JPH03108883A - Pyroelectric infrared ray detector - Google Patents

Pyroelectric infrared ray detector

Info

Publication number
JPH03108883A
JPH03108883A JP1245622A JP24562289A JPH03108883A JP H03108883 A JPH03108883 A JP H03108883A JP 1245622 A JP1245622 A JP 1245622A JP 24562289 A JP24562289 A JP 24562289A JP H03108883 A JPH03108883 A JP H03108883A
Authority
JP
Japan
Prior art keywords
pyroelectric
speed
pyroelectric element
scanning
optical chopper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1245622A
Other languages
Japanese (ja)
Other versions
JP2689644B2 (en
Inventor
Yoshihiro Tomita
佳宏 冨田
Kuni Ogawa
小川 久仁
Ryoichi Takayama
良一 高山
Koji Nomura
幸治 野村
Junko Asayama
純子 朝山
Atsushi Abe
阿部 惇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1245622A priority Critical patent/JP2689644B2/en
Publication of JPH03108883A publication Critical patent/JPH03108883A/en
Application granted granted Critical
Publication of JP2689644B2 publication Critical patent/JP2689644B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Radiation Pyrometers (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Fire-Detection Mechanisms (AREA)

Abstract

PURPOSE:To execute both high speed response and highly accurate temperature detection with one device by devising the device such that a high speed optical chopper is employed to quicken the scanning speed thereby recognizing the position and movement of an object roughly and the speed of the optical chopper is decreased to apply highly accurate temperature detection after the detection of the object. CONSTITUTION:An infrared ray 2 intermitted by an optical chopper 1 formed by providing lots of radial slits to a disk radiates a pyroelectric element array 3 in a line and an AC electromotive force is generated in each pyroelectric element 3. The generated signal is processed by a band pass filter and switched sequentially by an analog multiplexer 6 to apply signal scanning in the arrangement direction of the pyroelectric element array 3. A variable speed motor is employed for a motor driving the optical chopper 1 and a motor driving a moving mirror 8. Then in the case of high speed scanning, the chopper 1 and the mirror 8 are both driven at a high speed and in the case of highly accurate temperature detection, they are both driven at a low speed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は焦電型赤外線センサを用いて物体の位置および
温度情報を検知する装置に関すも従来の技術 近蝦 侵入者の検知や火災の発見などの防犯・防災・H
A(ホームオートメーション)の目的のためへ 赤外線
センサを用いて赤外線源の有無や動きを検知する装置が
使われるようになった 赤外線のセンサとしては化合物
半導体を用いた量子型のものと、焦電素子やサーミスタ
などを用いた熱量のものとがあり、量子型の赤外線セン
サは液体窒素などで冷却する必要があるたべ 防犯・防
災・HAなどの目的には熱量の赤外線センサが用いられ
も 詩に焦電型のセンサは他の熱量のセンサに比べて感
度が高く、赤外線源の位置検知装置に最適であも 現在 防犯・防災・HAなどに用いられる焦電センサは
赤外線源の有無を判断する程度の単素子または複素子の
センサが主流である力(さらに赤外線源の位置情報をも
読み取り高度な判断ができるように熱源を2次元情報と
して検知するセンサの開発が進められていa 特く 空
調装置などへの応用を考えると、位置情報のみならず赤
外線源の温度情報も必要となも このような赤外線源の2次元情報を得へ 従来の焦電型
赤外線検知装置の1例を第3図を用いて説明すも 光学チョッパlにより断続された赤外線2が1列の焦電
素子アレイ3に照射し 各焦電素子3には赤外線2の明
暗に対応した周期六 入射赤外線強度に対応した振幅の
交流起電力が発生すも 発生した信号はインピーダンス
変換4された後にバンドパスフィルター5によって信号
処理さhs/Nを向上していも 各素子の信号処理後の
出力をアナログマルチプレクサ6によって順次切り替え
て焦電素子アレイ3の配列方向の走査を行(\光学チタ
ッパlが閉のときの信号を1列分読み込へ 光学チョッ
パ1が開のときの信号を1列分読み込んて 開信号から
閉信号を差し引いて1列の赤外線強度を得ていも つまり、光チョッパの開閉1周期で1列読み込へ レン
ズ7の前に設けた可動ミラー8によって光軸を動かし 
次の列の情報を読み込む、ということを繰り返すこ七に
よって2次元の赤外線情報を得ていも 発明が解決しようとする課題 焦電センサに於て、その応答時間は光学チョッパが開閉
する周期に相当し それよりも速い温度変化や赤外線源
の移動には追従できなしX。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to a device for detecting the position and temperature information of an object using a pyroelectric infrared sensor. Crime prevention/disaster prevention/H
For the purpose of A (home automation), devices that use infrared sensors to detect the presence and movement of infrared sources have come into use. Infrared sensors include quantum type sensors using compound semiconductors and pyroelectric sensors. There are calorific sensors that use elements, thermistors, etc., and quantum infrared sensors need to be cooled with liquid nitrogen, etc.Calorific infrared sensors are also used for purposes such as crime prevention, disaster prevention, and HA. Pyroelectric sensors have higher sensitivity than other calorific sensors, and are ideal for detecting the position of infrared sources.Currently, however, pyroelectric sensors, used for crime prevention, disaster prevention, HA, etc., determine the presence or absence of infrared sources. The mainstream is single-element or multi-element sensors (in addition, the development of sensors that detect heat sources as two-dimensional information so that they can also read the position information of infrared sources and make advanced judgments is progressing.) Especially for air conditioning. Considering the application to devices, it is necessary to obtain not only position information but also temperature information of the infrared source. The infrared rays 2 interrupted by the optical chopper 1 are irradiated onto a row of pyroelectric element arrays 3, and each pyroelectric element 3 has a period of 6 corresponding to the brightness and darkness of the infrared rays 2. Even if an AC electromotive force with an amplitude is generated, the generated signal is impedance converted 4 and then processed by a band pass filter 5 to improve hs/N.The output of each element after signal processing is sequentially switched by an analog multiplexer 6. scan in the array direction of the pyroelectric element array 3 (read the signal for one column when the optical chopper 1 is closed Read the signal for one column when the optical chopper 1 is open, and start from the open signal to the closed signal) Even if the infrared intensity of one row is obtained by subtracting the signal, one row is read in one cycle of opening and closing of the optical chopper.The optical axis is moved by the movable mirror 8 installed in front of the lens 7.
Problems that the invention aims to solve even though two-dimensional infrared information is obtained by repeating the process of reading the next column of information It is not possible to follow faster temperature changes or movement of infrared sources.

