JPH0310879B2 - - Google Patents

Info

Publication number
JPH0310879B2
JPH0310879B2 JP60241398A JP24139885A JPH0310879B2 JP H0310879 B2 JPH0310879 B2 JP H0310879B2 JP 60241398 A JP60241398 A JP 60241398A JP 24139885 A JP24139885 A JP 24139885A JP H0310879 B2 JPH0310879 B2 JP H0310879B2
Authority
JP
Japan
Prior art keywords
heat
fluidized bed
heat pipe
exchange device
heat exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60241398A
Other languages
Japanese (ja)
Other versions
JPS62102088A (en
Inventor
Keisuke Kasahara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mayekawa Manufacturing Co
Original Assignee
Mayekawa Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mayekawa Manufacturing Co filed Critical Mayekawa Manufacturing Co
Priority to JP24139885A priority Critical patent/JPS62102088A/en
Publication of JPS62102088A publication Critical patent/JPS62102088A/en
Publication of JPH0310879B2 publication Critical patent/JPH0310879B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、全熱交換機、空調装置、クーリング
タワー、工業用給排気装置等に適用される熱交換
装置に係り、特に相対的にエンタルピー差を有す
る2つの流体の熱移動をヒートパイプにより行う
ようにした流動層型熱交換装置に関する 「従来技術」 例えば相対的にエンタルピー差を有する2つの
空気流が通過加可能な一対の仕切空間を形成し、
該両仕切空間に延設されたヒートパイプの熱移動
により前記2つの空気流の熱交換を行う熱交換装
置は公知である。
Detailed Description of the Invention "Field of Industrial Application" The present invention relates to a heat exchange device applied to a total heat exchanger, an air conditioner, a cooling tower, an industrial supply/exhaust device, etc. ``Prior art'' related to a fluidized bed heat exchange device in which heat transfer between two fluids is performed using a heat pipe. ,
A heat exchange device that exchanges heat between the two air streams by heat transfer through heat pipes extending between the two partitioned spaces is known.

しかしながらかかる熱交換装置は、前記気流を
ヒートパイプに直接接触させて熱交換を行う為
に、効率は極めて低くなり、この結果ヒートパイ
プを多数本配置しなければ所定の熱移動量を得る
事は出来ず、必然的に装置が大型化するという欠
点を有す。
However, such a heat exchange device performs heat exchange by bringing the airflow into direct contact with the heat pipe, so the efficiency is extremely low, and as a result, it is difficult to obtain the desired amount of heat transfer unless a large number of heat pipes are arranged. This has the disadvantage that the device inevitably becomes larger.

又かかる欠点を解消する為に、公知の流動層式
熱交換装置を熱交換装置に転用して、流動層内に
配置したヒートパイプの下方の流動層全面に、メ
ツシユ網で形成した固体粒子保持板兼用の多数の
気流ガス流入孔を形成し、該流入孔より流動層内
に導入された気流と固体粒子群との混相流を前記
ヒートパイプに接触させて熱交換を行う方式が例
えば特公昭53−24657号等で提案されている。
In addition, in order to eliminate this drawback, a known fluidized bed heat exchanger was converted into a heat exchanger, and a mesh net was formed to hold solid particles on the entire surface of the fluidized bed below the heat pipes placed in the fluidized bed. For example, there is a method in which heat exchange is performed by forming a large number of airflow gas inflow holes that also serve as a plate, and bringing the multiphase flow of the airflow and solid particles introduced into the fluidized bed through the inflow holes into contact with the heat pipe. 53-24657, etc.

「発明が解決しようとする問題点」 しかしながらかかる熱交換装置は、ヒートパイ
プの配設位置とは無関係に、流動層全面に多数の
流動孔が形成される構成を採る為に、流動層の上
下方向の慣性力の運動が不均質となり、且つ前記
ヒートパイプと熱交換される部分とされない部分
が生じる為に、前記気流交換の場合に比較して特
段の熱伝達率の向上につながらない。
``Problems to be Solved by the Invention'' However, such a heat exchange device has a structure in which a large number of fluidizing holes are formed over the entire surface of the fluidized bed, regardless of the placement position of the heat pipe. Since the movement of the inertial force in the direction becomes non-uniform and there are parts that undergo heat exchange with the heat pipe and parts that do not, it does not lead to a particular improvement in the heat transfer coefficient compared to the case of air exchange.

又前記装置においては、流動層全面に流入孔が
形成されている為に、流動層の圧力損失が大にな
り、空気流の吸引を行うフアン動力が大になり易
い。
In addition, in the above device, since the inflow holes are formed over the entire surface of the fluidized bed, the pressure loss of the fluidized bed becomes large, and the power of the fan for suctioning the air flow tends to become large.

かかる欠点を解消する為に、前記流動層の層高
を低くすると、安定且つ一様な流動化状態が得ら
れにくく、流動層の一部においてチヤネリング
(空気流の吹き抜け現象)を生じ、熱伝達効率が
大幅に低下するという問題を有する。
In order to solve this problem, if the bed height of the fluidized bed is lowered, it is difficult to obtain a stable and uniform fluidized state, and channeling (airflow blow-by phenomenon) occurs in a part of the fluidized bed, which impedes heat transfer. The problem is that the efficiency is significantly reduced.

本発明が解決しようとする技術的課題は、前記
流動層内にヒートパイプを配置した熱交換装置を
提供しつつも、流動層の圧力損失が大になること
なく、熱伝達効率を格段に向上し得る熱交換装置
を提供することを目的とする。
The technical problem to be solved by the present invention is to provide a heat exchange device in which a heat pipe is disposed within the fluidized bed, while significantly improving heat transfer efficiency without increasing the pressure loss of the fluidized bed. The purpose is to provide a heat exchange device that can

「問題点を解決しようとする手段」 本発明はかかる技術的課題を達成する為に、 (1) 相対的にエンタルピー差を有する2つの流体
が通過可能な一対の仕切空間間にヒートパイプ
を延設するとともに、該一対の仕切空間の内、
少なくとも1の仕切空間に固体粒子群を集積し
て流動層を形成した熱交換装置において、 前記流動層内に1段若しくは複数段状に裸管
状のヒートパイプ群を配置すると共に、 該ヒートパイプ群の内、少なくとも下段側に
位置するヒートパイプの直下に 固体粒子群を介して、 下方から上方側に向け流体通過面積を徐々に
縮小させ、その終端開口幅をヒートパイプ直径
より小に設定した帯状スリツト穴を配し、 該スリツト穴通過後の高速気流が前記固体粒
子群と共に裸管状ヒートパイプ周面をサーキユ
レート可能に構成した事 を特徴とする流動層型熱交換装置を提供する。
"Means for Solving the Problems" In order to achieve the above technical problems, the present invention (1) extends a heat pipe between a pair of partitioned spaces through which two fluids having a relatively different enthalpy can pass. In addition, within the pair of partitioned spaces,
In a heat exchange device in which a fluidized bed is formed by accumulating solid particles in at least one partitioned space, a group of bare tubular heat pipes is arranged in one or more stages in the fluidized bed, and the heat pipe group is arranged in one or more stages. At least immediately below the heat pipe located on the lower stage side, there is a band-like structure in which the fluid passage area is gradually reduced from the bottom to the top, and the opening width at the end is set to be smaller than the diameter of the heat pipe. A fluidized bed heat exchange device is provided, characterized in that a slit hole is arranged so that a high-speed airflow after passing through the slit hole can circulate around the bare tubular heat pipe together with the solid particles.

尚、全熱交換機のように、相対的にエンタルピ
ー差を有する2つの流体が共に空気流の場合は、
一対の仕切空間のいずれにも前記構成に基づく流
動層を形成し、又クーリングタワーのように2つ
の流体の一方が水流で、他方の空気流の場合は、
その空気流が通過する仕切空間のみ前記構成に基
づく流動層を形成すればよい。
In addition, when two fluids with a relative enthalpy difference are both air flows, as in a total heat exchanger,
A fluidized bed based on the above structure is formed in both of the pair of partitioned spaces, and when one of the two fluids is a water flow and the other is an air flow, as in a cooling tower,
It is sufficient to form a fluidized bed based on the above structure only in the partition space through which the air flow passes.

「作用」 本技術手段によれば、流体通過面積を徐々に縮
小させて加速した気流が流動層内に通過するよう
構成した為、従来の流動層に比較して圧力損失が
大幅に低減すると共に、而もスリツト穴の直上に
ヒートパイプが配されている為に、前記高速気流
がヒートパイプの周面に沿つてサーキユレートす
る、いわゆるコアンダ効果により、固体粒子と気
流からなる混相流の慣性運動による伝熱が円滑に
行われ、この結果、ヒートパイプの気流の直接接
触の場合に比較して熱伝達効率が数段(7〜9
倍)向上させる事が出来る。
"Operation" According to the present technical means, the fluid passage area is gradually reduced so that the accelerated airflow passes through the fluidized bed, so pressure loss is significantly reduced compared to the conventional fluidized bed. Moreover, since the heat pipe is placed directly above the slit hole, the high-speed airflow circulates along the circumferential surface of the heatpipe, which is the so-called Coanda effect, and due to the inertial movement of the multiphase flow consisting of solid particles and airflow. The heat transfer takes place smoothly, and as a result, the heat transfer efficiency is several orders of magnitude higher (7-9
times) can be improved.

