JPS62245090A - Heat exchanger with fins - Google Patents

Heat exchanger with fins

Info

Publication number
JPS62245090A
JPS62245090A JP9052586A JP9052586A JPS62245090A JP S62245090 A JPS62245090 A JP S62245090A JP 9052586 A JP9052586 A JP 9052586A JP 9052586 A JP9052586 A JP 9052586A JP S62245090 A JPS62245090 A JP S62245090A
Authority
JP
Japan
Prior art keywords
air
heat exchanger
group
thermal conducting
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9052586A
Other languages
Japanese (ja)
Inventor
Tomoaki Ando
智朗 安藤
Hiroyoshi Tanaka
博由 田中
Shoichi Yokoyama
昭一 横山
Shigeo Aoyama
繁男 青山
Kaoru Kato
薫 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co, Matsushita Electric Industrial Co Ltd filed Critical Matsushita Refrigeration Co
Priority to JP9052586A priority Critical patent/JPS62245090A/en
Publication of JPS62245090A publication Critical patent/JPS62245090A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To extend an operating time when frost is adhered by a method wherein a group of thermal conducting pipes is made independent for each of rows with respect to an air flow direction, a pipe pitch in each of rows is decreased in sequence from an air inlet side to an air outlet side, and a diameter of thermal conducting pipe in each of the rows is gradually increased from the air inlet side to the air outlet side. CONSTITUTION:A heat exchanger is comprised of a group of thermal conducting pipes 7a, 7b, 7c and 7d arranged in a grid pattern in parallel with an air flow direction 6 and a group of fins 8, and a pipe diameter of each of the group of thermal conducting pipes 7a, 7b, 7c and 7d is Da, Db, Dc and Dd, resulting in that the pipe diameters Da, Db, Dc and Dd are set at a relation of Da<Db<Dc<Dd and a pitch of each of the pipe pitches in the row S1, S2 and S3 is set to have a relation of S1<S2<S3. Therefore, fin temperatures t10, t11, t12 are set to have a relation of t10<t11<t12. Due to this fact, an absolute humidity difference between flowing air influencing a frost forming shape and a saturated wet air corresponding to a thermal conducting temperature of the heat exchanger is made uniform over an air flowing direction to form a uniform frost layer 13. Therefore, a thicker frost layer is not locally present at the air inlet thermal conducting surface, resulting in that the long air passage is assured and then an operating time can be remarkably extended.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は空調機や冷蔵庫等に用いられているフィン付熱
交換器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a finned heat exchanger used in air conditioners, refrigerators, and the like.

従来の技術 従来の室外熱交換器は、第3図、第4図に示すように水
平に設置され内部を冷媒が流動する同一管径の伝熱管群
1と、この伝熱管群1に垂直方向に一定間隔で挿入され
その間を空気が矢印2方向に流動するフィン群3から構
成されていた。なお4はフィンカラーである。
2. Description of the Related Art As shown in FIGS. 3 and 4, a conventional outdoor heat exchanger consists of a group of heat transfer tubes 1 of the same diameter that are installed horizontally and through which refrigerant flows, and a group of heat transfer tubes 1 that are installed vertically to the group of heat transfer tubes 1. It consisted of a group of fins 3 inserted at regular intervals through which air flows in the two directions of the arrows. Note that 4 is a fin collar.

発明が解決しようとする問題点 一般に空気を熱源としたヒートポンプ式空調機の暖房運
転において、室外熱交換器は蒸発器として機能し、周囲
空気温度が低下すると蒸発温度がo′C以下になり空気
中の水蒸気が霜として付着し霜層を形成する。そして、
この霜層による通過風量の減少と断熱作用により熱交換
量が著しく減少していく為に除霜が必要である。
Problems to be Solved by the Invention Generally, in heating operation of a heat pump type air conditioner using air as a heat source, the outdoor heat exchanger functions as an evaporator, and when the ambient air temperature decreases, the evaporation temperature drops below o'C and the air The water vapor inside adheres as frost and forms a frost layer. and,
Defrosting is necessary because the amount of heat exchange is significantly reduced due to the reduction in the amount of air passing through the frost layer and the insulation effect.

そして流入空気と熱交換器伝熱面温度に相当する飽和湿
り空気の絶対湿度差が一番大きい空気流入側伝熱面に霜
層6は形成されやすく、空気流出側伝熱面にはほとんど
霜層6は形成されない。着霜条件中で運転を続けると着
霜とともに通過風量が減少してバイパスファクターが小
さくなり、しかも蒸発温度が低下して霜層表面温度が上
昇しないので霜層6はますます空気流入側伝熱面のみで
成長するようになる。
A frost layer 6 is likely to form on the air inflow side heat transfer surface, where the absolute humidity difference between the inflow air and the saturated humid air corresponding to the heat exchanger heat transfer surface temperature is greatest, and almost no frost layer is formed on the air outflow side heat transfer surface. Layer 6 is not formed. If operation continues under frost conditions, the passing air volume will decrease with frost formation, and the bypass factor will become smaller.Moreover, the evaporation temperature will decrease and the frost layer surface temperature will not rise, so the frost layer 6 will increase the heat transfer on the air inlet side. It begins to grow only on the surface.

以上のように熱交換器伝熱面における霜層分布が偏在的
である為にフィン群3間が霜層で閉塞され蒸発器として
の機能を果さなくなる迄の時間が著しく短いという欠点
を有していた。また霜層分布が偏在的であるから除霜時
に霜を融解する為の熱もかなりの部分が周囲空気を暖め
るだけに使われるので、熱効率が著しく悪いという欠点
を有している。
As mentioned above, since the frost layer distribution on the heat transfer surface of the heat exchanger is unevenly distributed, there is a drawback that the time until the space between the fin groups 3 is blocked by the frost layer and the function as an evaporator is no longer fulfilled is extremely short. Was. Furthermore, since the frost layer distribution is unevenly distributed, a considerable portion of the heat for melting the frost during defrosting is used only to warm the surrounding air, resulting in a drawback of extremely poor thermal efficiency.

本発明は上記従来技術の欠点を解決し、着霜時の運転時
間を長くできるフィン付熱交換器を提供するものである
The present invention solves the above-mentioned drawbacks of the prior art and provides a finned heat exchanger that can extend the operating time during frosting.

問題点を解決するだめの手段 そこで本発明のフィン付熱交換器は、内部を冷媒が流動
する伝熱管群と伝熱管群に挿入されその間を空気が流動
するフィン群を有し、伝熱管群を空気流動方向に対して
各列単位に独立させ、各列の管ピッチを空気流入側から
流出側へ順次小さくし、かつ各列の伝熱管径を空気流入
側より流出側へ順次大きくしたものである。
Means for Solving the Problems Therefore, the finned heat exchanger of the present invention has a heat exchanger tube group through which a refrigerant flows and a fin group inserted into the heat exchanger tube group and through which air flows. were made independent for each row in the air flow direction, the tube pitch of each row was made smaller sequentially from the air inlet side to the air outlet side, and the heat transfer tube diameter of each row was made sequentially larger from the air inlet side to the air outlet side. It is something.

作用 この技術的手段による作用は次のようKなる。action The effect of this technical means is as follows.

一般にヒートポンプ式空調機において、冷媒は乾き度x
’y0.2程度の状態で蒸発器に流入する。そして各列
単位に独立した伝熱管内を流動し、フィン群間を流動す
る空気と熱交換をして蒸発する。
Generally, in heat pump air conditioners, the refrigerant has a dryness x
It flows into the evaporator in a state of about y0.2. The air flows through independent heat transfer tubes in each row, exchanges heat with the air flowing between the fin groups, and evaporates.

熱流束qは流入空気と熱交換器伝熱面温度に相当する飽
和湿り空気のエンタルピ差が一番大きい空気流入側伝熱
面が最も大きい。従って空気流入側第1列目の伝熱管に
おいて、冷媒は活発に流入空気と熱交換を行い蒸発する
。また各列伝熱管径は空気流入側より流出側へ順次大き
いので、伝熱管の抵抗により各列循環量は空気流入側1
列目の伝熱管が一番少なく、その結果1列目の伝熱管内
の冷媒は短時間に蒸発し終えガスになる。その後冷媒は
顕熱交換を行うので冷媒(ガス)の温度は除徐に上昇す
る、その為ガス域において各列の伝熱管温度は空気流入
側から流出側へ順次高い。さらに各列の管ピッチは空気
流入側から流出側へ順次小さく、また前述のように各列
伝熱管径は空気流入側が小さいので、伝熱管間のフィン
温度は空気流入側が流出側よりも高い。従って霜層形状
に大きく影響する流入空気と熱交換器伝熱面温度に相当
する飽和湿り空気の絶対湿度差は空気の流れ方向にわた
り均一化され均ムな霜層が形成される。
The heat flux q is greatest at the air inflow side heat transfer surface where the enthalpy difference between the inflow air and saturated humid air corresponding to the heat exchanger heat transfer surface temperature is largest. Therefore, in the first row of heat transfer tubes on the air inflow side, the refrigerant actively exchanges heat with the incoming air and evaporates. Also, since the diameter of each row of heat transfer tubes increases from the air inflow side to the outflow side, the circulation amount of each row is reduced by the air inflow side due to the resistance of the heat transfer tubes.
The number of heat transfer tubes in the first row is the least, and as a result, the refrigerant in the heat transfer tubes in the first row evaporates in a short time and becomes gas. After that, the refrigerant exchanges sensible heat, so the temperature of the refrigerant (gas) gradually rises.Therefore, in the gas region, the temperature of the heat transfer tubes in each row increases sequentially from the air inflow side to the air outflow side. Further, the tube pitch in each row is gradually smaller from the air inflow side to the outflow side, and as described above, the diameter of each row of heat transfer tubes is smaller on the air inflow side, so the fin temperature between the heat transfer tubes is higher on the air inflow side than on the air outflow side. Therefore, the absolute humidity difference between the incoming air and the saturated humid air corresponding to the temperature of the heat transfer surface of the heat exchanger, which greatly influences the shape of the frost layer, is made uniform over the air flow direction, and a uniform frost layer is formed.

その為に伝熱面間が霜層で閉塞され蒸発器としての機能
をはださなくなる迄の時間を著しく延ばすことができる
Therefore, the time until the space between the heat transfer surfaces is blocked by a layer of frost and the evaporator no longer functions as an evaporator can be significantly extended.

実施例 以下、本発明の一実施例を第1図および第゛2図を用い
て説明する。同図に示すがごとく気流方向6と平行に基
盤目状に配列されている伝熱管群7&、7b、70.7
+1とフィン群8より構成される。伝熱管群71&、7
b、To、Tenの管径をそれぞれDiL+  Dtz
  ”O+  Ddとすると、管径n&、 Db 、 
Da r DdはDa< Db < DC<D(1であ
る。また伝熱管群の各列管ピッチS1 * Sl *S
3は、Sl> 82 > Ssである。9はフィンカラ
ーである。
EXAMPLE An example of the present invention will be described below with reference to FIGS. 1 and 2. As shown in the figure, heat exchanger tube groups 7&, 7b, 70.7 are arranged in a grid pattern parallel to the airflow direction 6.
+1 and fin group 8. Heat exchanger tube group 71&, 7
The pipe diameters of b, To, and Ten are DiL+ Dtz, respectively.
”If O+Dd, the pipe diameter is n&, Db,
Da r Dd is Da < Db < DC < D (1. Also, the pitch of each row of tubes in the heat exchanger tube group S1 * Sl * S
3 is Sl>82>Ss. 9 is a fin collar.

1       次にも今を説明する。1 Next, I will explain the current situation.

I ・、j、        本実施例の熱交換器に流入し
た空気は各列の伝熱管内を流動する冷媒と熱交換をする
。熱流束qは流入空気と熱交換器伝熱面温度に相当する
飽和湿り空気のエンタルピ差が一番大きい空気流入側伝
熱面が最も大きい。従って空気流入側伝熱管すなわち伝
熱管71Lにおいて、冷媒は活発に流入空気と熱交換を
行い蒸発する。さらに各列伝熱管径は1)a< Db 
< Da < Ddであるので、伝熱管の抵抗により各
列伝熱管循環量は伝熱管71Lが一番少ない。その結果
伝熱管7a内の冷媒は短時間に蒸発し終えガスになる。
I., j, The air flowing into the heat exchanger of this embodiment exchanges heat with the refrigerant flowing in the heat exchanger tubes of each row. The heat flux q is greatest at the air inflow side heat transfer surface where the enthalpy difference between the inflow air and saturated humid air corresponding to the heat exchanger heat transfer surface temperature is largest. Therefore, in the air inlet side heat exchanger tube, that is, the heat exchanger tube 71L, the refrigerant actively exchanges heat with the incoming air and evaporates. Furthermore, the diameter of each row of heat transfer tubes is 1) a<Db
Since <Da<Dd, the amount of circulation of each row of heat exchanger tubes is the smallest in the heat exchanger tube 71L due to the resistance of the heat exchanger tubes. As a result, the refrigerant in the heat exchanger tube 7a evaporates in a short time and becomes gas.

その後冷媒は顕熱交換を行うことになるので、冷媒(ガ
ス)の温度は徐々に上昇する。各列伝熱管群71L、7
m)、70,7dの管内温度をそれぞれia + ?b
  +  ta s tdとするとガス域になった部分
では各列伝熱管群内温度tIL * tb * tO*
 t6はta > tl) > tc >t4となる。
After that, the refrigerant undergoes sensible heat exchange, so the temperature of the refrigerant (gas) gradually increases. Each row heat exchanger tube group 71L, 7
m), the temperature inside the tube at 70 and 7d, respectively, is ia + ? b
+ ta s td, the temperature inside each heat transfer tube group in the gas region is tIL * tb * tO *
At t6, ta > tl) > tc > t4.

さらに各列の管ピッチはSl〉Sl〉Ssでありかつ各
列の伝熱管径はDa<Db<Dc<1)(lであるので
、伝熱管間10,11.12のフィン温度t10 w 
tll + tl2はtoo > t++ > t、2
となる。その為、霜層形状に大きく影響する流入空気と
熱交換器伝熱面温度に相当する飽和湿り空気の絶対湿度
差は、空気の流れ方向にわたり均一化され、均一な霜層
13が形成される。従って空気流入側伝熱面に霜層が偏
在することなく長時間通風路が確保され、運転時間を著
しく延ばすことができる。
Furthermore, the tube pitch in each row is Sl>Sl>Ss and the diameter of the heat transfer tubes in each row is Da<Db<Dc<1) (l), so the fin temperature t10 w between the heat transfer tubes 10, 11.12
tll + tl2 is too > t++ > t, 2
becomes. Therefore, the absolute humidity difference between the incoming air and the saturated humid air corresponding to the temperature of the heat transfer surface of the heat exchanger, which greatly affects the shape of the frost layer, is equalized in the air flow direction, and a uniform frost layer 13 is formed. . Therefore, a ventilation path is maintained for a long time without unevenly distributing a frost layer on the heat transfer surface on the air inflow side, and the operating time can be significantly extended.

また除霜時においても霜を融解する為の熱が伝熱面のど
の場所でも有効に使われ周囲空気を暖める為に使われる
ことはないので熱交率は向上する。
Furthermore, even during defrosting, the heat exchange rate improves because the heat for melting the frost is effectively used anywhere on the heat transfer surface and is not used to warm the surrounding air.

また凝縮器として用いた場合、前列はど伝熱管径が小さ
いので後列伝熱管が前列伝熱管の死水域に完全に入るこ
とがなく、有効伝熱面積が増大し伝熱性能は向上する。
Furthermore, when used as a condenser, since the diameter of the front heat exchanger tubes is small, the rear heat exchanger tubes do not completely enter the dead area of the front heat exchanger tubes, increasing the effective heat transfer area and improving heat transfer performance.

なお本発明の一実施例として管配列が気流と平行な場合
について説明したが、管配列が気流に対して傾斜してい
ても同様の効果があることはいうまでもない。
Although the case where the tube arrangement is parallel to the airflow has been described as an embodiment of the present invention, it goes without saying that the same effect can be obtained even if the tube arrangement is inclined with respect to the airflow.

発明の効果 以上のように本発明のフィン付熱交換器は、着霜が生じ
る条件下においても均一形状な霜層が実現できるので伝
熱面間が閉塞する迄の運転時間を著しく延ばすことがで
きるものである。
Effects of the Invention As described above, the finned heat exchanger of the present invention can realize a frost layer with a uniform shape even under conditions where frost formation occurs, so the operating time until the heat transfer surfaces become clogged can be significantly extended. It is possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a、bは本発明の一実施例によるフィン付熱交換
器の正面図および側面図、第2図a、bは本発明の他の
実施例によるフィン付熱交換器の側面断面図および平面
断面図、第3図、第4図a。 bは従来のフィン付熱交換器の全体斜視図、側面断面図
および平面断面図である。 7&、7b、To、7(1・・・・・・伝熱管群、8・
・・・・・フィン。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名算、
7b、 7c、 7tL−伏禿管群第 1 図    
     8−フィン(ユ2 δ 第2図      7tt、7b、7C,7t−イ人弗
肯8−−−フイン 第3図 第4図
FIGS. 1a and 1b are front and side views of a finned heat exchanger according to one embodiment of the present invention, and FIGS. 2a and 2b are side sectional views of a finned heat exchanger according to another embodiment of the present invention. and plan sectional views, FIGS. 3 and 4a. b is an overall perspective view, a side sectional view, and a plan sectional view of a conventional finned heat exchanger. 7&, 7b, To, 7 (1... Heat exchanger tube group, 8.
·····fin. Name of agent: Patent attorney Toshio Nakao and one other person
7b, 7c, 7tL - bald canal group Fig. 1
8-Fin (Yu 2 δ Fig. 2 7tt, 7b, 7C, 7t-Ijin 8) ---Fin Fig. 3 Fig. 4

Claims (1)

【特許請求の範囲】[Claims]  内部を冷媒が流動する伝熱管群と前記伝熱管群に挿入
されその間を空気が流動するフィン群を有し、前記伝熱
管群を空気流動方向に対して各列単位に独立させ、各列
の管ピッチを空気流入側から流出側へ順次小さくし、か
つ各列の伝熱管径を空気流入側より流出側へ順次大きく
したフィン付熱交換器。
It has a heat exchanger tube group through which a refrigerant flows, and a fin group inserted into the heat exchanger tube group through which air flows, and the heat exchanger tube group is made independent in each row in the air flow direction, and each row is A heat exchanger with fins in which the tube pitch is gradually decreased from the air inlet side to the air outlet side, and the heat transfer tube diameter of each row is gradually increased from the air inlet side to the air outlet side.
JP9052586A 1986-04-18 1986-04-18 Heat exchanger with fins Pending JPS62245090A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9052586A JPS62245090A (en) 1986-04-18 1986-04-18 Heat exchanger with fins

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9052586A JPS62245090A (en) 1986-04-18 1986-04-18 Heat exchanger with fins

Publications (1)

Publication Number Publication Date
JPS62245090A true JPS62245090A (en) 1987-10-26

Family

ID=14000847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9052586A Pending JPS62245090A (en) 1986-04-18 1986-04-18 Heat exchanger with fins

Country Status (1)

Country Link
JP (1) JPS62245090A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009270787A (en) * 2008-05-09 2009-11-19 Mitsubishi Electric Corp Heat exchanger, refrigerator and air conditioner
JP2011021884A (en) * 2010-11-05 2011-02-03 Mitsubishi Electric Corp Air conditioner

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62142990A (en) * 1985-12-17 1987-06-26 Matsushita Electric Ind Co Ltd Heat exchanger

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62142990A (en) * 1985-12-17 1987-06-26 Matsushita Electric Ind Co Ltd Heat exchanger

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009270787A (en) * 2008-05-09 2009-11-19 Mitsubishi Electric Corp Heat exchanger, refrigerator and air conditioner
JP2011021884A (en) * 2010-11-05 2011-02-03 Mitsubishi Electric Corp Air conditioner

Similar Documents

Publication Publication Date Title
JPS61153498A (en) Finned heat exchanger
JP3048614B2 (en) Heat exchanger
JPS62245090A (en) Heat exchanger with fins
JPH0297897A (en) Fin tube type heat exchanger
JPS63233296A (en) Finned heat exchanger
JPH10196984A (en) Air conditioner
JPH1151412A (en) Indoor unit for air conditioner and its indoor heat exchanger
JPS62142990A (en) Heat exchanger
JPS61159094A (en) Finned heat exchanger
JPS6127493A (en) Heat exchanger with fins
JPS60263064A (en) Evaporator
JPS58214783A (en) Heat exchanger
JPS5612997A (en) Heat exchanger
JPS62258997A (en) Heat exchanger with fin
JPS6082787A (en) Heat exchanger with fin
KR20050023759A (en) Heat exchanger
JPH0684875B2 (en) Heat exchanger with fins
JP2002071208A (en) Indoor and outdoor units for heat exchangers and air conditioners
JPS62293090A (en) Finned heat exchanger
JPH0765757B2 (en) Indoor heat exchanger for air conditioning
JP2000234886A (en) Finned heat exchanger
JPS63220097A (en) Finned heat exchanger
JPS63306396A (en) Finned heat exchanger
JPH05106987A (en) Indoor heat exchanger for air conditioning
JPH10311622A (en) Fin-plate heat exchanger