この光学チョッパの周期と温度分解能はほぼ反比例の関
係にあり、速い応答性を要求すると温度検出の精度が悪
くなり、温度の検出精度を要求すると応答速度が遅くな
る。
The cycle and temperature resolution of this optical chopper are almost inversely proportional; if fast response is required, temperature detection accuracy will deteriorate, and if temperature detection accuracy is required, response speed will be slow.

ところ戟 防犯・防災・HAなどの応用でζよ動く物体
に対応するためにはビデオ信号(30画面/秒)に近い
速度が求められ 人と物の区別などには温度分解能It
程度が求められると考えられも 安価で、この双方の要求を満たすセンサを作製すること
はきわめて困難であも 現状で(よ 高速応答用のセンサと高精度温度検出用の
センサとを別個に設けてシステムを作り上げなくてはな
ら式 システムが大型化し 高価になa 本発明は赤外線源の変化や動きに対し高速な位置検出と
、高精度な赤外線源の温度検出とが1台で可能な焦電型
赤外線検出装置を提供することを目的とす4 課題を解決するための手段 少なくとも1列以上の焦電素子アレイを用いて赤外線の
2次元分布を得る焦電型赤外線検知装置において、2次
元走査する機構の速度設定が少なくとも2段階以上設定
でき、速度変化に伴う出力信号の周波数変化に応じて信
号処理に用いるフィルターの周波数特性を変えることが
できるようにすることによって前記問題点を解決するこ
とができも 作用 前述したようへ 応答時間は光学チョッパの周期に相当
するたべ 通常は光学チョッパを高速にし走査速度を速
くすることによって対象物の位置や動きを粗く知り、対
象物を検出した後に光学チョッパを低速にして高精度温
度検出を行なう。このように走査速度を少なくとも2段
階設けることによって、高速応答と高精度温度検出の双
方を1台の、装置で可能とすることができも まr、、S/N向上に用いているフィルターへ周波数特
性が走査速度を変更したときの信号周波数の変化に追従
することのできるフィルターを用いることによって、走
査速度を変えられる焦電型赤外線検知装置が可□能とな
翫 実施例 以下具体的実施例を示し 本発明をより詳細に説明すも 実施例1 第1図に本発明の焦電型赤外線検知装置の−実施例の全
体図を示す。円盤に放射状のスリットを多数設けた光学
チョッパlにより断続された赤外線2が1列の焦電素子
アレイ3に照射し 各焦電素子3には交流起電力が発生
ずも 発生した信号はインピーダンス変換4された後に
スイッチドキャパシターフィルター9からなるバンドパ
スフィルターによって信号処理され アナログマルチプ
レクサ6によって順次切り替えて焦電素子アレイ3の配
列方向の信号走査を行っていも レンズ7の前に設けた
可動ミラー8によって焦電素子アレイの垂直方向の光学
的走査を行なっていも前記光学チョッパlを駆動するモ
ーターと、前記可動ミラー8を駆動するモーターには可
変速モーターを用(\ 高速走査のときにはチョッパ1
、ミラー8とも高速駆動L 高精度温度検出のときには
どちらも低速駆動すも 信号処理に用いたスイッチドキャパシターフィルター9
は外付は部品の定数を変えることなく、与えるクロック
周波数を変えるだけで中心周波数が変わるた数 駆動モ
ーターと同期して信号周波数に追随させることが容易で
あも 一例として、空調装置に本装置を用いて、人体を検出し
てその温度を計測する場合を考えてみもま哄 高速走査
で36℃付近の物体がどこにあるか動いているかを検出
すも その物体の動きが微少になったときに低速走査に
してその物体の温度を計測すa その物体の温度や形状
から人体と判断したときは測定温度を体温のデータとし
 より快適な空調を行なう。人体以外と判断したときは
その物体を無視すも 低速走査では1画面走査に時間がかかりすぎる可能性が
あるたべ 対象となる物体のあるべき位置の前後だけ低
速走査すると測定時間の短縮が行えも さらく 高速走査を行なっている途東 対象物にさしか
かったときだけ低速走査することによっても時間の短縮
になも 実施例2 他の構成の実施例を第2図に示す。
Tokorogeki In applications such as crime prevention, disaster prevention, and HA, a speed close to that of a video signal (30 frames per second) is required to deal with objects moving at ζ, and temperature resolution It is required to distinguish between people and objects.
Although it is extremely difficult to produce a sensor that satisfies both of these requirements, it is currently difficult to create a sensor that meets both of these requirements. However, the system becomes larger and more expensive.a The present invention is a focusing system that can perform high-speed position detection against changes and movements of the infrared source and highly accurate temperature detection of the infrared source with a single unit. It is an object of the present invention to provide a pyroelectric infrared detection device that obtains a two-dimensional distribution of infrared rays using at least one row or more of pyroelectric element arrays. The above problem is solved by making it possible to set the speed of the scanning mechanism in at least two stages or more, and to change the frequency characteristics of the filter used for signal processing in accordance with the frequency change of the output signal due to the speed change. As mentioned