JPH03108786A - Manufacture of copper-clad lamination board - Google Patents

Manufacture of copper-clad lamination board

Info

Publication number
JPH03108786A
JPH03108786A JP24516789A JP24516789A JPH03108786A JP H03108786 A JPH03108786 A JP H03108786A JP 24516789 A JP24516789 A JP 24516789A JP 24516789 A JP24516789 A JP 24516789A JP H03108786 A JPH03108786 A JP H03108786A
Authority
JP
Japan
Prior art keywords
prepreg
polyethylene terephthalate
base material
glass fiber
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24516789A
Other languages
Japanese (ja)
Inventor
Kunio Iketani
池谷 国夫
Toshiyuki Otori
大鳥 利行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP24516789A priority Critical patent/JPH03108786A/en
Publication of JPH03108786A publication Critical patent/JPH03108786A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To acquire a lamination board of a small dielectric constant and good punching processability which hardly causes thinning of a through-hole diameter by mixing polyethylene terephthalate fiber and glass fiber at a specified rate, by impregnating resin to form prepreg in a nonwoven fabric of a core layer and a woven fabric of a surface layer and by laminating a specified sheets of prepreg and a copper foil on one or both sides thereof. CONSTITUTION:Polyethylene terephthalate fiber and glass fiber are collected to form yarn (thread) as a base material of a surface layer, and woven fabric is manufactured. Varnish is impregnated into the base material to acquire prepreg. Then, polyethylene terephthalate fiber and glass fiber are mixed at a rate of 30 to 95wt.% against 70 to 5wt.% to manufacture nonwoven fabric. Varnish is impregnated into the base material to acquire prepreg. One sheet of surface layer prepreg is laminated on each of both sides of 6 sheets of core layer prepreg and a copper foil is further laminated. An epoxy resin copper-clad lamination board is obtained by heating and pressurizing.

Description

【発明の詳細な説明】 (産業上の利用分前・) 本発明は、打抜加工性が優れた低誘電率のプリント回路
用基板に関する。
DETAILED DESCRIPTION OF THE INVENTION (Prior to Industrial Use) The present invention relates to a low dielectric constant printed circuit board with excellent punching workability.

(従来技術) 従来、プリント回路用基板の低誘電率化のために、ポリ
エチレンテレフタレート繊維不織布を基材としたプリプ
レグをコア層とし、ガラス繊維布を基材としたプリプレ
グを表面層として使用した積層板はよく知られている。
(Prior art) Conventionally, in order to lower the dielectric constant of printed circuit boards, a laminated layer was used in which a prepreg made of polyethylene terephthalate fiber nonwoven fabric was used as the core layer and a prepreg made of glass fiber cloth was used as the surface layer. The board is well known.

この積層板はガラス布基材の積層板に比較して打抜時の
壁面の欠りや繊維残りが発止しやすく、更に熱処理の後
に、スルーホール径の細りが起りやすいという問題があ
った。
This laminate has problems in that, compared to a laminate made of a glass cloth base material, the wall surface is more likely to be chipped and fibers remain when punched, and the diameter of the through hole is more likely to become narrower after heat treatment.

また、低誘電率積層板として高周波領域で使用するには
、積層板の強度を保つために回路のすく下の層に誘電率
の高いガラス布基材を用いなければならないので、低誘
電率化には限界があった。
In addition, in order to use a low dielectric constant laminate in a high frequency range, it is necessary to use a glass cloth base material with a high dielectric constant for the layer below the circuit in order to maintain the strength of the laminate. had its limits.

(発明が解決しようとする課題) そこで、本発明者は、上述の欠点を改良するべく鋭意検
討した結果、コア層の基材としてポリエチレンテレフタ
レート繊維とガラス繊維とを混抄した不織布を使用する
ことにより積層板の低誘電率化と良好な打抜加工性との
両立を達成できることを見出した。
(Problems to be Solved by the Invention) Therefore, as a result of intensive studies to improve the above-mentioned drawbacks, the inventors of the present invention have found that by using a nonwoven fabric made of a mixture of polyethylene terephthalate fiber and glass fiber as the base material of the core layer. It has been found that it is possible to achieve both a low dielectric constant of the laminate and good punching workability.

(課題を解決するための手段) 本発明は、ポリエチレンテレフタレート繊維30〜95
重量%と、ガラス繊維70〜5重量%とを用いて混抄し
た不織布に樹脂含浸したプリプレグをコア層とし、表面
層にガラス繊維織布又はガラス繊維とポリエチレンテレ
フタレート繊維との混織布にとを特徴とする銅張積層板
の製造方法である。
(Means for Solving the Problems) The present invention provides polyethylene terephthalate fibers of 30 to 95
The core layer is a prepreg prepared by impregnating a non-woven fabric with resin and 70 to 5 weight percent of glass fiber, and the surface layer is a glass fiber woven fabric or a blended fabric of glass fiber and polyethylene terephthalate fiber. This is a distinctive method for manufacturing copper-clad laminates.

本発明において表面層に使用する基材は、ガラス繊維単
独、またはポリエチレンテレフタレート繊維とガラス繊
維とを集束したヤーン(糸)を縦糸及び横糸として使用
した織布である。
In the present invention, the base material used for the surface layer is a woven fabric in which glass fiber alone or yarn (thread) made of bundles of polyethylene terephthalate fiber and glass fiber is used as the warp and weft.

本発明の特徴はコア層の基材にある。この基材はポリエ
チレンテレフタレート繊維とガラス繊維とを混抄した不
織布である。
The feature of the present invention lies in the base material of the core layer. This base material is a nonwoven fabric made of a mixture of polyethylene terephthalate fiber and glass fiber.

ポリエチレンテレフタレート繊維は、太さ20〜90μ
のものが通常使用されるが、30〜60μが好ましい。
Polyethylene terephthalate fiber has a thickness of 20 to 90μ
A thickness of 30 to 60μ is preferred.

ガラス繊維は、太さ5〜13μのものが使用一ホール穴
の細りが生じやすく、寸法安定性が悪くなる。
Glass fibers with a thickness of 5 to 13 microns tend to become narrower in each hole, resulting in poor dimensional stability.

コア層の不織布及び表面層の織布において、側繊維の好
ましい配合割合はポリエチレンテレフタレート繊維30
〜60重量%とガラス繊維70〜40重量%である。
In the nonwoven fabric of the core layer and the woven fabric of the surface layer, the preferred blending ratio of side fibers is 30% polyethylene terephthalate fiber.
-60% by weight and 70-40% by weight of glass fiber.

このようにして得られた織布に対し樹脂を含浸してプリ
プレグを得る。含浸する樹脂はエポキシ樹脂、フェノー
ル樹脂、不飽和ポリエステル樹脂等、特に限定されない
が、この織布の特長を十分に発揮させるためにはエポキ
シ樹脂が好ましい。
The woven fabric thus obtained is impregnated with a resin to obtain a prepreg. The resin to be impregnated is not particularly limited, such as epoxy resin, phenol resin, unsaturated polyester resin, etc., but epoxy resin is preferable in order to fully exhibit the characteristics of this woven fabric.

以下、常法に従って、前記プリプレグの所定枚数とその
片面又は両面に銅箔を重合ねせ、加熱加圧成形して銅張
積層板を得る。
Thereafter, according to a conventional method, a predetermined number of prepreg sheets and copper foil are superimposed on one or both surfaces thereof, and the prepregs are heated and press-molded to obtain a copper-clad laminate.

(作 用) 本発明の特長は、基材としてポリエチレンテレフタレー
ト繊維とガラス繊維を特定割合で混抄し周基+1とし、
ポリエチレンテレフタレート不繊維されるが、6〜9μ
が好ましい。ガラス繊維の種類は特に限定されないが、
Eガラスが好ましい。
(Function) The feature of the present invention is that polyethylene terephthalate fiber and glass fiber are mixed in a specific ratio as a base material to give a peripheral group +1,
Polyethylene terephthalate non-fiber, 6-9μ
is preferred. The type of glass fiber is not particularly limited, but
E-glass is preferred.

これら2種の繊維は、ポリエチレンテレフタレート繊維
30〜95重世%とガラス繊維70〜5重量%の割合で
混抄して製造する。ポリエチレンテレフタレート繊維の
割合が30重量%より少ないと、誘電率があまり低くな
らず、95重重量より多いと熱工程等におけるスルーホ
ール穴の細りが生じやすくなる。
These two types of fibers are produced by mixing and paper-making the ratio of 30 to 95 weight percent polyethylene terephthalate fiber and 70 to 5 weight percent glass fiber. If the proportion of polyethylene terephthalate fibers is less than 30% by weight, the dielectric constant will not be lowered very much, and if it is more than 95% by weight, the through-holes will tend to become narrower during a heat process or the like.

一方、表面層として使用する基材はガラス繊維織布も使
用可能であるが、ポリエチレンテレフタ1/−ト繊維と
ガラス繊維の混織布がよい。この場合、これら2種の繊
維は、通常前者30〜80重量%とガラス繊維70〜2
0重量%の割合で集束してヤーンとする。このヤーンを
縦糸及び横糸として織布を製造する。ポリエチレンテレ
フタレート繊維の割合が30重量%より少ないと、誘電
率があまり低くならず、更に、打抜き加工時において、
打抜き抵抗が大きく、ヤーンの交点にクランクを生じや
すい。80重量%より多いと熱工程等におりるスル布を
コア層基材とした積層板に比較して、コア層の強度が向
上し、打抜加工においてポリエチレンテレフタレート繊
維のみの場合の切断の困難性による繊維残りを防いでい
る。更に、半田工程等の加熱時に熱可塑性樹脂であるポ
リエチレンテレフタレート繊維が軟化してもガラス繊維
が強度を保ち、ポリエチレンテレフタレート繊維が収縮
してスルーホール径の細りが生じることを防いでいる。
On the other hand, the base material used as the surface layer may be a glass fiber woven fabric, but a mixed woven fabric of polyethylene terephthalate fibers and glass fibers is preferable. In this case, these two types of fibers are usually 30 to 80% by weight of the former and 70 to 2% by weight of glass fiber.
It is bundled into yarn at a proportion of 0% by weight. A woven fabric is produced using this yarn as warp and weft threads. If the proportion of polyethylene terephthalate fibers is less than 30% by weight, the dielectric constant will not decrease so much, and furthermore, during punching,
The punching resistance is large, and cranks are likely to occur at yarn intersections. If the amount is more than 80% by weight, the strength of the core layer will be improved compared to a laminate with a core layer based on cloth that undergoes a heat process, etc., and it will be difficult to cut when only polyethylene terephthalate fiber is used during punching. Prevents fibers from remaining due to color. Furthermore, even if the polyethylene terephthalate fiber, which is a thermoplastic resin, softens during heating during the soldering process, the glass fiber maintains its strength, thereby preventing the polyethylene terephthalate fiber from shrinking and reducing the diameter of the through hole.

(実施例) 本発明を実施例により具体的に説明する。配合において
、「部j及び「%」は重量部、重量%を示す。
(Example) The present invention will be specifically explained using examples. In the formulation, "part j" and "%" indicate parts by weight and weight %.

(フェスの調製) 次の配合により樹脂分50%のフェスをil製した。(Preparation of festival) A festival with a resin content of 50% was produced using the following formulation.

臭素化ビスフェノールA型エポキシ樹脂 100部(エ
ボギシ当量480) ジアミンノジフェニルメタン       10部2エ
チル−4メヂルイミダゾール     0.15部メチ
ルエチルケトン         約125部実施例1 表面層の基材として、フィラメント径30μのポリエチ
レンテレフタレート繊維とフィラメント径9μのガラス
1it(Eガラス)とを50部対501W1合で集束し
てヤーン(糸)として、縦打込数42本/25mm、横
打込数32木/25叩、厚さ0.ビ織布を製造した。こ
の基材に前記ワニスを含浸し、樹脂分40%のプリプレ
グを得た。
Brominated bisphenol A type epoxy resin 100 parts (Evogishie equivalent: 480) Diaminodiphenylmethane 10 parts 2-ethyl-4-medylimidazole 0.15 parts Methyl ethyl ketone About 125 parts Example 1 Polyethylene terephthalate with a filament diameter of 30 μm was used as the base material for the surface layer. Fibers and 1 liter of glass (E glass) with a filament diameter of 9 μ are bundled in 50 parts to 501 W 1 combination to form yarn, number of vertical strokes: 42/25 mm, number of horizontal strokes: 32 wood/25 strokes, thickness. 0. Bi-woven fabric was manufactured. This base material was impregnated with the varnish to obtain a prepreg with a resin content of 40%.

次に、コア層用基材として、フィラメント径30μのポ
リエチレンテレフタレート繊躍ツイラメント径9μのガ
ラス繊維(Eガラス)とを50重量部対50重量部の割
合で混抄して1.00 g /c+flの不織布を製造
した。この基材に前記ワニスを含浸し樹脂分68%のプ
リプレグを得た。
Next, as a base material for the core layer, polyethylene terephthalate with a filament diameter of 30 μm and glass fiber (E glass) with a 9 μm diameter were mixed in a ratio of 50 parts by weight to 50 parts by weight to form a paper of 1.00 g/c+fl. A nonwoven fabric was produced. This base material was impregnated with the varnish to obtain a prepreg with a resin content of 68%.

コア層用プリプレグ6枚の両側に表面層用プリプレグ8
1枚を重ね、更に銅箔を重ね合わせ、加熱加圧して厚さ
1.6mmのエポキシ樹脂銅張積層板を得た。
8 prepregs for surface layer on both sides of 6 prepregs for core layer
One sheet was stacked on top of the other, and then a copper foil was stacked on top of the other, followed by heating and pressing to obtain an epoxy resin copper-clad laminate having a thickness of 1.6 mm.

実施例2 甜とカラス繊組との副台を材部対軸部とした以外レ ツクレート 厚さ0.2mmのポリエチレンテレツクレート繊維不織
布を使用した。
Example 2 A polyethylene terrestrial fiber nonwoven fabric having a rectangle thickness of 0.2 mm was used, except that the sub-base of sugar and glass fibers was used as the opposing shaft portion of the material.

以下、実施例1と同様に前記ワニスを使用して厚さ1.
6+umのエポキシ樹脂銅張積層板を得た。
Hereinafter, as in Example 1, the varnish was used to obtain a thickness of 1.
A 6+um epoxy resin copper-clad laminate was obtained.

比較例2 基材として、比較例1の表面層基材として使用したガラ
ス繊維織布を全層使用し、以下実施例1と同様に前記ワ
ニスを使用して厚さ1.6mmのエポキシ樹脂銅張積層
板を得た。
Comparative Example 2 As a base material, the glass fiber woven fabric used as the surface layer base material in Comparative Example 1 was used for all layers, and the varnish was used in the same manner as in Example 1 to form an epoxy resin copper with a thickness of 1.6 mm. A stretched laminate was obtained.

比較例3 表面層用プリプレグとして実施例1で使用したものを使
用した。
Comparative Example 3 The prepreg for the surface layer used in Example 1 was used.

次に、コア層用基材として、フィラメント径30μのポ
リエチレンテレフタレート繊維とフィラメント径9μの
ガラス繊維(Eガラス)とを98重量部対2ffi1部
の割合で混抄して100g/cJの不織布を製造した。
Next, as a base material for the core layer, polyethylene terephthalate fibers with a filament diameter of 30 μm and glass fibers (E glass) with a filament diameter of 9 μm were mixed at a ratio of 98 parts by weight to 1 part of 2ffi to produce a nonwoven fabric of 100 g/cJ. .

この基材に前記ワニスを混合し樹脂分68%のプリプレ
グを得た。
The varnish was mixed with this base material to obtain a prepreg with a resin content of 68%.

コア層用プリプレグ6枚の両側に表面層用プリは、実施
例1と同様Qこして厚さ1.5mI11のエポキシ樹脂
銅張積層板を得た。
Prepregs for the surface layer were placed on both sides of the six prepregs for the core layer by Q-filtering in the same manner as in Example 1 to obtain an epoxy resin copper-clad laminate having a thickness of 1.5 mI11.

実施例3 実施例1と同様にして厚さ1.6mmのエポキシ樹脂銅
張積層板を得た。
Example 3 An epoxy resin copper-clad laminate having a thickness of 1.6 mm was obtained in the same manner as in Example 1.

実施例4 表面層用基材として、フィラメント径7μのガラス繊維
で縦打込数42本/25mm,横打込数58木/25m
mのガラス繊維織布を使用し、この基材に前記ワニスを
含浸し樹脂分40%のプリプレグを得た。
Example 4 As the base material for the surface layer, glass fiber with a filament diameter of 7 μm was used, with the number of vertical strokes 42 pieces/25 mm and the number of horizontal strokes 58 pieces/25 m.
A glass fiber woven fabric of 40% was used, and this base material was impregnated with the varnish to obtain a prepreg with a resin content of 40%.

コア層用プリプレグとして実施例1で使用したものを7
枚使用し、実施例1と同様にして厚さ1.6mmの銅張
積層板を得た。
7 was used as prepreg for the core layer in Example 1.
A copper-clad laminate having a thickness of 1.6 mm was obtained in the same manner as in Example 1.

比較例1 表面層基材として、フィラメント径9μのガラス繊維で
あって、縦打込数42本/25mm、横打込数32木/
25mmのガラス繊維織布を使用し、コア層基材として
、フィラメント径30tiのポリエチレンテプレグ各1
枚を重ね、更に銅箱を重ね合わせ、加熱加圧して厚さ1
.5mmの銅張積層板を得た。
Comparative Example 1 The surface layer base material was glass fiber with a filament diameter of 9 μ, the number of vertical strokes was 42/25 mm, and the number of horizontal strokes was 32/25 mm.
A 25 mm glass fiber woven fabric was used, and as the core layer base material, one polyethylene tepreg with a filament diameter of 30ti was used.
Stack the sheets, then overlap the copper box, and heat and pressurize to a thickness of 1.
.. A 5 mm copper-clad laminate was obtained.

比較例4 表面層用プリプレグとして実施例1で使用したものを使
用した。
Comparative Example 4 The prepreg for the surface layer used in Example 1 was used.

次に、コア層用基+1として、フィラメント径30μの
ポリエチレンテレフタレート繊維とフィラメント径9μ
のガラス繊維(Eガラス)とを20重量部対80重N部
の割合で混抄して100g/c+flの不織布を製造し
た。この基ヰオに前記ワニスを含浸樹脂分68%のプリ
プレグを得た。
Next, as the core layer base +1, polyethylene terephthalate fiber with a filament diameter of 30μ and a filament diameter of 9μ
A nonwoven fabric of 100 g/c+fl was manufactured by mixing and paper-making the glass fiber (E glass) in a ratio of 20 parts by weight to 80 parts by weight. This base material was impregnated with the varnish to obtain a prepreg having a resin content of 68%.

コア層用プリプレグ6枚の両側に表面層用プリプレグ8
1枚を重ね、更に銅箔を重ね合わせ、加熱jJl]圧し
て厚さ1.6mmの銅張積層板を得た。
8 prepregs for surface layer on both sides of 6 prepregs for core layer
One sheet was stacked on top of the other, and then a copper foil was stacked on top of the other, and heated and pressed to obtain a copper-clad laminate having a thickness of 1.6 mm.

以上の各側で得られた銅張積層板について、誘電率、打
抜加工性、熱処理後のスルーホールの径などを測定した
。得られた結果を第1表に示す。
Regarding the copper-clad laminates obtained on each side, dielectric constant, punching workability, diameter of through holes after heat treatment, etc. were measured. The results obtained are shown in Table 1.

(発明の効果) 以上の効果からも明らかなように、本発明の銅張積層板
は、ガラス繊維織布を基+2としたもの、あるいは表面
層基材としてガラス繊維織布を、コア層基材としてポリ
エチレンテレフタレート繊維不織布を使用したものに比
較して、誘電率が同等ないしそれより小さく、打抜加工
性に優れ、スルポール径の細りもほとんどない。
(Effects of the Invention) As is clear from the above effects, the copper-clad laminate of the present invention has a glass fiber woven fabric as the base layer +2, or a glass fiber woven fabric as the surface layer base material and a core layer base material. Compared to those using polyethylene terephthalate fiber nonwoven fabric as the material, the dielectric constant is the same or lower, the punching processability is excellent, and there is almost no thinning of the Surpore diameter.

従って、高周波特性の要求される回路基板用として最適
である。
Therefore, it is most suitable for circuit boards that require high frequency characteristics.

Claims (1)

【特許請求の範囲】[Claims] (1)ポリエチレンテレフタレート繊維30〜95重量
%と、ガラス繊維70〜5重量%とを用いて混抄した不
織布に樹脂含浸したプリプレグをコア層とし、表面層に
ガラス繊維織布又はガラス繊維とポリエチレンテレフタ
レート繊維との混織布に樹脂を含浸したプリプレグを用
いて積層し、その片面成形 又は両面に銅箔を置き、加熱加圧することを特徴とする
銅張積層板の製造方法。
(1) The core layer is a prepreg prepared by impregnating a non-woven fabric made of 30-95% by weight of polyethylene terephthalate fibers and 70-5% by weight of glass fibers, and the surface layer is made of glass fiber woven fabric or glass fiber and polyethylene terephthalate. A method for manufacturing a copper-clad laminate, which comprises laminating a prepreg impregnated with a resin into a blended fabric with fibers, molding it on one side or placing copper foil on both sides, and heating and pressurizing the fabric.
JP24516789A 1989-09-22 1989-09-22 Manufacture of copper-clad lamination board Pending JPH03108786A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24516789A JPH03108786A (en) 1989-09-22 1989-09-22 Manufacture of copper-clad lamination board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24516789A JPH03108786A (en) 1989-09-22 1989-09-22 Manufacture of copper-clad lamination board

Publications (1)

Publication Number Publication Date
JPH03108786A true JPH03108786A (en) 1991-05-08

Family

ID=17129606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24516789A Pending JPH03108786A (en) 1989-09-22 1989-09-22 Manufacture of copper-clad lamination board

Country Status (1)

Country Link
JP (1) JPH03108786A (en)

Similar Documents

Publication Publication Date Title
US6426310B1 (en) Electrically insulating non-woven fabric, a prepreg and a laminate
JPH03108786A (en) Manufacture of copper-clad lamination board
JP2612129B2 (en) Laminated board
JPS6018339A (en) Thermo-setting resin laminated board having excellent dimensional stability
JPH0369353A (en) Manufacture of copper-clad laminated board
JPH064310B2 (en) Electric laminate
JPH03227332A (en) Production of laminated board
JPH07115444B2 (en) Copper clad laminate
JPH04259543A (en) Manufacture of laminated board for printed circuit
JPH02258337A (en) Manufacture of laminate for printed circuit
JPH05162246A (en) Laminated sheet for printed circuit
JPH035135A (en) Flame-retardant laminated board and manufacturing method thereof
JP3364782B2 (en) Prepreg and laminate for printed wiring board production
JPH03139897A (en) Manufacture of laminate sheet for printed circuit
JPS6131245A (en) Manufacture of composite laminated board
JPH02133441A (en) Production of electrical laminate
JPH01282222A (en) Production of laminated sheet for printed circuit
JPH05291712A (en) Board for printed-circuit use
JPH11268181A (en) Copper-clad laminate
JPH0455364B2 (en)
JPH04290744A (en) Composite laminated sheet
JPH01310951A (en) Preparation of laminated sheet for printed circuit board
JPH04268785A (en) Copper plated laminated board
JPS62270333A (en) Copper-lined laminated board
JPH02133445A (en) Production of electrical laminate