この場合、前記ヒートパイプにフインを環設す
る構成を取ると、前記サーキユレートの際に軸方
向における固体粒子群の移動がスムーズに行かず
円滑な熱交換を行い得ない。そこで本発明におい
ては、、前記ヒートパイプを裸管にしている。
In this case, if a configuration is adopted in which the heat pipe is provided with fins, the solid particles will not move smoothly in the axial direction during the circulation, making it impossible to perform smooth heat exchange. Therefore, in the present invention, the heat pipe is a bare tube.

「実施例」 以下、図面を参照して本発明の好適な実施例を
例示的に詳しく説明する。ただしこの実施例に記
載されている構成部分の寸法、材質、形状、その
相対配置などは特に特定的な記載がない限りは、
この発明の範囲をそれのみに限定する趣旨ではな
く、単なる説明例に過ぎない。
"Embodiments" Hereinafter, preferred embodiments of the present invention will be described in detail by way of example with reference to the drawings. However, the dimensions, materials, shapes, relative positions, etc. of the components described in this example are as follows, unless otherwise specified.
This is not intended to limit the scope of the invention, but is merely an illustrative example.

第1図乃至第4図はいずれも本発明の実施例に
係る全熱交換機を示す。
1 to 4 each show a total heat exchanger according to an embodiment of the present invention.

本装置は、仕切板1を介して左右両側に一対の
仕切空間2,3を形成すると共に、その上下両側
に排気口2a,3aと、フアン4が取り付けられ
た空気導入口2b,3bを夫々形成し、該仕切空
間2,3内を新鮮空気と排気空気流が通過可能な
ように構成する。
This device forms a pair of partition spaces 2 and 3 on the left and right sides through a partition plate 1, and has exhaust ports 2a and 3a and air intake ports 2b and 3b to which fans 4 are attached on the top and bottom sides, respectively. The partition spaces 2 and 3 are configured to allow fresh air and exhaust air to pass through them.

、該両仕切空間2,3には、微小ガラス球その他
の固体粒子群5からなる流動層が形成され、該流
動層内に、仕切板1を貫通して両流動層間に水平
方向に延設する複数本のヒートパイプ6A,6B
を、所定間隔存して多段状に配置する。
A fluidized bed consisting of a group of micro glass spheres and other solid particles 5 is formed in both the partition spaces 2 and 3, and a fluidized bed is formed in the fluidized bed, passing through the partition plate 1 and extending horizontally between the two fluidized beds. multiple heat pipes 6A, 6B
are arranged in multiple stages at predetermined intervals.

そして前記ヒートパイプ6A,6Bの下方に
は、気流高速化手段たるスリツト穴7が平行に多
数本形成された板状部材8と、更にその下方に固
体粒子群5を保持するメツシユ網9その他の固体
粒子保持手段が配置されている。
Below the heat pipes 6A and 6B, there is a plate-like member 8 in which a large number of slit holes 7 are formed in parallel as means for increasing the speed of air flow, and further below the plate-like member 8 there is a mesh net 9 for holding the solid particle group 5 and other parts. Solid particle retention means are arranged.

次に前記各部材については詳細に説明する。 Next, each of the above members will be explained in detail.

ヒートパイプ6A,6Bは裸管で形成され、
夫々水平方向に配設すると共に、第4図に示すよ
うに、下段に位置するヒートパイプ6A周面を通
過した混相流が上段に位置するヒートパイプ6B
下面に達するように夫々平行に位置をずらして配
置している。
The heat pipes 6A and 6B are formed of bare tubes,
As shown in FIG. 4, the multiphase flow passing through the circumferential surface of the heat pipe 6A located at the lower stage flows into the heat pipe 6B located at the upper stage.
They are arranged parallel to each other so that they reach the bottom surface.

スリツト穴7は、第3図及び第4図に示すよう
に、下段に位置するヒートパイプ6A直下に夫々
位置するように水平に配置すると共に、下方開口
7aとり上方開口7bに向け、流路通過面積が
徐々に縮小される如く形成し、更に、その上方開
口7b幅を少なく共ヒートパイプ6A,6B直径
により小に形成する。
As shown in FIGS. 3 and 4, the slit holes 7 are arranged horizontally so as to be located directly below the heat pipes 6A located at the lower stage, and are directed from the lower opening 7a to the upper opening 7b so that the flow path passes through. The area is gradually reduced, and the width of the upper opening 7b is made smaller and the diameter of the heat pipes 6A, 6B is smaller.

又スリツト穴7を形成する板状部材8のメツシ
ユ網9間の〓間は、気流が通過中に前記〓間間隔
に落下した固体粒子群が残留しない程度の狭いも
のとし、、気流の流れが停止中に前記メツシユ網
9上に堆積した固体粒子群5(上方終端開口7b
が小の為その堆積は小であるが)が、フアン4の
作動開始により即座に流動層内に戻される。
In addition, the gap between the mesh nets 9 of the plate member 8 forming the slit hole 7 is made narrow enough that solid particles that have fallen in the gap during the passage of the air flow will not remain. The solid particle group 5 (upper end opening 7b) deposited on the mesh net 9 during the stoppage
However, when the fan 4 starts operating, it is immediately returned to the fluidized bed.

かかる実施例によれば、前記下方開口7aより
スリツト穴7内に流入した気流は、流速が徐々に
加速され高速気流となつて上方開口7bより噴出
され、該高速気流が固体粒子群5と混相流となつ
ヒートパイプ6A,6Bの周面に沿つて通過しな
がらヒートパイプ6A,6Bの上方で、再び下方
に回動しながらサーキユレート(コアンダ効果)
し、高速気流の有する熱エネルギーが固体粒子群
5を伝熱媒体としてヒートパイプ6A,6Bに熱
伝達され、該ヒートパイプ6A,6Bを介して前
記新鮮空気と排気空気流とを熱移動が円滑に行わ
れる。又、前記実施例は、板状部材8の下方上流
側にメツシユ網9を配置した為に、気流が高速空
気流になる前の緩速時に前記メツシユ網9を通過
する事となり、メツシユ網9通過の際に生じる圧
力損失が大幅に低減される。
According to this embodiment, the airflow flowing into the slit hole 7 from the lower opening 7a is gradually accelerated in flow velocity to become a high-speed airflow and is ejected from the upper opening 7b, and the high-speed airflow is mixed with the solid particle group 5. The flow passes along the circumferential surfaces of the heat pipes 6A, 6B and circulates above the heat pipes 6A, 6B while rotating downward again (Coanda effect).
The thermal energy possessed by the high-speed airflow is transferred to the heat pipes 6A, 6B using the solid particle group 5 as a heat transfer medium, and the heat is smoothly transferred between the fresh air and the exhaust air flow via the heat pipes 6A, 6B. It will be held in Furthermore, in the above embodiment, since the mesh net 9 is disposed below and upstream of the plate-shaped member 8, the airflow passes through the mesh net 9 at a slow speed before becoming a high-speed airflow, and the mesh net 9 Pressure losses occurring during passage are significantly reduced.

尚、ヒートパイプ6A,6Bの配設位置は必ず
しも正確にスリツト穴7の直上に配置しても、又
僅かにずらして配置してもよく、例えば上下に配
置したヒートパイプ6A,6Bにおいては、気流
が下段側のヒートパイプ6Aの周面に沿つて流れ
ながら、その上方で上段側に位置するヒートパイ
プ6Bの周面に当たるよう構成した方がよい。
Note that the heat pipes 6A and 6B may be arranged exactly above the slit hole 7, or may be slightly shifted from each other. For example, in the case of the heat pipes 6A and 6B arranged above and below, It is preferable that the airflow flows along the circumferential surface of the lower heat pipe 6A and hits the circumferential surface of the upper heat pipe 6B above it.

「発明の効果」 以上記載した如く、本発明によれば、流動層を
用いて蓄冷熱層を形成するも、流動層の圧力損失
がそれほど大になることなく、且つ熱伝達効率を
格段に向上し得る熱交換装置が得られる。等の
種々の著効を有す。
"Effects of the Invention" As described above, according to the present invention, even though a cold storage heat layer is formed using a fluidized bed, the pressure loss of the fluidized bed does not become so large and the heat transfer efficiency is significantly improved. A heat exchange device that can be used is obtained. It has various effects such as

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第4図はいずれも本発明の実施例に
係る熱交換装置を示し、第1図は正面断面図、第
2図は側面断面図、第3図と第4図は気流の流れ
状態を示す、要部断面図と要部拡大斜視図であ
る。
1 to 4 each show a heat exchange device according to an embodiment of the present invention, in which FIG. 1 is a front sectional view, FIG. 2 is a side sectional view, and FIGS. 3 and 4 are airflow flows. They are a sectional view and an enlarged perspective view of a main part, showing the state.

Claims (1)

【特許請求の範囲】 1 相対的にエンタルピー差を有する2つの流体
が通過可能な一対の仕切空間間にヒートパイプを
延設するとともに、該一対の仕切空間の内、少な
くとも1の仕切空間に固体粒子群を集積して流動
層を形成した熱交換装置において、 前記流動層内に1段若しくは複数段状に裸管状
のヒートパイプ群を配置すると共に、 該ヒートパイプ群の内、少なくとも下段側に位
置するヒートパイプの直下に 固体粒子群を介して、 下方から上方側に向け流体通過面積を徐々に縮
小させ、その終端開口幅をヒートパイプ直径より
小に設定した帯状スリツト穴を配し、 該スリツト穴通過後の高速気流が前記固体粒子
群と共に裸管状ヒートパイプ周面をサーキユレー
ト可能に構成した事を特徴とする流動層型熱交換
装置。
[Claims] 1. A heat pipe is installed between a pair of partitioned spaces through which two fluids having a relatively different enthalpy can pass, and at least one of the pair of partitioned spaces is filled with a solid. In a heat exchange device in which a fluidized bed is formed by accumulating a group of particles, a group of bare tubular heat pipes is arranged in one or more stages in the fluidized bed, and at least on the lower side of the group of heat pipes. Immediately below the heat pipe, a band-shaped slit hole whose fluid passage area is gradually reduced from the bottom to the top through solid particles, and whose opening width at the end is set to be smaller than the diameter of the heat pipe, is arranged. A fluidized bed heat exchange device characterized in that a high-speed airflow after passing through a slit hole can circulate around the circumferential surface of a bare tubular heat pipe together with the solid particles.
JP24139885A 1985-10-30 1985-10-30 Fluidized bed type heat exchanging device utilizing heat pipe Granted JPS62102088A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24139885A JPS62102088A (en) 1985-10-30 1985-10-30 Fluidized bed type heat exchanging device utilizing heat pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24139885A JPS62102088A (en) 1985-10-30 1985-10-30 Fluidized bed type heat exchanging device utilizing heat pipe

Publications (2)

Publication Number Publication Date
JPS62102088A JPS62102088A (en) 1987-05-12
JPH0310879B2 true JPH0310879B2 (en) 1991-02-14

Family

ID=17073685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24139885A Granted JPS62102088A (en) 1985-10-30 1985-10-30 Fluidized bed type heat exchanging device utilizing heat pipe

Country Status (1)

Country Link
JP (1) JPS62102088A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02302504A (en) * 1989-05-16 1990-12-14 Ube Ind Ltd Fluidized-bed combustion equipment

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5324657A (en) * 1976-08-20 1978-03-07 Matsushita Electric Ind Co Ltd High-frequency heating device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5324657A (en) * 1976-08-20 1978-03-07 Matsushita Electric Ind Co Ltd High-frequency heating device

Also Published As

Publication number Publication date
JPS62102088A (en) 1987-05-12

Similar Documents

Publication Publication Date Title
JPS58217195A (en) Heat exchanger
JPH08247677A (en) Heat exchanger for air conditioner
JPS5995359A (en) Evaporator
JPH0310879B2 (en)
JPS633185A (en) Finned heat exchanger
EP0020375A4 (en) Heat exchanger having inclined tubes.
JPS62112997A (en) Heat exchanger
JPH02166392A (en) Heat exchanger
CN220476182U (en) Radiator, power assembly and power converter
CN111435012A (en) Indoor unit of vertical cabinet type air conditioner
JPH10220979A (en) Fin type heat exchanger
JPS6034938Y2 (en) Heat pipe heat exchanger
JPS61256189A (en) Regenerator of fluidized bed type
JPS61240099A (en) Heat exchanger
CN1077976C (en) Heat exchanger for air conditioner
JP4284726B2 (en) Heat exchanger
JPH081375Y2 (en) Air conditioner heat exchanger
JPS61153391A (en) Heat exchanger
JPS59125391A (en) Heat exchanger
JPH01300193A (en) Fluidized bed type heat exchanger
CN115387899A (en) Louver fin structure for heat exchanger
JPS62245090A (en) Heat exchanger with fins
JPS63101698A (en) Heat exchanger with fin
JPH01269886A (en) Vertical heat transfer tube for air-cooled absorber
JPS58150795A (en) Heat pipe