above, the response time is equivalent to the period of the optical chopper.Usually, by increasing the speed of the optical chopper and increasing the scanning speed, the position and movement of the object can be roughly known, and after detecting the object, the response time is equivalent to the period of the optical chopper. The optical chopper is set at a low speed to perform high-precision temperature detection.By providing at least two scanning speeds in this way, it is possible to achieve both high-speed response and high-precision temperature detection with one device. r,, A pyroelectric infrared detector that can change the scanning speed by using a filter whose frequency characteristics can follow changes in signal frequency when changing the scanning speed. The present invention will be described in more detail below.Example 1 A general view of an embodiment of the pyroelectric infrared detection device of the present invention is shown in Fig.1. Infrared rays 2 are interrupted by an optical chopper 1, which has a large number of radial slits in a disk, and irradiate one row of pyroelectric element arrays 3.Although no alternating current electromotive force is generated in each pyroelectric element 3, the generated signal is an impedance. After conversion 4, the signal is processed by a bandpass filter consisting of a switched capacitor filter 9, and is sequentially switched by an analog multiplexer 6 to scan the signal in the arrangement direction of the pyroelectric element array 3. Even when performing optical scanning in the vertical direction of the pyroelectric element array by 8, a variable speed motor is used for the motor that drives the optical chopper 1 and the motor that drives the movable mirror 8 (for high-speed scanning, the chopper 1
, both mirrors 8 are driven at high speed L. Both are driven at low speed for high precision temperature detection. Switched capacitor filter 9 used for signal processing.
For external devices, the center frequency can be changed simply by changing the supplied clock frequency without changing the constants of the parts.It is easy to synchronize with the drive motor and follow the signal frequency. Let's think about the case of detecting a human body and measuring its temperature using a high-speed scan.If you use high-speed scanning to detect where an object around 36 degrees Celsius is and whether it is moving, the movement of the object becomes very small. Sometimes, the temperature of the object is measured using low-speed scanning. If the object is determined to be a human body based on its temperature and shape, the measured temperature is used as body temperature data to provide more comfortable air conditioning. If the object is determined to be other than a human body, the object is ignored, but scanning at a low speed may take too much time to scan one screen.Slowly scanning only the front and back of the target object's position can shorten the measurement time. Embodiment 2 While performing high-speed scanning, time can also be shortened by performing low-speed scanning only when approaching the object. Embodiment 2 An embodiment with another configuration is shown in FIG.

