JPH03108725A - Semiconductor crystal - Google Patents

Semiconductor crystal

Info

Publication number
JPH03108725A
JPH03108725A JP1247230A JP24723089A JPH03108725A JP H03108725 A JPH03108725 A JP H03108725A JP 1247230 A JP1247230 A JP 1247230A JP 24723089 A JP24723089 A JP 24723089A JP H03108725 A JPH03108725 A JP H03108725A
Authority
JP
Japan
Prior art keywords
layer
composition
inalgaas
lattice
inp substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1247230A
Other languages
Japanese (ja)
Other versions
JP2830167B2 (en
Inventor
Naotaka Iwata
直高 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1247230A priority Critical patent/JP2830167B2/en
Publication of JPH03108725A publication Critical patent/JPH03108725A/en
Application granted granted Critical
Publication of JP2830167B2 publication Critical patent/JP2830167B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a wafer structure which is characterized by excellent heat stability, excellent confining property of holes in a base layer and no Kirk effect, which poses a problem when a bipolar transistor is operated with a large current, and which is suitable of manufacturing the bipolar transistor by providing specified four compound semiconductor layers. CONSTITUTION:An n- or neutral InAlGaAs layer 24 is located in a composition region which is approximately aligned with the lattice of a high-resistance InP substrate. A first i-GaAsSb layer 25 is located in a composition region which is approximately aligned with the lattice of the InP substrate 21 and has at least one or more atomic layer. The layer 25 is provided on the InAlGaAs layer 24. The composition of Al of a p<+>-InAlGaAs layer 26 is lower than that of the other InAlGaAs layer 24. The layer 26 is located in the composition region which is approximately aligned with the lattice of the InP substrate 21. The layer 26 is provided on said GaAsSb layer 25. A second i-GaAsSb layer 25 is provided on said p-InAlGaAs layer 26. The layer 25 has at least one or more atomic layers. The layer 25 is located in a composition region which is approximately aligned with the lattice of the InP substrate 21. An n-InAlGaAs graded layer 28 is provided on said second GaAsSb layer 25 and located in a composition region which is approximately alinged with the lattice of the InP substrate.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体結晶、特に界面の熱安定性に優れ、かつ
ベース層での正孔のとじ込めにも優れたnpnへテロ接
合バイポーラトランジスタを作製するウェハ構造に関す
る。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to semiconductor crystals, especially npn heterojunction bipolar transistors that have excellent interface thermal stability and excellent hole trapping in the base layer. Regarding the wafer structure to be manufactured.

〔従来の技術〕[Conventional technology]

■=v族化合物半導体の多くは、電子の移動度が大きい
ことやバンド構造が直接遷移形であることにより、高速
デバイスや光デバイスの材料として注目され、盛んに研
究されてきた。現在では、衛星放送受信用のプリアンプ
や光通信装置など実際の製品にも組み込まれ、日常生活
に浸透しつつある。ところで、■−v族化合物半導体の
デバイスは、その特長を最大限に生かすため、ヘテロ構
造を有するものが多い。例えば、衛星放送受信用のプリ
アンプに用いられている2次元電子ガス電界効果トラン
ジスタや光通信で用いられている半導体レーザ等はその
代表である。しかしながら、そのヘテロ界面構造の信頼
性が確立されたわけではない。例えば、ここでn −I
 n A Q A s / p ”I nGaAs構造
、−I nGaAs構造からなるヘテロ接合バイポーラ
トランジスタを想定してみる。この素子では、n−In
AlAsエミッタ層の価電子帯側の大きなポテンシャル
障壁によりp”−InGaAsベース層内に正孔がせき
止められ、ベース電流を小さくすることかでき、従って
、エミッタから注入した電子の到達率を大きくすること
ができる。
■= Many of the V group compound semiconductors have attracted attention as materials for high-speed devices and optical devices because of their high electron mobility and direct transition type band structure, and have been actively researched. It is now being incorporated into actual products such as preamplifiers for satellite broadcast reception and optical communication equipment, and is becoming pervasive in daily life. Incidentally, in order to make the most of the characteristics of the ■-V group compound semiconductor devices, many of them have a heterostructure. For example, two-dimensional electron gas field effect transistors used in preamplifiers for satellite broadcast reception and semiconductor lasers used in optical communications are representative examples. However, the reliability of the heterointerface structure has not been established. For example, here n −I
Let us assume a heterojunction bipolar transistor consisting of an nGaAs structure and a -InGaAs structure.In this device, n-In
A large potential barrier on the valence band side of the AlAs emitter layer blocks holes in the p''-InGaAs base layer, making it possible to reduce the base current and, therefore, increasing the arrival rate of electrons injected from the emitter. I can do it.

しかしながら、一方では、バイポーラトランジスタの大
電流動作時に実効的なベース層の厚さが増加してしまう
、いわゆるカーク効果(アイ アール イー トランザ
クションズ オン エレクトロン  デバイスイズ(I
RE Trans、 on ElectronDevi
ces ED−9f1962) 164)が生じるとい
う欠点はそのまま有している。
However, on the other hand, the so-called Kirk effect (I.R.E. Transactions on Electron Devices) increases the effective base layer thickness during high current operation of bipolar transistors.
RE Trans, on ElectronDevi
ces ED-9f1962) 164) still remains.

この欠点を回避するには、コレクタ層をInAlGaA
s層とする、いわゆるダブルへテロ構造のバイポーラト
ランジスタが考えられる。即ち、この場合は、p+−I
n、GaAsベース層とInAlGaAsコレクタ層間
もヘテロ界面となるため、n−InAlAsエミッタ層
とp+ InGaAsベース層のへテロ界面と合わせて
、2つのへテロ界面を有することとなり、良好な素子特
性を得る為には2つの界面の特性か良好であることか特
に重要である。ところで、実際の素子作製には熱処理プ
ロセスを行なうか、界面が熱的に不安定である場合には
相互拡散等が生じ、界面の急峻性か損われ、素子特性の
劣化が生じる。またこの劣化は、ヘテロ層の成長温度か
高い場合にも同様な理由で生じる。従来、この劣化を防
ぐなめには、成長温度を下げるとともに、素子作製プロ
セスにおいても、相互拡散等による劣化が無視できるよ
うな充分に低い温度で行なっていた。
To avoid this drawback, the collector layer can be made of InAlGaA
A so-called double heterostructure bipolar transistor having an S layer is considered. That is, in this case, p+-I
Since the n, GaAs base layer and the InAlGaAs collector layer also form a hetero interface, together with the hetero interface between the n-InAlAs emitter layer and the p+ InGaAs base layer, there are two hetero interfaces, and good device characteristics are obtained. For this purpose, it is particularly important that the characteristics of the two interfaces be good. Incidentally, in actual device fabrication, a heat treatment process is performed, or if the interface is thermally unstable, interdiffusion and the like occur, which impairs the steepness of the interface and causes deterioration of device characteristics. This deterioration also occurs for the same reason when the growth temperature of the hetero layer is high. Conventionally, in order to prevent this deterioration, the growth temperature has been lowered, and the device manufacturing process has been performed at a sufficiently low temperature so that deterioration due to interdiffusion and the like can be ignored.

〔発明か解決しようとする課題〕[Invention or problem to be solved]

素子作製プロセスにおいて、熱処理温度は、界面での相
互拡散等による劣化か無視できるような充分に低い温度
であることという制約は、素子作製プロセスに大きな制
限を加えるものである。また結晶成長においても、低温
成長では、結晶性の高いウェハを得ることは困難である
。さらに加えて、ヘテロ接合バイポーラ1〜ランジスタ
をパワー増幅素子とした場合に要求される高温での大電
力動作という苛酷な条件rでは、同様に界面熱的不安定
性により、素子特性の劣化も危惧される。
In the device manufacturing process, the restriction that the heat treatment temperature be low enough to ignore deterioration due to interdiffusion at the interface, etc. imposes a significant restriction on the device manufacturing process. Furthermore, in crystal growth, it is difficult to obtain a wafer with high crystallinity by low-temperature growth. In addition, under the harsh conditions of high-power operation at high temperatures required when a heterojunction bipolar transistor is used as a power amplifying element, there is also concern that the device characteristics may deteriorate due to interfacial thermal instability. .

本発明の目的は、以上述べたような欠点のない、即ち熱
安定性に優れ、しかもベース層での正孔のとじ込めにも
優れ、更にバイポーラトランジスタの大電流動作時に問
題となるいわゆるカーク効果の無いヘテロ接合バイポー
ラトランジスタの作製に適合するウェハ構造を提供する
It is an object of the present invention to be free from the above-mentioned drawbacks, that is, to have excellent thermal stability, excellent hole trapping in the base layer, and to avoid the so-called Kirk effect, which is a problem when bipolar transistors operate at large currents. The present invention provides a wafer structure suitable for fabrication of heterojunction bipolar transistors without oxidation.

〔課題を解決するための手段〕[Means to solve the problem]

前記目的を達成するため、本発明の半導体結晶は、In
P基板にほぼ格子整合する組成域のn形または中性のI
 nAlGaAs層上に設けられた少なくと61原子層
以上のInP基板にほぼ格子整合する組成域の第1のG
aAsSb層と、前記GaAsSb層上に設けられた、
Alの組成か他のIn、AlGaAs層より低く、しか
もInP基板にほぼ格子整合する組成域のp形InAl
GaAs層と、 前記p形InAp、GaAs層上に設けられた少なくと
も1原子層以上のInP基板にほぼ格子整合する組成域
の第2のG a A s S I)層と、前記第2のG
aAsSb層上に設けられた、InP基板にほぼ格子整
合する組成域のn形InAlGaAs層とを有するもの
である。
In order to achieve the above object, the semiconductor crystal of the present invention comprises In
n-type or neutral I with a composition range that is almost lattice matched to the P substrate
A first G in a composition range that is approximately lattice matched to an InP substrate of at least 61 atomic layers provided on an nAlGaAs layer.
an aAsSb layer; provided on the GaAsSb layer;
p-type InAl with a composition range lower than that of other In and AlGaAs layers and almost lattice matched to the InP substrate.
a GaAs layer, a second GaAs SI layer provided on the p-type InAp, GaAs layer and having a composition range that is approximately lattice matched to the InP substrate of at least one atomic layer;
It has an n-type InAlGaAs layer provided on the aAsSb layer and having a composition range that is approximately lattice matched to the InP substrate.

〔作用〕[Effect]

ヘテロ接合は、異種の物質が界面で接続されている構造
であり、熱が加えられれば、お互に拡散し、交じり合い
易い性質を有している。例えばAl A s / G 
a A s界面の熱安定性は比較的良く調べられており
、650°C以上の熱処理温度で相互拡散か生じると報
告されている(ジャパニーズジャーナル オブ アプラ
イド フィジックス(Jan、 J、八pp1. Ph
ys、 24 (1985) 117 ) 、従って、
この系の素子作製のためのプロセス温度は、その相互拡
散が生じる温度より充分に低い必要がある。ところで、
■−v族化合物半導体材料の中には、その混晶組成域内
に不安定な混合領域を有するものがある。混合不安定と
は、−様には混ざり合いにくいということであり、A+
−、B工C1−yDy形の四元系の場合、例えばABと
CDのように相分離してしまうことである。このことを
熱平衡論的に言うならば、即ち多元組成の溶液が固化す
る場合、多元混晶結晶として析出するよりも幾つかの、
例えば二元系または三元系の結晶として相分離し、析出
することがエネルギー的に安定であるということである
A heterojunction is a structure in which different materials are connected at an interface, and has the property of diffusing and mixing with each other when heat is applied. For example, Al A s/G
The thermal stability of the a A s interface has been investigated relatively well, and it has been reported that interdiffusion occurs at heat treatment temperatures of 650°C or higher (Japanese Journal of Applied Physics (Jan, J., 8pp1. Ph.
ys, 24 (1985) 117), therefore,
The process temperature for manufacturing elements of this system needs to be sufficiently lower than the temperature at which interdiffusion occurs. by the way,
(2) Some of the V-group compound semiconductor materials have an unstable mixed region within their mixed crystal composition range. Mixing instability means that it is difficult to mix in the negative direction, and A+
In the case of a quaternary system of type -, B, C1-yDy, phase separation occurs, for example, AB and CD. In terms of thermal equilibrium, when a solution with a multicomponent composition solidifies, rather than precipitating as a multicomponent mixed crystal, several
For example, phase separation and precipitation as a binary or ternary crystal is energetically stable.

ここで、InP基板にほぼ格子整合する組成域のn形ま
たは中性InA’QGaAs層の上に、少なくとも1原
子層以上のInP基板にほぼ格子整合する組成域のGa
AsSb層、その上にAlの組成が他のI nAlGa
As層より低く、しかもInP基板にほぼ格子整合する
組成域のp形InAlGaAs層、またその上に少なく
とも1原子層以上のInP基板にほぼ格子整合する組成
域のGaAsSb層、更にその上にInP基板にほぼ格
子整合する組成域のn形I n A Q G a A 
s層を有するヘテロ接合バイポーラトランジスタ用半導
体結晶の熱安定性が高まる理由を説明する。第1図は四
元溶液から固体の結晶を析出させる場合に、先に述べた
不安定な混合組成領域を熱平衡論的な計算の結果求めた
ものである。(ジャパニーズジャーナル オブ アプラ
イド フィジックス(Jpn、 J、 Appl、 P
hys、 21 (1982) 1323) 、図中、
11はInPに格子整合する組成域、12はInAsに
格子整合する組成域、13はGaAsに格子整合する組
成域、14は析出温度400°Cでの安定域と不安定域
の境界、15は析出温度600℃での安定域と不安定域
の境界、16は析出温度800℃での安定域と不安定域
の境界、17は析出温度1000℃での安定域と不安定
域の境界をそれぞれ示す。それぞれの四角形はそれぞれ
の四元系の組成全域を示している。即ち、四角形の角が
二元系、各辺が三元系、四角形の内側が四元系である。
Here, on the n-type or neutral InA'QGaAs layer having a composition that is approximately lattice matched to the InP substrate, at least one atomic layer of Ga having a composition approximately lattice matched to the InP substrate is formed.
AsSb layer, on which Al composition is other InAlGa
A p-type InAlGaAs layer with a composition range lower than the As layer and almost lattice-matched to the InP substrate, and on top of that a GaAsSb layer of at least one atomic layer with a composition range almost lattice-matched to the InP substrate, and further above that, an InP substrate. n-type I n A Q G a A in the composition range that is almost lattice matched to
The reason why the thermal stability of a semiconductor crystal for a heterojunction bipolar transistor having an S layer is improved will be explained. FIG. 1 shows the above-mentioned unstable mixed composition region obtained as a result of thermal equilibrium calculations when solid crystals are precipitated from a quaternary solution. (Japanese Journal of Applied Physics (Jpn, J, Appl, P
hys, 21 (1982) 1323), in the figure,
11 is a composition range lattice-matched to InP, 12 is a composition range lattice-matched to InAs, 13 is a composition range lattice-matched to GaAs, 14 is the boundary between the stable and unstable regions at a precipitation temperature of 400°C, and 15 is the composition range lattice-matched to InP. 16 is the boundary between the stable and unstable regions at a precipitation temperature of 600°C, 16 is the boundary between the stable and unstable regions at a precipitation temperature of 800°C, and 17 is the boundary between the stable and unstable regions at a precipitation temperature of 1000°C. show. Each square represents the composition range of each quaternary system. That is, the corners of the quadrilateral are binary systems, each side is a ternary system, and the inside of the quadrilateral is a quaternary system.

各曲線の数字の100倍はそれぞれの四元系溶液から固
体の結晶を析出させるときの温度を示しており、その曲
線の内側が不安定な混合組成領域である。点線は、格子
定数が等しい組成を示しており、上からGaSb、In
As、InPにそれぞれ格子整合する組成領域である。
100 times the number on each curve indicates the temperature at which solid crystals are precipitated from each quaternary solution, and the area inside the curve is an unstable mixed composition region. Dotted lines indicate compositions with equal lattice constants, from top to bottom: GaSb, In
This is a composition region that is lattice matched to As and InP, respectively.

ここで、例えばInAlAsSb系の不安定な混合領域
を見ると、それは組成域全体に大きく広がっていること
が分かる。従って、例えば400°CのInAlAsS
b系混合溶液からは、混晶組成の固体はほとんど得られ
ず、InAs、InSb、AlAsまたはAlSbの二
元系に近い組成の固体がモザイク状に析出することか予
想される。逆に言うならば、このInAl、As5b系
では二元系に近い組成の固体が安定であると言える。即
ち、例えばInAsとAlSbのへテロ接合を想定した
場合、熱処理した場合でも混晶化してInAlAsSb
混晶となるよりも、InAsとAlSbのへテロ接合の
ままの方がエネルギー的に安定であるということである
。同様のことは第1図からも分かるように、A Q G
 a A ssb系とI nGaAs Sb系について
も言えるので、総合的には、I n A Q G a 
A s系とInAlGaSb系のへテロ接合界面は熱的
に安定であると言える。ところで実際には、一般に入手
可能であり、しかも集積化等を想定した場合、寄生容量
等の発生が少なく良質な高抵抗基板が得られるInP結
晶基板にほぼ格子整合する組成のへテロ接合界面を想定
することが適当であろう。
Here, if we look at the unstable mixed region of the InAlAsSb system, for example, it will be seen that it widely spreads over the entire composition range. Therefore, for example, InAlAsS at 400°C
It is expected that almost no solid with a mixed crystal composition is obtained from the b-based mixed solution, and that solids with a composition close to a binary system of InAs, InSb, AlAs, or AlSb are precipitated in a mosaic shape. Conversely, it can be said that in this InAl, As5b system, a solid having a composition close to a binary system is stable. That is, for example, assuming a heterojunction of InAs and AlSb, even if heat treated, it will become a mixed crystal and become InAlAsSb.
This means that it is more energetically stable to remain a heterojunction of InAs and AlSb than to form a mixed crystal. The same thing can be seen from Figure 1, A Q G
The same can be said about the a A ssb system and the InGaAs Sb system, so overall, I n A Q Ga
It can be said that the heterojunction interface between the As system and the InAlGaSb system is thermally stable. By the way, in reality, it is generally available, and when integration is assumed, a heterojunction interface with a composition that is almost lattice matched to an InP crystal substrate, which generates less parasitic capacitance and provides a high-quality, high-resistance substrate, is used. It would be appropriate to assume that.

従って、この制約よりI nAlGaAs系とAl G
 a A s S b系の組み合わせか適当であろうと
結論される。
Therefore, from this constraint, I nAlGaAs system and Al G
It is concluded that a combination of a A s S b systems would be appropriate.

しかしながら、A Q G a A s S b系には
第1図から分かるように、その組成域中に大きな不安定
な混合領域が広がっており、組成全域での使用は適当で
ないと判断される。第1図からは、AlAsSbとGa
AsSbが比較的に安定であることか分かる。
However, as can be seen from FIG. 1, the A Q Ga As S b system has a large unstable mixing region spread throughout its composition range, and it is judged that it is not suitable for use over the entire composition range. From Figure 1, we can see that AlAsSb and Ga
It can be seen that AsSb is relatively stable.

しかしながら、A Q A s S bは水に対して不
安定であり、現在のプロセスには適さないことや間接遷
移形半導体であり、電子移動度が低いこと等からGaA
sSbの方が魅力的である。従って、ヘテロ接合界面の
熱安定性からも実際的な利用の面からも、I nAlG
aAs系とG a A s S b系の組み合わせが最
も適当な組み合わせであると結論される。故に、InP
基板にほぼ格子整合する0 組成域のn形または中性のInAlGaAs層の上に、
少なくとも1原子層以上のInP基板にほぼ格子整合す
る組成域のGaAsSb層、その上にAlの組成が他の
I nAlGaAs層より低く、しかもInP基板にほ
ぼ格子整合する組成域のp形I n A Q G a 
A s層、またその上に少なくとも1原子層以上のIn
P基板にほぼ格子整合する組成域のGaAsSb層、更
にその上にInP基板にほぼ格子整合する組成域のn形
InAlGaAS層を有することを特徴とした半導体結
晶の熱安定性は高い。
However, A Q A s S b is unstable in water and is not suitable for current processes, and it is an indirect transition type semiconductor with low electron mobility, so GaA
sSb is more attractive. Therefore, from both the thermal stability of the heterojunction interface and the practical use, InAlG
It is concluded that the combination of aAs system and G a As S b system is the most suitable combination. Therefore, InP
On an n-type or neutral InAlGaAs layer in the 0 composition range that is approximately lattice matched to the substrate,
A GaAsSb layer of at least one atomic layer or more in a composition range that is approximately lattice matched to the InP substrate, and on top of it a p-type InA layer that has an Al composition lower than other InAlGaAs layers and also has a composition range that is approximately lattice matched to the InP substrate. Q G a
As layer, and at least one atomic layer of In on it.
A semiconductor crystal characterized by having a GaAsSb layer with a composition range that is approximately lattice matched to a P substrate and further thereon an n-type InAlGaAS layer with a composition range that is approximately lattice matched to an InP substrate has high thermal stability.

更に、提案したn形又は中性I n A Q G a 
A s/ G a A s S b / p形InAl
GaAs/GaAs S b / n形I nAlGa
As′J7f4造の半導体結晶において、ベース層とな
るp形I nAlGaAs層の、1組成をn形又は中性
I nAlGaAsコレクタ層とn形I nAlGaA
sエミッタ層のAq組成より低くすることにより、本半
導体結晶のバンド構造は、ベース層の価電子帯上端か、
エミツタ層とコレクタ層の価電子帯上端より高くなり、
1 ベース層の正孔はベース層内に完全にとじ込められる。
Furthermore, the proposed n-type or neutral I n A Q G a
A s / G a As S b / p-type InAl
GaAs/GaAs S b / n-type I nAlGa
In the As'J7f4 semiconductor crystal, one composition of the p-type I nAlGaAs layer serving as the base layer is an n-type or neutral I nAlGaAs collector layer and an n-type I nAlGaAs collector layer.
By making the Aq composition lower than that of the s emitter layer, the band structure of the present semiconductor crystal can be changed to the top of the valence band of the base layer or
Higher than the top of the valence band of the emitter layer and collector layer,
1 Holes in the base layer are completely confined within the base layer.

従って、バイポーラトランジスタの大電流動作時に実効
的なベース層の厚さが増加してしまう、いわゆるカーク
効果の問題も回避できる。従って本発明によれは、熱安
定性に優れているばかりでは無く、デバイス特性的にも
一つのへテロ接合を持つ通常のへテロ接合バイポーラト
ランジスタより優れたヘテロ接合バイポーラトランジス
タが得られる。
Therefore, the problem of the so-called Kirk effect, in which the effective thickness of the base layer increases during large current operation of the bipolar transistor, can also be avoided. Therefore, according to the present invention, it is possible to obtain a heterojunction bipolar transistor that not only has excellent thermal stability but also has better device characteristics than a normal heterojunction bipolar transistor having one heterojunction.

〔実施例〕〔Example〕

以下、本発明の一実施例を図により説明する。 Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

第2図は本発明に係る半導体結晶を利用して作製しなヘ
テロ接合バイポーラトランジスタを示す断面図である。
FIG. 2 is a cross-sectional view showing a heterojunction bipolar transistor manufactured using the semiconductor crystal according to the present invention.

このヘテロ接合バイポーラ1〜ランジスタ用のウェハは
、分子線成長法により半絶縁性のInP基板上に530
℃で作製した。その構造は、高抵抗In、P基板21上
に、コレクタコンタクト層として3000人、電子濃度
2 X 1019CI+−’のn+I n o5sG 
a o、 47A 5層22、コレクタ層として500
0人、電子濃度1×1016CI11−3のn −I 
no、53G 2 ao47As層23、サブコレクタ層として50A、@
子漂度I X 10”am−’のn+I no、 53
A ’n O,24Gao23As層24.12人の1
−GaAsSb層25、ベース層として1000人、正
孔濃度2X1019G−3のP +I no、s3G 
ao47A s層26.12人のi −Ga A s 
S b層25、エミツタ層として1500人、電子濃度
2X10”am’のn  I n 0.52A Q 0
.48A S層27、エミツタ層とエミッタコンタク1
〜層を電気的に滑らかにつなぐ層としてAl組組成が0
.48から0まで変化したた厚さ500人のn  I 
n、 y A QえGa+−x−yAsグレーデッド層
(y 二0.5 > 28、エミッタコンタクト層とし
て500人、電子濃度2X1019cm+−3のn+ 
−I no  6gGao 47As層29を順次積層
形成したものである。
The wafers for the heterojunction bipolar 1 to transistors are grown on a semi-insulating InP substrate using the molecular beam growth method.
It was prepared at ℃. Its structure consists of a high-resistance In, P substrate 21, a collector contact layer of 3,000 layers, and an electron concentration of 2 x 1019CI+-' n+In o5sG.
ao, 47A 5 layers 22, 500 as collector layer
0 people, n -I of electron concentration 1 x 1016 CI11-3
no, 53G 2 ao47As layer 23, 50A as sub-collector layer, @
Child drift rate I x 10"am-'n+I no, 53
A 'n O, 24 Gao 23 As layer 24. 1 of 12
-GaAsSb layer 25, 1000 as base layer, hole concentration 2X1019G-3 P +I no, s3G
ao47A s layer 26.12 i-Ga A s
S b layer 25, 1500 people as emitter layer, n I n 0.52A Q 0 with electron concentration 2X10"am'
.. 48A S layer 27, emitter layer and emitter contact 1
~The Al group composition is 0 as a layer that electrically connects the layers smoothly.
.. The thickness varied from 48 to 0.500 n I
n, yA QeGa+-x-yAs graded layer (y20.5 > 28, 500 as emitter contact layer, n+ with electron concentration 2X1019cm+-3
-I no 6gGao 47As layers 29 are sequentially laminated.

オーミック金属30はAuGe/Au、またオーミック
金属31はA u M n / A uである。そのバ
ンド構造を第3図に示す。このヘテロ接合バイポーラト
ランジスタのエミッタ接地での電流増幅率は100であ
り、600°C130分間の水素中での熱処理後におい
ても、その特性はほとんど劣化しなかつ3 た。図中、32はフェルミレベルである。
The ohmic metal 30 is AuGe/Au, and the ohmic metal 31 is A u M n /A u. The band structure is shown in FIG. The current amplification factor of this heterojunction bipolar transistor when the emitter is grounded is 100, and its characteristics hardly deteriorated even after heat treatment in hydrogen at 600° C. for 130 minutes. In the figure, 32 is the Fermi level.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明の半導体結晶によれば、熱的に安定
なヘテロ接合が得られるため、結晶成長温度や素子作製
用プロセス温度の制限が大幅に緩くなるはかりではなく
、ベース層での正孔のとじ込めにも優れ、しかもカーク
効果の無いヘテロ接合バイポーラトランジスタが作製で
きる。さらに本発明を利用して作製した素子は、苛酷な
温度条件下でも長時間良好で安定な動作が期待できるこ
とは明らかである。
As described above, according to the semiconductor crystal of the present invention, a thermally stable heterojunction can be obtained, so that the restrictions on crystal growth temperature and device fabrication process temperature are not significantly relaxed, but rather the A heterojunction bipolar transistor with excellent hole containment and no Kirk effect can be manufactured. Furthermore, it is clear that devices fabricated using the present invention can be expected to perform well and stably for long periods of time even under severe temperature conditions.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の原理を示す図、第2図は本発明に係る
半導体結晶を利用して作製したヘテロ接合バイポーラト
ランジスタを示す断面図、第3図は本発明に係る半導体
結晶を利用して作製したヘテロ接合バイポーラトランジ
スタのバンド構造を示す図である。 11・・・InPに格子整合する組成域12・・・In
Asに格子整合する組成域4 13・・・GaSbに格子整合する組成域14・・・析
出温度400℃での安定域と不安定域の境界15・・・
析出温度600℃での安定域と不安定域の境界16・・
・析出温度800℃での安定域と不安定域の境界17・
・・析出温度1000℃での安定域と不安定域の境界2
1・・・高抵抗InP基板 22・−・n”−InGaAs層 23・・−n−InGaAs層 24・−n−InAl、GaAs層 25− i’ −G a A s S b層2G=−p
”−InGaAs層 27−・−n−InAlAs層 28−・・n−I nAlGaAsグレーデッド層29
・−n”−InGaAs層 30・・・オーミック金属 31・・・オーミック金属 32・・・フェルミレベル
FIG. 1 is a diagram showing the principle of the present invention, FIG. 2 is a cross-sectional view showing a heterojunction bipolar transistor manufactured using the semiconductor crystal according to the present invention, and FIG. FIG. 2 is a diagram showing the band structure of a heterojunction bipolar transistor fabricated using the same method. 11... Composition region lattice matched to InP 12... In
Composition region 4 lattice-matched to As 13... Composition region 14 lattice-matched to GaSb... Boundary between stable region and unstable region at precipitation temperature 400°C 15...
Boundary between stable region and unstable region at precipitation temperature 600℃ 16...
・Boundary between stable and unstable region at precipitation temperature 800℃ 17・
...Boundary between stable region and unstable region at precipitation temperature 1000℃ 2
1... High resistance InP substrate 22...n"-InGaAs layer 23...-n-InGaAs layer 24...-n-InAl, GaAs layer 25-i'-G a As S b layer 2G=-p
"-InGaAs layer 27--n-InAlAs layer 28--n-I nAlGaAs graded layer 29
-n''-InGaAs layer 30...Ohmic metal 31...Ohmic metal 32...Fermi level

Claims (1)

【特許請求の範囲】[Claims] (1)InP基板にほぼ格子整合する組成域のn形また
は中性のInAlGaAs層上に設けられた少なくとも
1原子層以上のInP基板にほぼ格子整合する組成域の
第1のGaAsSb層と、前記GaAsSb層上に設け
られた、Alの組成が他のInAlGaAs層より低く
、しかもInP基板にほぼ格子整合する組成域のp形I
nAlGaAs層と、 前記p形InAlGaAs層上に設けられた少なくとも
1原子層以上のInP基板にほぼ格子整合する組成域の
第2のGaAsSb層と、 前記第2のGaAsSb層上に設けられた、InP基板
にほぼ格子整合する組成域のn形InAlGaAs層と
を有することを特徴とする半導体結晶。
(1) a first GaAsSb layer having a composition of at least one atomic layer or more and having a composition of approximately lattice matching to the InP substrate, provided on an n-type or neutral InAlGaAs layer having a composition of approximately lattice matching to the InP substrate; A p-type I layer formed on the GaAsSb layer and having an Al composition lower than that of other InAlGaAs layers and in a composition range that is almost lattice matched to the InP substrate.
an nAlGaAs layer; a second GaAsSb layer of at least one atomic layer provided on the p-type InAlGaAs layer and having a composition approximately lattice-matched to the InP substrate; and an InP layer provided on the second GaAsSb layer. 1. A semiconductor crystal comprising an n-type InAlGaAs layer having a composition range that is approximately lattice matched to a substrate.
JP1247230A 1989-09-22 1989-09-22 Semiconductor crystal Expired - Fee Related JP2830167B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1247230A JP2830167B2 (en) 1989-09-22 1989-09-22 Semiconductor crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1247230A JP2830167B2 (en) 1989-09-22 1989-09-22 Semiconductor crystal

Publications (2)

Publication Number Publication Date
JPH03108725A true JPH03108725A (en) 1991-05-08
JP2830167B2 JP2830167B2 (en) 1998-12-02

Family

ID=17160388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1247230A Expired - Fee Related JP2830167B2 (en) 1989-09-22 1989-09-22 Semiconductor crystal

Country Status (1)

Country Link
JP (1) JP2830167B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5349201A (en) * 1992-05-28 1994-09-20 Hughes Aircraft Company NPN heterojunction bipolar transistor including antimonide base formed on semi-insulating indium phosphide substrate
WO2001009957A1 (en) * 1999-07-30 2001-02-08 Hrl Laboratories, Llc Inp collector ingaassb base dhbt device and method of forming the same
US8693680B2 (en) 2009-07-21 2014-04-08 Panasonic Corporation Telephone
US9530708B1 (en) 2013-05-31 2016-12-27 Hrl Laboratories, Llc Flexible electronic circuit and method for manufacturing same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5349201A (en) * 1992-05-28 1994-09-20 Hughes Aircraft Company NPN heterojunction bipolar transistor including antimonide base formed on semi-insulating indium phosphide substrate
WO2001009957A1 (en) * 1999-07-30 2001-02-08 Hrl Laboratories, Llc Inp collector ingaassb base dhbt device and method of forming the same
US8693680B2 (en) 2009-07-21 2014-04-08 Panasonic Corporation Telephone
US9530708B1 (en) 2013-05-31 2016-12-27 Hrl Laboratories, Llc Flexible electronic circuit and method for manufacturing same
US10056340B1 (en) 2013-05-31 2018-08-21 Hrl Laboratories, Llc Flexible electronic circuit and method for manufacturing same

Also Published As

Publication number Publication date
JP2830167B2 (en) 1998-12-02

Similar Documents

Publication Publication Date Title
US4821090A (en) Compound semiconductor integrated circuit device
US4819036A (en) Semiconductor device
KR19980034078A (en) Hot Electron Device and Resonant Tunneling Hot Electronic Device
US6787822B1 (en) Heterojunction III-V transistor, in particular HEMT field effect transistor or heterojunction bipolar transistor
JP2528253B2 (en) NPN type heterojunction bipolar transistor
JPH04318919A (en) Manufacture of gaas device and device manufactured by this method
US5322808A (en) Method of fabricating inverted modulation-doped heterostructure
JPH03108725A (en) Semiconductor crystal
JPH0338835A (en) Semiconductor crystal
JP3667331B2 (en) HETERO FIELD EFFECT TRANSISTOR, MANUFACTURING METHOD THEREOF, AND TRANSMITTING / RECEIVING DEVICE EQUIPPED WITH THE SAME
Fischer et al. Microwave properties of self-aligned GaAs/AlGaAs heterojunction bipolar transistors on silicon substrates
JPH06188271A (en) Field effect transistor
JPH0590283A (en) Semiconductor device
JP2994863B2 (en) Heterojunction semiconductor device
JP2576232B2 (en) Semiconductor crystal
JPH03289135A (en) Semiconductor device
JPS59181060A (en) Semiconductor device
JPH0738393B2 (en) Semiconductor device
JPS61268069A (en) Semiconductor device
JPH04343438A (en) Field effect transistor
JPH0297026A (en) Hetero-bipolar transistor
JP2730511B2 (en) Heterojunction field effect transistor
JP2001298031A (en) Junction-type bipolar transistor, its manufacturing method, and semiconductor integrated circuit device
JPH0661245A (en) Semiconductor device
JP3423812B2 (en) HEMT device and manufacturing method thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees