例えば
イオン注入法によりこのポリSi層にn9型の導電性を
付与した後、このポリSi層をエツチング手段にRIB
処理を用いる通常のフォトリソグラフィー手段によりパ
ターニングして前記第2のコンタクト窓11内に表出す
るセルトランジスタTr、の第2のソース/ドレイン領
域6面からSing膜16上に延在しこのSin、膜1
6上に端部を有する蓄積電極12を形成する。この際、
例えば周辺トランジスタ形成領域Azを画定するフィー
ルド酸化膜2の端部上のSi3N4膜10の段差部には
側壁状のポリSi残渣112Bが直に被着残留しする。
Refer to FIG. 1(C) Next, after removing the resist mask 22, a 0S poly-Si layer with a thickness of about 1000 layers is grown in a vapor phase on this substrate, and N9 type conductivity is added to this poly-Si layer by, for example, ion implantation. After applying this poly-Si layer, RIB is used as an etching means.
Extending on the Sing film 16 from the second source/drain region 6 surface of the cell transistor Tr exposed in the second contact window 11 by patterning by a normal photolithography process using processing, this Sin, Membrane 1
A storage electrode 12 having an end portion on top of the storage electrode 12 is formed. On this occasion,
For example, sidewall-like poly-Si residues 112B remain directly attached to the step portion of the Si3N4 film 10 on the edge of the field oxide film 2 defining the peripheral transistor formation region Az.

なお、前述したように露光に際してマスク上にごみが存
在する場合にはSiJ、膜IO上に島上残渣も被着残留
するがここでは省略する。
As mentioned above, if there is dust on the mask during exposure, island residues will also remain on the SiJ and film IO, but this will be omitted here.

第1図(d)参照 次いで従来通り[(F系の液によるウェットエツチング
手段により残留するSiO□膜16を除去し蓄積電極I
2の下部に高さ500〜1000人程度の空隙部変色を
形成する。この際、前記側壁状のポリSi残渣112B
ば5i3N4If!10上に直に付着しているのでリフ
トオフされることはなく付着したままとなる。
Referring to FIG. 1(d), the remaining SiO□ film 16 is removed by wet etching using a F-based solution as before, and the storage electrode I
Form a discolored cavity at the bottom of 2 with a height of about 500 to 1000 people. At this time, the side wall-shaped poly-Si residue 112B
Ba5i3N4If! Since it is directly attached to 10, it will not be lifted off and will remain attached.

第1図(e)参照 次いで従来通り例えば気相成長法により、蓄積電極12
の表出面及び基板上面に厚さ80人程度のSiJ、膜を
形成しこのSiJ<膜の表面部を熱酸化して(SiJ4
 +5iOz)からなる誘電体膜14を形成すし、次い
でこの基板上に前記蓄積電極12下部の空隙部13を埋
め且つこの蓄積電極12の上部を覆って延在する厚さ2
000人程度0ポリSt層を形成し、このポリSiNに
例えばイオン注入法によりn0型の導電性を付与し、次
いで通常のフォトリソグラフィ手段によりパターニング
を行ってメモリセル形成領域へ、上に延在する対向電極
15を形成する。
Referring to FIG. 1(e), the storage electrode 12 is then deposited in a conventional manner, for example, by a vapor phase growth method.
A SiJ film with a thickness of approximately 80 mm is formed on the exposed surface and the upper surface of the substrate, and the surface portion of this SiJ film is thermally oxidized (SiJ4
A dielectric film 14 made of +5 iOz) is formed on the substrate, and then a dielectric film 14 with a thickness of 2 oz.
A layer of about 000 polySt is formed, and this polySiN is given n0 type conductivity by, for example, ion implantation, and then patterned by normal photolithography to extend to and above the memory cell formation area. A counter electrode 15 is formed.

第1図(f)参照 次いで従来通りこの基板上に第1の被覆絶縁膜23を形
成し、この第1の被覆絶縁膜13及び誘電体膜14、S
i3N4膜10、層間絶縁膜7を貫通し周辺トランジス
タTrzのソース領域105及びドレイン領域106を
表出する第3のコンタクト窓24及び第4のコンタクト
窓25を形成し、通常の配線形成手段により上記コンタ
クト窓24.25上にソース配線26及びドレイン配線
27を形成する。
Referring to FIG. 1(f), a first covering insulating film 23 is then formed on this substrate in the conventional manner, and this first covering insulating film 13 and dielectric film 14, S
A third contact window 24 and a fourth contact window 25 penetrating the i3N4 film 10 and the interlayer insulating film 7 to expose the source region 105 and drain region 106 of the peripheral transistor Trz are formed, and the above-mentioned process is performed by normal wiring forming means. A source wiring 26 and a drain wiring 27 are formed on the contact windows 24 and 25.

そして以後、図示しない第2の被覆絶縁膜の形成等がな
されて本発明の方法によるり、 RA Mが完成する。
Thereafter, a second covering insulating film (not shown) is formed, and the RAM is completed by the method of the present invention.

上記実施例に示したように本発明の方法においては、蓄
積電極12のパターニングに先立って蓄積電極12の下
部に空隙部13を形成するのに必要のない例えば周辺ト
ランジスタTrz形成領域A2上の上記空隙部形成用の
Sing膜16が選択的に除去されるので、蓄積電極1
2のパターニングに際してメモリセル形成領域A、以外
の領域上の段差部に残留被着する蓄積電極の材料である
ポリSt層の残渣 112Bや図示されない露光時のご
みに起因する残渣は、HP系の液に溶解しないSi3N
4膜lo上に直に被着することになり、そのため上記空
隙部13形成に際してのIIF系の液によるウェットエ
ツチング処理によりリフトオフされることがなく、従っ
て蓄積電極の下部やその他基板上の要部にエツチング液
を介して上記ポリSiN残渣112B等が付着すること
が防止される。
As shown in the above embodiment, in the method of the present invention, prior to patterning of the storage electrode 12, the above-mentioned pattern on the peripheral transistor Trz formation region A2, which is not necessary for forming the cavity 13 under the storage electrode 12, is removed. Since the Sing film 16 for forming the void is selectively removed, the storage electrode 1
Residues of the polySt layer 112B, which is the material of the storage electrode, remaining on the stepped portions of areas other than the memory cell formation area A during patterning in step 2 and residues due to dust during exposure (not shown) are HP-based. Si3N that does not dissolve in liquid
4 is deposited directly on the film lo, so it is not lifted off by the wet etching process using IIF-based liquid when forming the void 13, and therefore the lower part of the storage electrode and other important parts on the substrate are not lifted off. This prevents the poly-SiN residue 112B from adhering to the etching solution via the etching solution.

〔発明の効果〕〔Effect of the invention〕

以上説明のように本発明によれば、蓄積電極が誘電体膜
を介して対向電極内に埋込まれ、蓄積電極の上面、側面
及び下面が容量として寄与する構成を有するフタックド
キャパシタを具備したDRAMの製造に際して、蓄積電
極を構成する導電体層の残渣の付着によるキャパシタの
性能劣化や配線間ショート、配線の断線、絶縁膜の絶縁
不良等が防止され、上記DRAMの製造歩留りが向上す
る。
As described above, according to the present invention, there is provided a lifted capacitor having a configuration in which a storage electrode is embedded in a counter electrode through a dielectric film, and the upper surface, side surface, and lower surface of the storage electrode contribute to capacitance. When manufacturing a DRAM using this method, deterioration of capacitor performance, short circuit between wirings, disconnection of wiring, poor insulation of an insulating film, etc. due to adhesion of residues of the conductor layer constituting the storage electrode are prevented, and the manufacturing yield of the above-mentioned DRAM is improved. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(f)は本発明の方法の一実施例の工程
断面図、 第2図はスタックドキャパシタ型DRAMセルの模式側
断面図、 第3図(a)〜(C)は従来の方法の工程断面図、第4
図は(a)〜(C)は従来の問題点を示す工程断面図で
ある。 図において、 ■はP型Si基板、    2はフィールド酸化膜、3
はゲート酸化膜、   4はワード線、5はn9型第1
のソース/ドレイン領域、6はn3型第2のソース/ド
レイン領域、7^、7B、7は層間絶縁膜、 8.11はコンタクト窓、 9はビット線、  ′10は5iJa膜、12は蓄積電
橋、    13は空隙部、14は誘電体膜、    
15は対向電極、16はSi0g膜、      22
はレジストマスク、112Bは側壁状ポリSi残渣、 Atはメモリセル形成領域、 Atは周辺トランジスタ形成領域 を示す。 スフ・lクド暫ヤパシダ型DRAMでル/1判1\イp
11断all第   2   記 イカ岳工屹Iン第5ノ(iフェオ至摺グraiz冨3旧 イy來nrA超に、乞示1工背、断面口第斗旧
FIGS. 1(a) to (f) are process sectional views of an embodiment of the method of the present invention. FIG. 2 is a schematic side sectional view of a stacked capacitor type DRAM cell. FIGS. 3(a) to (C) is a process cross-sectional diagram of the conventional method, the fourth
The figures (a) to (C) are process cross-sectional views showing conventional problems. In the figure, ■ is a P-type Si substrate, 2 is a field oxide film, and 3 is a P-type Si substrate.
is the gate oxide film, 4 is the word line, and 5 is the n9 type first
, 6 is the n3 type second source/drain region, 7^, 7B, 7 is the interlayer insulating film, 8.11 is the contact window, 9 is the bit line, '10 is the 5iJa film, 12 is the storage Electric bridge, 13 is a gap, 14 is a dielectric film,
15 is a counter electrode, 16 is a Si0g film, 22
112B is a resist mask, 112B is a sidewall poly-Si residue, At is a memory cell formation region, and At is a peripheral transistor formation region. Sufu・lkudo temporary yapashida type DRAM / 1 size 1\ip
11 All Sections 2 Ikadake Works I No. 5

Claims (1)

【特許請求の範囲】 半導体基板上に酸化シリコン系の第1の絶縁膜と、弗酸
系の液に溶解しない第2の絶縁膜と、弗酸系の液に溶解
する第3の絶縁膜とを順次積層して形成する工程、 該第3、第2、第1の絶縁膜を貫通して該半導体基板面
を表出する開孔を形成する工程、 該開孔の内面を含む該第3の絶縁膜上に導電体層を被着
する工程、 該導電体層をパターニングして、該開孔内に表出する半
導体基板面から該第3の絶縁膜上に延在し該第3の絶縁
膜上に端部を有する蓄積電極を形成する工程、 該第3の絶縁膜を弗酸系の液により選択的に溶解除去し
該蓄積電極の該第3の絶縁膜上に延在していた部分の下
部に空隙部を形成する工程、該蓄積電極の表出面に誘電
体膜を形成する工程、該第2の絶縁膜上に、該蓄積電極
下部の空隙部を埋め且つ該蓄積電極の上部を覆って延在
する導電体層からなる対向電極を形成する工程を有する
半導体装置の製造方法において、 前記導電体層の被着に先立って、少なくとも該蓄積電極
の下部に該空隙部を形成するのに必要な部分を除く領域
の第3の絶縁膜を選択的に除去する工程を加えたことを
特徴とする半導体装置の製造方法。
[Scope of Claims] A first insulating film made of silicon oxide, a second insulating film that does not dissolve in a hydrofluoric acid solution, and a third insulating film that dissolves in a hydrofluoric acid solution, on a semiconductor substrate. forming an aperture that penetrates the third, second, and first insulating films and exposes the surface of the semiconductor substrate; a step of depositing a conductive layer on the third insulating film, patterning the conductive layer so that the conductive layer extends from the semiconductor substrate surface exposed in the opening onto the third insulating film; a step of forming a storage electrode having an end on an insulating film, selectively dissolving and removing the third insulating film with a hydrofluoric acid-based solution so that the third insulating film extends over the third insulating film of the storage electrode; a step of forming a dielectric film on the exposed surface of the storage electrode; a step of filling the void under the storage electrode on the second insulating film; A method for manufacturing a semiconductor device comprising a step of forming a counter electrode made of a conductor layer extending to cover the upper part, the gap being formed at least under the storage electrode prior to depositing the conductor layer. 1. A method of manufacturing a semiconductor device, comprising the step of selectively removing the third insulating film in a region other than a portion necessary for the third insulating film.
JP1248642A 1989-09-25 1989-09-25 Manufacture of semiconductor device Pending JPH03109765A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1248642A JPH03109765A (en) 1989-09-25 1989-09-25 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1248642A JPH03109765A (en) 1989-09-25 1989-09-25 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH03109765A true JPH03109765A (en) 1991-05-09

Family

ID=17181154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1248642A Pending JPH03109765A (en) 1989-09-25 1989-09-25 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH03109765A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0582747A (en) * 1991-09-19 1993-04-02 Fujitsu Ltd Semiconductor device
US5288655A (en) * 1990-09-20 1994-02-22 Fujitsu Limited Method of making dynamic random access memory having a reliable contact
EP0994506A1 (en) * 1998-10-14 2000-04-19 STMicroelectronics S.A. Method of making memory cell capacitor
US6728483B1 (en) 2002-10-11 2004-04-27 Eastman Kodak Company Cameras, methods, and systems with partial-shading encodements
US6741326B2 (en) 2002-10-11 2004-05-25 Eastman Kodak Company Methods, apparatus, and systems for detecting partial-shading encodement filtering
JP2007235159A (en) * 1998-10-14 2007-09-13 Fujitsu Ltd Semiconductor device
JP2007258732A (en) * 1998-10-14 2007-10-04 Fujitsu Ltd Semiconductor device
JP4755380B2 (en) * 2000-03-23 2011-08-24 スパンション エルエルシー Method for forming a semiconductor structure

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5288655A (en) * 1990-09-20 1994-02-22 Fujitsu Limited Method of making dynamic random access memory having a reliable contact
JPH0582747A (en) * 1991-09-19 1993-04-02 Fujitsu Ltd Semiconductor device
EP0994506A1 (en) * 1998-10-14 2000-04-19 STMicroelectronics S.A. Method of making memory cell capacitor
FR2784798A1 (en) * 1998-10-14 2000-04-21 St Microelectronics Sa MEMORY CELL
JP2007235159A (en) * 1998-10-14 2007-09-13 Fujitsu Ltd Semiconductor device
JP2007258732A (en) * 1998-10-14 2007-10-04 Fujitsu Ltd Semiconductor device
JP4755380B2 (en) * 2000-03-23 2011-08-24 スパンション エルエルシー Method for forming a semiconductor structure
US6728483B1 (en) 2002-10-11 2004-04-27 Eastman Kodak Company Cameras, methods, and systems with partial-shading encodements
US6741326B2 (en) 2002-10-11 2004-05-25 Eastman Kodak Company Methods, apparatus, and systems for detecting partial-shading encodement filtering

Similar Documents

Publication Publication Date Title
JP4046436B2 (en) Contact formation method for semiconductor device
JP2500078B2 (en) Multilayer capacitor for semiconductor device-Manufacturing method
JPH08153858A (en) Manufacture of semiconductor device
JPH03109765A (en) Manufacture of semiconductor device
CN112002636A (en) Array substrate, preparation method thereof and display panel
US6384438B2 (en) Capacitor and method for fabricating the same
KR100526059B1 (en) Method of forming self-aligned contact in fabricating semiconductor devices
KR100488945B1 (en) a method for manufacturing of TFT array panel of digital X-ray detector device
JPH02194554A (en) Manufacture of semiconductor device
JP2593402B2 (en) Semiconductor device and manufacturing method thereof
KR100359763B1 (en) Method for fabricating semiconductor memory device
KR960006339B1 (en) Fabricating method of semiconductor device
KR920007824B1 (en) Contacting device of semiconductor elements
JP3344051B2 (en) Method for manufacturing thin film transistor
KR100190304B1 (en) Fabrication method of semiconductor device
JP2000515330A (en) Method of manufacturing an electrical device in which a conductive layer is provided on an electrically insulating substrate and a conductor pattern is formed from said layer
JPS5848939A (en) Semiconductor device
JP3034296B2 (en) Semiconductor device and manufacturing method thereof
JPH03268433A (en) Semiconductor device
JP3688860B2 (en) Manufacturing method of semiconductor integrated circuit
JPH10294439A (en) Semiconductor storage device and its manufacture
JPH01144671A (en) Manufacture of semiconductor memory device
JPH03109736A (en) Manufacture of semiconductor device
JPH05198571A (en) Semiconductor device and its manufacture
JP2000252421A (en) Capacitor of semiconductor device