焦電薄膜21の両面に電極22. 23を形成し 各焦
電素子を構成していも 2次元に配した焦電素子のう板
 横方向の各焦電素子は隣同士間が電極2423のパタ
ーンによって交互に配線され −列に配した焦電素子が
直列になっていも 縦方向には前記焦電素子アレイを複
数列配L−2次元の焦電素子アレイを構成していも 前記焦電素子アレイの前面でスリット24を横方向に移
動させることによって、レンズ25を通過して焦電素子
アレイ、に結像した赤外線26を走査し各列の両端の電
極27.28の間に発生する電圧を出力として信号処理
回路に接続していも ここで横方向の焦電素子は隣同士が逆起電力になるよう
に配線されているた敢 発生する電圧の時間変化は交流
波形になり、各焦電素子の出力は対応する上向きピーク
値から下向きピーク値を引算することによって信号が求
められも この信号は第2図では省略したが実施例1と同様 イン
ピーダンス変換された後&へ スイッチドキャパシター
フィルターからなるバンドパスフィルターによって信号
処理され アナログマルチプレクサを用いて焦電素子ア
レイの配列方向の信号走査を行っていも 高速走査のときにはスリットを高速で駆動し高精度温度
計測のときにはスリットを低速駆動することにより、実
施例1と全く同等の効果が得られも さらく この構成に於るスリット24(友  実施例1
の光学チョッパ1の赤外線を断続するという役割と可動
ミラー8の光学的に走査を行なうという役割を兼ね備え
ているたべ 光学チョッパ1と可動ミラー8の同期を取
るというわずられしさがなくなるという利点があも もちろん ふたつの機構部品をひとつにできるたべ 装
置の簡素(1,小型化 低価格化も可能であも 実施例2では縦横2次元の焦電素子アレイを用いている
力(同心円上に焦電素子を配列し 円盤型スリットを用
いても同等の効果が得られも発明の効果 本発明は2次元分布を得る焦電型赤外線検知装置におい
て、 2次元走査する機構の速度設定が少なくとも2段
階以上設定でき、速度変化に伴う出力信号の周波数変化
に応じて信号処理に用いるフィルターの周波数特性を変
えることができるようにした焦電型赤外線検知装置であ
るた八 赤外線源の変化や動きに対する高速な位置検出
と、高精度な赤外線源の温度検出との双方とも1台の装
置で可能とする焦電型赤外線検知装置を作製することが
できも
Electrodes 22 are provided on both sides of the pyroelectric thin film 21. 23 is formed to constitute each pyroelectric element.The pyroelectric element plates are arranged two-dimensionally.The pyroelectric elements in the horizontal direction are wired alternately between adjacent pyroelectric elements according to the pattern of electrodes 2423, and arranged in rows. Even if the pyroelectric elements are arranged in series, the pyroelectric element array is arranged in a plurality of rows in the vertical direction to form a two-dimensional pyroelectric element array. By moving the array, the infrared rays 26 passed through the lens 25 and were focused on the pyroelectric element array, and the voltage generated between the electrodes 27 and 28 at both ends of each column was output and connected to the signal processing circuit. Here, the pyroelectric elements in the horizontal direction are wired so that adjacent ones create a counter electromotive force. A signal is obtained by subtracting the downward peak value from . This signal is omitted in Figure 2, but as in Example 1. After impedance conversion, the signal is processed by a bandpass filter consisting of a switched capacitor filter. Even if an analog multiplexer is used to scan signals in the array direction of the pyroelectric element array, the slits are driven at high speed for high-speed scanning and at low speed for high-precision temperature measurement. The slit 24 in this configuration (Friend Example 1)
This device has both the role of intermittent infrared rays of the optical chopper 1 and the role of optically scanning the movable mirror 8.The advantage is that the trouble of synchronizing the optical chopper 1 and the movable mirror 8 is eliminated. Of course, it is possible to simplify the device by combining two mechanical parts into one device (1. miniaturization and lower cost), but in Example 2, the force using a two-dimensional vertical and horizontal pyroelectric element array (focusing on concentric circles) is possible. Although the same effect can be obtained by arranging electric elements and using a disc-shaped slit, the present invention provides a pyroelectric infrared detection device that obtains a two-dimensional distribution, in which the speed setting of the two-dimensional scanning mechanism is set in at least two stages. This is a pyroelectric infrared detection device that can set the above settings and change the frequency characteristics of the filter used for signal processing according to the frequency change of the output signal due to the speed change. It is possible to create a pyroelectric infrared detection device that can perform both accurate position detection and highly accurate temperature detection of an infrared source with a single device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図はそれぞれ 本発明の実施例におけ
る焦電型赤外線検知装置の主要部を示す概念側面は 第
3図は従来の焦電型赤外線検知装置の主要部を示す概念
側面図であも 1・・・チョッペ 3・・・焦電素子アレイ、 5・・
・バンドパスフィルター、 8・・・可動ミラー 9・
・・スイッチドキャパシターフィルター 21・・・焦
電恢24・・・スリット
FIGS. 1 and 2 are conceptual side views showing the main parts of a pyroelectric infrared detection device according to an embodiment of the present invention, and FIG. 3 is a conceptual side view showing the main parts of a conventional pyroelectric infrared detection device. Amo 1... Choppe 3... Pyroelectric element array, 5...
・Band pass filter, 8... Movable mirror 9.
...Switched capacitor filter 21...Pyroelectric filter 24...Slit

Claims (3)

【特許請求の範囲】[Claims] (1)少なくとも1列以上の焦電素子アレイを用いて赤
外線の2次元分布を得る焦電型赤外線検知装置において
、2次元走査する機構の速度設定が少なくとも2段階以
上設定でき、速度変化に伴う出力信号の周波数変化に応
じて信号処理に用いるフィルターの周波数特性を変える
ことを特徴とする焦電型赤外線検知装置。
(1) In a pyroelectric infrared detection device that obtains a two-dimensional distribution of infrared rays using at least one row or more of pyroelectric element arrays, the speed setting of the two-dimensional scanning mechanism can be set in at least two or more stages, and as the speed changes A pyroelectric infrared detection device characterized by changing the frequency characteristics of a filter used for signal processing according to changes in the frequency of an output signal.
(2)焦電素子アレイの出力信号処理にスイッチドキャ
パシターフィルターを用い、走査速度を変えたときの出
力信号の周波数に応じて前記信号処理の周波数特性を変
えることを特徴とする請求項1記載の焦電型赤外線検知
装置。
(2) A switched capacitor filter is used for output signal processing of the pyroelectric element array, and the frequency characteristics of the signal processing are changed according to the frequency of the output signal when the scanning speed is changed. pyroelectric infrared detection device.
(3)焦電素子アレイが2次元に配列しており、1列を
構成する各焦電素子が電気的に直列で、かつ隣接する焦
電素子同士が逆起電力となるように配線され、スリット
が前記焦電素子アレイ上を列方向に移動することによっ
て各焦電素子に照射する赤外線像を順次走査することを
特徴とする請求項1記載の焦電型赤外線検知装置。
(3) The pyroelectric element array is arranged two-dimensionally, each pyroelectric element making up one row is electrically connected in series, and adjacent pyroelectric elements are wired so that they create a counter electromotive force, 2. The pyroelectric infrared detection device according to claim 1, wherein the slit sequentially scans the infrared images irradiated to each pyroelectric element by moving in the column direction on the pyroelectric element array.
JP1245622A 1989-09-21 1989-09-21 Pyroelectric infrared detector Expired - Fee Related JP2689644B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1245622A JP2689644B2 (en) 1989-09-21 1989-09-21 Pyroelectric infrared detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1245622A JP2689644B2 (en) 1989-09-21 1989-09-21 Pyroelectric infrared detector

Publications (2)

Publication Number Publication Date
JPH03108883A true JPH03108883A (en) 1991-05-09
JP2689644B2 JP2689644B2 (en) 1997-12-10

Family

ID=17136422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1245622A Expired - Fee Related JP2689644B2 (en) 1989-09-21 1989-09-21 Pyroelectric infrared detector

Country Status (1)

Country Link
JP (1) JP2689644B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0539150A2 (en) * 1991-10-21 1993-04-28 Murata Manufacturing Co., Ltd. Infrared detector
CN107101720A (en) * 2017-06-07 2017-08-29 中国科学技术大学 A kind of apparatus and method measured for infrared sky brightness
CN111380614A (en) * 2018-12-29 2020-07-07 清华大学 Infrared detector and infrared imager

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0539150A2 (en) * 1991-10-21 1993-04-28 Murata Manufacturing Co., Ltd. Infrared detector
EP0539150A3 (en) * 1991-10-21 1994-11-09 Murata Manufacturing Co Infrared detector
CN107101720A (en) * 2017-06-07 2017-08-29 中国科学技术大学 A kind of apparatus and method measured for infrared sky brightness
CN107101720B (en) * 2017-06-07 2018-11-13 中国科学技术大学 A kind of device and method measured for infrared sky brightness
CN111380614A (en) * 2018-12-29 2020-07-07 清华大学 Infrared detector and infrared imager

Also Published As

Publication number Publication date
JP2689644B2 (en) 1997-12-10

Similar Documents

Publication Publication Date Title
US4080532A (en) Ferroelectric imaging system
GB1521270A (en) Distance detecting apparatus
EP0461837B1 (en) Pyro-electric type infrared detector
CN85109344A (en) The edge detecting device of optical measuring instrument
US5021660A (en) Pyroelectric infrared detector and driving method therefor
JPH03108883A (en) Pyroelectric infrared ray detector
CN103379298B (en) Sensor component and electronic equipment
US2989891A (en) Apparatus for inspecting articles
JPS6040751B2 (en) Ferroelectric image display device
JP2523948B2 (en) Pyroelectric infrared detector
JPH0341305A (en) Pyroelectric device for detecting infrared ray
JP4077098B2 (en) Differential spectrum sensor
JP3216523B2 (en) Infrared detector
JPH0862044A (en) Thermal image detector
CA1248199A (en) Infra red photo detector systems
CA2090115C (en) Thermal image detection apparatus
JPH02248820A (en) Pyroelectric type infrared ray detector
JPH03187582A (en) Infrared detector
JPH0862049A (en) Thermal image detector
JPH051954A (en) Temperature distribution measuring device
JPH03194429A (en) Pyroelectric type infrared-ray detecting device
RU154438U1 (en) DEVICE FOR RECORDING CHANGES IN OPTICAL RADIATION SPECTRA
Drogmoeller et al. Infrared line cameras based on linear arrays for industrial temperature measurement
JPS63205503A (en) Optical measuring instrument for fine gap
JPS61129537A (en) Pyroelectric detector

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees