JPH051954A - Temperature distribution measuring device - Google Patents

Temperature distribution measuring device

Info

Publication number
JPH051954A
JPH051954A JP3152983A JP15298391A JPH051954A JP H051954 A JPH051954 A JP H051954A JP 3152983 A JP3152983 A JP 3152983A JP 15298391 A JP15298391 A JP 15298391A JP H051954 A JPH051954 A JP H051954A
Authority
JP
Japan
Prior art keywords
temperature distribution
sensor
chopping
infrared
array sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3152983A
Other languages
Japanese (ja)
Inventor
Nobuyuki Yoshiike
信幸 吉池
Koji Arita
浩二 有田
Susumu Kobayashi
晋 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3152983A priority Critical patent/JPH051954A/en
Publication of JPH051954A publication Critical patent/JPH051954A/en
Priority to US08/232,857 priority patent/US5528038A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To simply measure the temperature distribution in the space with high precision by providing a chopping means intermittently interrupting the infrared beam fed to an array sensor and a driving means rotating the array sensor in steps, and measuring the maximum values of detection sections at each chopping with a peak hold circuit. CONSTITUTION:A silicone infrared lens 2 for converging the light to a pyroelectric infrared array sensor 1 provided with multiple light reception sections in lines is provided on a rotation section 4, and a chopper 3 intermittently interrupting the infrared beam fed to the lens 2 is provided. The rotation section 4 is connected to a stepping motor 5. When the longitudinal direction of the array sensor 1 is set to the vertical direction and the chopper 3 is driven at 10Hz, for example, the distribution of the vertical radiation heat quantity, i.e., temperature distribution, in the direction faced to the sensor 1 and the lens 2 at every 1/10sec can be measured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、焦電型の赤外線サンサ
を用いた輻射温度分布の測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a radiation temperature distribution measuring device using a pyroelectric infrared sensor.

【0002】[0002]

【従来の技術】近年、セキュリティや空調制御におい
て、室内にいる人間の有無や活動量を検知するために室
内の温度分布の計測への要求が高まりつつある。
2. Description of the Related Art In recent years, in security and air conditioning control, there is an increasing demand for measuring the temperature distribution in a room in order to detect the presence or absence of a person in the room and the amount of activity.

【0003】従来、赤外線を用いた空間の温度分布を測
定する装置には、2次元の量子型固体撮像赤外線センサ
を用いて温度分布を求める方法がある。
Conventionally, as a device for measuring a temperature distribution in a space using infrared rays, there is a method for obtaining a temperature distribution using a two-dimensional quantum solid-state imaging infrared sensor.

【0004】一方、焦電センサを用いて、空間温度分布
を求める方法には、特開昭64−88391、特開昭5
7−185695、特開平2−183752、特開平2
−196932号公報等に記載のごとく、単一の焦電セ
ンサを用いて、機構的に縦方向および横方向に走査させ
て各方向毎の入力エネルギーを検知し、温度分布を求め
る方法がある。
On the other hand, methods for obtaining the spatial temperature distribution using a pyroelectric sensor are disclosed in Japanese Patent Laid-Open Nos. 64-88391 and 5-88391.
7-185695, Japanese Patent Laid-Open Nos. 2-183752, 2
As described in Japanese Patent Publication No. 196932, etc., there is a method in which a single pyroelectric sensor is used to mechanically scan in the vertical and horizontal directions to detect the input energy in each direction and obtain the temperature distribution.

【0005】[0005]

【発明が解決しようとする課題】前記、量子型のセンサ
の場合、測定温度精度と解像度は高いがセンサ部分の冷
却が必要であることから高価なものとなり家庭用機器へ
の利用にはそぐわないものである。一方、後者の焦電セ
ンサを用いたものは、センサ感度が低いという問題と機
構の複雑さおよび信号処理の複雑さから、空間分解能お
よび温度分解能が低いという解決すべき課題があった。
In the case of the quantum type sensor, the measurement temperature accuracy and resolution are high, but since the sensor portion needs to be cooled, it becomes expensive and is not suitable for use in household appliances. Is. On the other hand, the latter one using the pyroelectric sensor has a problem that the spatial resolution and the temperature resolution are low due to the problem that the sensor sensitivity is low and the complexity of the mechanism and the complexity of the signal processing.

【0006】本発明は、上述の問題に鑑みて試されたも
ので、焦電センサ等の赤外線アレイセンサを用いて低コ
ストで小型の信頼性が高い温度分布測定装置を提供する
ものである。
The present invention has been tried in view of the above problems, and provides a low-cost, compact and highly reliable temperature distribution measuring device using an infrared array sensor such as a pyroelectric sensor.

【0007】[0007]

【課題を解決するための手段】本発明は、赤外線を検知
するアレイセンサと、センサ部に入射する赤外線を断続
的に遮断するチョッピング手段と、センサアレイを段階
的に回転させる駆動手段を有し、各チョッピング毎に前
記各検出部の最大値をピークホールド回路により計測す
ることを特徴とするものである。
SUMMARY OF THE INVENTION The present invention has an array sensor for detecting infrared rays, a chopping means for intermittently blocking the infrared rays entering the sensor section, and a driving means for rotating the sensor array stepwise. The maximum value of each detection section is measured by a peak hold circuit for each chopping.

【0008】[0008]

【作用】上述の構成によって、入射赤外線光量、即ち、
測定物体温度に対応するセンサ出力最大値を電気回路に
より選択することにより、空間の温度分布を簡単に精度
よく測定することを可能とする。
With the above configuration, the amount of incident infrared light, that is,
By selecting the sensor output maximum value corresponding to the measured object temperature by the electric circuit, it becomes possible to easily and accurately measure the temperature distribution in the space.

【0009】[0009]

【実施例】図1は本発明の一実施例を説明するための概
略構成を示すものであって、回転部4には受光部を複数
個ライン状に設けた焦電型の赤外線アレイセンサ1と、
その前面に赤外線をアレイセンサ1に集光するためのシ
リコン赤外線レンズ2を設け、さらに、レンズ2の前面
にはレンズ2に入射する赤外線を断続的に遮断するチョ
ッパー3を設ける。回転部4はステッピングモータ5に
機械的に接続する。
1 shows a schematic structure for explaining an embodiment of the present invention. A pyroelectric infrared array sensor 1 in which a plurality of light receiving portions are provided in a line on a rotating portion 4 is shown. When,
A silicon infrared lens 2 for collecting infrared rays on the array sensor 1 is provided on the front surface thereof, and a chopper 3 for intermittently blocking infrared rays incident on the lens 2 is provided on the front surface of the lens 2. The rotating unit 4 is mechanically connected to the stepping motor 5.

【0010】今、アレイセンサ1の長軸方向を縦方向に
設置し、チョッパーを10Hzで駆動すると1/10s
ec毎に、センサおよびレンズが体面している方向の縦
列の輻射熱量の分布、すなわち、温度分布が測定でき
る。
Now, if the long axis direction of the array sensor 1 is set in the vertical direction and the chopper is driven at 10 Hz, it will be 1/10 s.
For each ec, the distribution of the amount of radiant heat in the column in the direction in which the sensor and the lens face the body, that is, the temperature distribution can be measured.

【0011】図2には測定回路の概略図を示す。複数の
エレメントを有するセンサ10からの出力信号はフィル
タ回路11を介してノイズを除去後、アンプ回路12で
増幅され、ピークホールド回路13で出力の最大値がそ
れぞれ保持される。この出力最大値が入射赤外線光量に
対応し測定物体の温度に対応するものである。各センサ
エレメントの最大出力値はマルチプレクサ14により選
択されA/Dコンバータ15で変換後、CPU16のメ
モリ部にデータとして保存される。チョッパ19とステ
ッピングモータ18の駆動タイミングはI/Oボード1
7を介して、CPU16で制御される。チョッパ19と
ステッピングモータ18およびピークホールドのタイミ
ングはCPU内のクロック発生回路により、同期させ
る。
FIG. 2 shows a schematic diagram of the measuring circuit. The output signal from the sensor 10 having a plurality of elements is filtered by the filter circuit 11 to remove noise, and then amplified by the amplifier circuit 12, and the peak hold circuit 13 holds the maximum output value. This maximum output value corresponds to the amount of incident infrared light and corresponds to the temperature of the measuring object. The maximum output value of each sensor element is selected by the multiplexer 14, converted by the A / D converter 15, and stored in the memory unit of the CPU 16 as data. The drive timing of the chopper 19 and the stepping motor 18 is the I / O board 1
It is controlled by the CPU 16 via 7. Timings of the chopper 19, the stepping motor 18, and the peak hold are synchronized by the clock generation circuit in the CPU.

【0012】図3には各信号のタイミングを示す。図3
において、(a)はステッピングモータの駆動信号、
(b)はチョッピングによる赤外線入射状態を示す、
(c)はセンサのアナログ出力信号波形であり、(d)
は63のピークホールド後の波形である。
FIG. 3 shows the timing of each signal. Figure 3
In (a), the drive signal of the stepping motor,
(B) shows an infrared incident state by chopping,
(C) is the analog output signal waveform of the sensor, (d)
Is a waveform after peak hold of 63.

【0013】次に、測定の手順を図4に示すA/D変換
のフローチャートを用いて説明する。まず、チョッパの
信号がHIGHとなり、チョッパが開いて、赤外線が入
射される状態になると、ピークホールダがセットされ、
センサ出力信号の最大値が保持される。次に、チョッパ
の信号がLOWとなるタイミングで各センサエレメント
出力信号の最大値がマルチプレクサにより順次選択され
取り込まれ、A/D変換され、CPUにデータ転送され
る。この工程を全エレメントについて終了するまで実行
する。全エレメントについて終了後、ピークホルダをリ
セットし待機状態とする。この処理におけるタイミング
は図3に示すように、Δtの間に実行され、チョッパが
閉状態の初期の間に完了する。
Next, the measurement procedure will be described with reference to the A / D conversion flowchart shown in FIG. First, when the signal of the chopper becomes HIGH, the chopper opens, and the infrared ray enters, the peak holder is set,
The maximum value of the sensor output signal is retained. Next, at the timing when the chopper signal becomes LOW, the maximum value of each sensor element output signal is sequentially selected and fetched by the multiplexer, A / D converted, and data is transferred to the CPU. This process is executed until all elements are completed. After finishing all the elements, reset the peak holder and put it in a standby state. As shown in FIG. 3, the timing of this process is executed during Δt, and is completed during the initial period when the chopper is in the closed state.

【0014】上述の実施例は、回転機構により測定方向
を変えて、2次元の温度分布を測定する場合に関して述
べたが、当然のことながら、回転機構の無い1次元の温
度分布測定に関しても適用できるものである。
The above embodiment has been described with respect to the case of measuring the two-dimensional temperature distribution by changing the measuring direction by the rotating mechanism, but it is naturally applied to the one-dimensional temperature distribution measurement without the rotating mechanism. It is possible.

【0015】本実験に用いたピークホールド回路13の
一例を図5に示すが、ピークホールド機能を有する回路
であれば、本実施例に特に限定されるものではない。
An example of the peak hold circuit 13 used in this experiment is shown in FIG. 5, but it is not particularly limited to this embodiment as long as it is a circuit having a peak hold function.

【0016】[0016]

【発明の効果】以上のように、本発明は、赤外線を検知
するアレイセンサと、そのセンサ部に入射する赤外線を
断続的に遮断するチョッピング手段を有する温度分布測
定装置において、各チョッピング毎に前記各検出部の最
大値をピークホールド回路により計測することを特徴と
するものであるから、測定回路が簡便で簡単に空間の温
度分布(輻射熱分布)が測定可能となるという効果を有
するものである。
As described above, according to the present invention, in the temperature distribution measuring device having the array sensor for detecting infrared rays and the chopping means for intermittently blocking the infrared rays incident on the sensor portion, the above-mentioned operation is performed for each chopping. Since the maximum value of each detector is measured by the peak hold circuit, it has an effect that the temperature distribution in the space (radiant heat distribution) can be measured simply and easily by the measuring circuit. .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の温度分布測定装置の概略図FIG. 1 is a schematic view of a temperature distribution measuring device according to an embodiment of the present invention.

【図2】同装置における測定回路の概略図FIG. 2 is a schematic diagram of a measurement circuit in the device.

【図3】同装置における電気信号のタイミングチャ−トFIG. 3 is a timing chart of electric signals in the device.

【図4】同装置における信号処理のフローチャートFIG. 4 is a flowchart of signal processing in the device.

【図5】同装置におけるピークホールド回路の概略図FIG. 5 is a schematic diagram of a peak hold circuit in the device.

【符号の説明】[Explanation of symbols]

1 赤外線アレイセンサ 2 赤外線レンズ 3 チョッパー 4 回転部 5 ステッピングモータ 10 センサ 11 フィルター回路 12 アンプ回路 13 ピークホールド回路 14 マルチプレクサ 15 A/Dコンバータ 16 CPU 17 I/Oボード 18 ステッピングモータ 19 チョッパ 1 Infrared array sensor 2 infrared lens 3 chopper 4 rotating parts 5 Stepping motor 10 sensors 11 Filter circuit 12 amplifier circuit 13 Peak hold circuit 14 Multiplexer 15 A / D converter 16 CPU 17 I / O board 18 stepping motor 19 chopper

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 赤外線を検知する複数個の受光部をアレ
イ状に設けた赤外線アレイセンサと、前記センサ部に入
射する赤外線を断続的に遮断するチョッピング手段を備
え、各チョッピング毎に前記各検出部の最大値をピーク
ホールド回路により計測することを特徴とする温度分布
測定装置
1. An infrared array sensor having a plurality of light receiving portions for detecting infrared rays arranged in an array, and a chopping means for intermittently blocking infrared rays incident on the sensor portion, and each of the detections for each chopping. Temperature distribution measuring device characterized in that the maximum value of the temperature is measured by a peak hold circuit
【請求項2】 赤外線アレイセンサの体面方向を段階的
に回転させる駆動手段を設け、各体面方向に対して1回
以上のチョッピングを実行し各チョッピング毎に前記各
検出部の最大値をピークホールド回路により計測するこ
とを特徴とする請求項1記載の温度分布測定装置。
2. An infrared array sensor is provided with a driving means for rotating the body surface direction stepwise, and chopping is performed one or more times for each body surface direction, and the maximum value of each detection section is peak-held for each chopping. The temperature distribution measuring device according to claim 1, wherein the temperature is measured by a circuit.
【請求項3】 同一のクロック発生回路からの信号を受
けて、ピークホールド回路とチョッパー駆動もしくは回
転駆動が同期していることを特徴とする請求項1または
2記載の温度分布測定装置
3. The temperature distribution measuring device according to claim 1, wherein the peak hold circuit and the chopper drive or rotation drive are synchronized with each other by receiving a signal from the same clock generation circuit.
JP3152983A 1991-05-07 1991-06-25 Temperature distribution measuring device Pending JPH051954A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP3152983A JPH051954A (en) 1991-06-25 1991-06-25 Temperature distribution measuring device
US08/232,857 US5528038A (en) 1991-05-07 1994-04-22 Temperature distribution measurement apparatus and its application to a human body detecting system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3152983A JPH051954A (en) 1991-06-25 1991-06-25 Temperature distribution measuring device

Publications (1)

Publication Number Publication Date
JPH051954A true JPH051954A (en) 1993-01-08

Family

ID=15552404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3152983A Pending JPH051954A (en) 1991-05-07 1991-06-25 Temperature distribution measuring device

Country Status (1)

Country Link
JP (1) JPH051954A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08161292A (en) * 1994-12-09 1996-06-21 Matsushita Electric Ind Co Ltd Method and system for detecting congestion degree
WO2000016047A1 (en) * 1998-09-16 2000-03-23 Braun Gmbh Method for determining temperature, radiation thermometer with several infrared sensor elements
CN103439006A (en) * 2013-08-30 2013-12-11 上海交通大学 Device and method for measuring temperature of hot stamping sheet metal
CN103884434A (en) * 2014-03-21 2014-06-25 江苏罗思韦尔电气有限公司 Infrared array sensor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08161292A (en) * 1994-12-09 1996-06-21 Matsushita Electric Ind Co Ltd Method and system for detecting congestion degree
WO2000016047A1 (en) * 1998-09-16 2000-03-23 Braun Gmbh Method for determining temperature, radiation thermometer with several infrared sensor elements
CN103439006A (en) * 2013-08-30 2013-12-11 上海交通大学 Device and method for measuring temperature of hot stamping sheet metal
CN103884434A (en) * 2014-03-21 2014-06-25 江苏罗思韦尔电气有限公司 Infrared array sensor

Similar Documents

Publication Publication Date Title
EP2010942B1 (en) Wireless digital radiography system
US5196703A (en) Readout system and process for IR detector arrays
EP0534769B1 (en) Readout system and process for IR detector arrays
US5528038A (en) Temperature distribution measurement apparatus and its application to a human body detecting system
JP2004504611A (en) FDXD detector for detecting dose
EP0798545A1 (en) Noncontacting thermometer
EP2357458A1 (en) Detection circuit for heat sensor, heat sensor device, and electronic device
JP2001324390A (en) Thermal type infrared image sensor
JPH051954A (en) Temperature distribution measuring device
US20030095629A1 (en) Arrangement of sensor elements
EP1571830A2 (en) Method for CCD sensor control, CCD sensor system and X-ray diffraction apparatus
RU2324152C1 (en) Thermal imaging technique and device
JPH0518826A (en) Measuring apparatus for temperature distribution
JP3074880B2 (en) Temperature distribution measuring device
CN106679826B (en) Miniature imaging type infrared temperature field measuring system
JPH0886884A (en) Heat-radiating body detector
JPH06258137A (en) Pyroelectric infrared ray sensor
JPH08320259A (en) Infrared detecting device
Paolini et al. Dual‐channel diffractometer utilizing linear image sensor charge‐coupled devices
JPH06249712A (en) Pyroelectric infrared sensor
JPH039025Y2 (en)
Drogmoeller et al. Infrared line cameras based on linear arrays for industrial temperature measurement
Wurden et al. Imaging bolometry development for large fusion devices
RU2044287C1 (en) Method and device for testing objects for thermal radiation
JP3161099B2 (en) Temperature distribution measurement device