JPH03108259A - Nickel-hydrogen alkaline storage battery - Google Patents
Nickel-hydrogen alkaline storage batteryInfo
- Publication number
- JPH03108259A JPH03108259A JP1244946A JP24494689A JPH03108259A JP H03108259 A JPH03108259 A JP H03108259A JP 1244946 A JP1244946 A JP 1244946A JP 24494689 A JP24494689 A JP 24494689A JP H03108259 A JPH03108259 A JP H03108259A
- Authority
- JP
- Japan
- Prior art keywords
- negative electrode
- capacity
- storage alloy
- positive electrode
- hydrogen storage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910052739 hydrogen Inorganic materials 0.000 title claims abstract description 70
- 239000001257 hydrogen Substances 0.000 title claims abstract description 70
- 238000003860 storage Methods 0.000 title claims abstract description 66
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 70
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 54
- 239000000956 alloy Substances 0.000 claims abstract description 54
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 54
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 35
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(II) oxide Inorganic materials [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 claims abstract description 13
- 239000000463 material Substances 0.000 claims description 2
- 229910000480 nickel oxide Inorganic materials 0.000 abstract description 6
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 abstract description 6
- 238000004519 manufacturing process Methods 0.000 abstract description 5
- 238000006243 chemical reaction Methods 0.000 abstract description 2
- 239000000843 powder Substances 0.000 description 10
- 239000002184 metal Substances 0.000 description 9
- 229910052751 metal Inorganic materials 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 8
- 229910000428 cobalt oxide Inorganic materials 0.000 description 6
- 238000002156 mixing Methods 0.000 description 6
- 239000000203 mixture Substances 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000012856 packing Methods 0.000 description 4
- 229920005596 polymer binder Polymers 0.000 description 4
- 239000002491 polymer binding agent Substances 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 239000000835 fiber Substances 0.000 description 3
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 3
- 239000004810 polytetrafluoroethylene Substances 0.000 description 3
- 229920000178 Acrylic resin Polymers 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- OJIJEKBXJYRIBZ-UHFFFAOYSA-N cadmium nickel Chemical compound [Ni].[Cd] OJIJEKBXJYRIBZ-UHFFFAOYSA-N 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- BFDHFSHZJLFAMC-UHFFFAOYSA-L nickel(ii) hydroxide Chemical compound [OH-].[OH-].[Ni+2] BFDHFSHZJLFAMC-UHFFFAOYSA-L 0.000 description 2
- 239000004745 nonwoven fabric Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- -1 polytetrafluoroethylene Polymers 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 229910052987 metal hydride Inorganic materials 0.000 description 1
- 238000009784 over-discharge test Methods 0.000 description 1
- 229920001495 poly(sodium acrylate) polymer Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- NNMHYFLPFNGQFZ-UHFFFAOYSA-M sodium polyacrylate Chemical compound [Na+].[O-]C(=O)C=C NNMHYFLPFNGQFZ-UHFFFAOYSA-M 0.000 description 1
- 239000011345 viscous material Substances 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【発明の詳細な説明】
[発明の目的]
(産業上の利用分野)
本発明はニッケル・水素アルカリ蓄電池に関し、特に電
極の容量を改良したニッケル・水素アルカリ蓄電池に係
る。[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a nickel-hydrogen alkaline storage battery, and particularly to a nickel-hydrogen alkaline storage battery with improved electrode capacity.
(従来の技術)
近年、非焼結式ニッケル正極及び水素吸蔵合金負極を用
いたニッケル・水素アルカリ蓄電池は、−殻内なニッケ
ル・カドミウム蓄電池と比較して電極のエネルギー密度
が1.5倍以上も大きく電池の高容量化に対応可能であ
ることから開発が進められて来ている。(Prior art) In recent years, nickel-hydrogen alkaline storage batteries using non-sintered nickel positive electrodes and hydrogen storage alloy negative electrodes have an electrode energy density that is more than 1.5 times that of in-shell nickel-cadmium storage batteries. Development has been progressing because it can accommodate higher capacity batteries.
前記ニッケル・水素アルカリ蓄電池はニッケル・カドミ
ウム蓄電池と基本的には同構造・同構成であるが、過充
電時に電池内圧が上昇するのを抑えたり過放電時に電極
が転極するを防止するため、前記非焼結式ニッケル正極
と前記水素吸蔵合金負極との電極容量バランスを調整し
て製造されている。The nickel-hydrogen alkaline storage battery has basically the same structure and configuration as the nickel-cadmium storage battery, but in order to suppress the internal pressure of the battery from increasing during overcharging and prevent the electrodes from reversing during overdischarge, It is manufactured by adjusting the electrode capacity balance between the non-sintered nickel positive electrode and the hydrogen storage alloy negative electrode.
従来、電極容量バランスを調整したニッケル・水素アル
カリ蓄電池としては、非焼結式ニッケル正極と水素吸蔵
合金負極との全容量比を規定したニッケル・水素アルカ
リ蓄電池(特公昭61−5264、特開昭83−230
274号)や、非焼結式ニッケル正極と水素吸蔵合金負
極との単位容積当りの容量比を規定したニッケル・水素
アルカリ蓄電池(特開昭82−15769号)が提案さ
れている。Conventionally, as a nickel-hydrogen alkaline storage battery with adjusted electrode capacity balance, there has been a nickel-hydrogen alkaline storage battery (Japanese Patent Publication No. 61-5264, Japanese Patent Application Laid-open No. 83-230
No. 274) and a nickel-hydrogen alkaline storage battery (Japanese Unexamined Patent Publication No. 15769/1982) in which the capacity ratio per unit volume of a non-sintered nickel positive electrode and a hydrogen storage alloy negative electrode is specified have been proposed.
しかしながら、前述したニッケル・水素アルヵリ蓄電池
は放電時において、特に過放電時や大電流放電時におい
て、水素吸蔵合金負極の利用率が非焼結式ニッケル正極
の利用率よりも劣るため負極容量規制となることがある
。そのため、充放電サイクル特性が悪化したり電池内圧
が大幅に上昇することがあるという不都合がある。However, in the above-mentioned nickel-hydrogen alkaline storage battery, the utilization rate of the hydrogen storage alloy negative electrode is inferior to that of the non-sintered nickel positive electrode during discharge, especially during overdischarge or large current discharge, so the negative electrode capacity is regulated. It may happen. Therefore, there are disadvantages in that the charge/discharge cycle characteristics may deteriorate or the internal pressure of the battery may increase significantly.
そこで、この不都合を解消するために電池が完全放電す
るかなり以前の状態で放電を終了させることが提案され
ている(特公昭61−5284号、特開昭61−807
70号、特開昭62−78185号)。しかしながら、
これらの蓄電池では過放電時や大電流放電時では前記不
具合を充分に解消することができないという問題がある
。また、この不都合を解消するために予め水素吸蔵合金
負極の一部を充電状態にしたニッケル・水素アルカリ蓄
電池も提案されているが、これを製造する工程が繁雑に
なるという問題や水素を吸蔵した状態の水素吸蔵合金粉
末を使用するので危険であるという問題がある。Therefore, in order to eliminate this inconvenience, it has been proposed to terminate the discharge well before the battery is completely discharged (Japanese Patent Publication No. 61-5284, Japanese Patent Application Laid-Open No. 61-807).
No. 70, JP-A-62-78185). however,
These storage batteries have a problem in that the above-mentioned problems cannot be sufficiently eliminated during overdischarge or large current discharge. In addition, in order to solve this problem, a nickel-hydrogen alkaline storage battery in which a part of the hydrogen-absorbing alloy negative electrode is in a charged state has been proposed, but there are problems in that the manufacturing process becomes complicated, and there are problems in that the hydrogen-absorbing alloy negative electrode is partially charged. There is a problem in that it is dangerous because it uses hydrogen-absorbing alloy powder.
(発明が解決しようとする課題)
本発明は従来の課題を解決するためになされたもので、
過放電時や大電流放電でも負極容量規制にならず、充放
電サイクル特性等の電池特性が良好に安定して維持され
電池内圧の大幅な上昇を抑えることができ、しかも簡単
に安全な方法で製造することができるニッケル・水素ア
ルカリ蓄電池を提供しようとするものである。(Problems to be solved by the invention) The present invention has been made to solve the conventional problems.
The negative electrode capacity is not restricted even during over-discharge or large-current discharge, battery characteristics such as charge-discharge cycle characteristics are maintained well and stably, and a significant increase in battery internal pressure can be suppressed, and it is easy and safe to do so. The present invention aims to provide a nickel-hydrogen alkaline storage battery that can be manufactured.
[発明の構成]
(課題を解決するための手段)
本発明は、非焼結式ニッケル正極と、前記非焼結式ニッ
ケル正極に対して単位表面積当りの容量が1.2倍以上
である水素吸蔵合金負極とを具備することを特徴とする
ニッケル・水素アルカリ蓄電池である。[Structure of the Invention] (Means for Solving the Problems) The present invention provides a non-sintered nickel positive electrode and a hydrogen material having a capacity per unit surface area of at least 1.2 times that of the non-sintered nickel positive electrode. The present invention is a nickel-hydrogen alkaline storage battery characterized by comprising a storage alloy negative electrode.
前記非焼結式ニッケル正極は、主に容量を規定する酸化
ニッケルを含有する。かかる非焼結式ニッケル正極中に
は、前記酸化ニッケルに対して5〜20重量%の配合割
合で一酸化コバルトを含有することが望ましい。この理
由は、−酸化コバルトの配合割合が5重量%未満である
場合、放電時に水素吸蔵合金負極の水素化物量が少なく
なって負極容量規制になる恐れがある。一方、−酸化コ
バルトの配合割合が20重量%を越える場合、非焼結式
ニッケル正極中に占める一酸化コバルトの割合が過大と
なり電極容量が低下したり、又、−酸化コバルトの充電
に伴なう水素吸蔵合金負極の充電可能容量の低下に起因
して、充電時に水素吸蔵合金負極は水素吸蔵能力が低下
して水素を充分に吸蔵できず、電池内圧が上昇する恐れ
がある。この非焼結式ニッケル正極は、例えば焼結金属
繊維基板、発泡メタル、不織布めっき基板などに、水酸
化ニッケルを主成分とするペーストを充填することによ
り製造されたものである。The non-sintered nickel positive electrode mainly contains nickel oxide, which defines the capacity. Such a non-sintered nickel positive electrode preferably contains cobalt monoxide at a blending ratio of 5 to 20% by weight based on the nickel oxide. The reason for this is that if the blending ratio of -cobalt oxide is less than 5% by weight, the amount of hydride in the hydrogen storage alloy negative electrode decreases during discharge, which may result in negative electrode capacity restriction. On the other hand, if the blending ratio of -cobalt oxide exceeds 20% by weight, the proportion of cobalt monoxide in the non-sintered nickel positive electrode will be too large, resulting in a decrease in electrode capacity, or as a result of charging of -cobalt oxide. Due to a decrease in the chargeable capacity of the hydrogen storage alloy negative electrode, the hydrogen storage alloy negative electrode has a reduced hydrogen storage capacity during charging and cannot store hydrogen sufficiently, which may increase the internal pressure of the battery. This non-sintered nickel positive electrode is manufactured by, for example, filling a sintered metal fiber substrate, foamed metal, nonwoven fabric plated substrate, etc. with a paste containing nickel hydroxide as a main component.
前記水素吸蔵合金負極は、水素吸蔵合金粉末に高分子結
着剤を配合し、必要に応じて導電性粉末を配合した合剤
を集電体である導電性芯体に被覆、固定した構造を有す
る。The hydrogen-absorbing alloy negative electrode has a structure in which a mixture of hydrogen-absorbing alloy powder, a polymer binder, and conductive powder is coated and fixed on a conductive core that is a current collector. have
前記合剤中に配合される水素吸蔵合金としては、格別制
限されるものではなく、電解液中で電気化学的に発生さ
せた水素を吸蔵でき、かつ放電時にその吸蔵水素を容易
に放出できるものであればよいが、特にL a 、 M
m (Mm ;ミツシュメタル)、及びLm(Lm;L
a富化ミツシュメタル)よりなる群から選択される少な
くとも一種と、Ni1(: o、All SMn、Fe
s及びCuよりなる群から選択される少なくとも一種と
を含む組成のものを用いることが望ましい。The hydrogen storage alloy to be added to the mixture is not particularly limited, and may be one that can store hydrogen electrochemically generated in the electrolyte and easily release the stored hydrogen during discharge. However, in particular, L a , M
m (Mm; Mitsushmetal), and Lm (Lm; L
at least one selected from the group consisting of Ni1 (: o, All SMn, Fe
It is desirable to use a composition containing at least one selected from the group consisting of s and Cu.
前記合剤中に配合される高分子結着剤としては、例えば
ポリアクリル酸ソーダ、ポリテトラプルオロエチレン(
PTFE) 、カルボキシメチルセルロース(CMC)
等を挙げることができる。かかる高分子結着剤の配合割
合は、水素吸蔵合金粉末100重量部に対して0.5〜
5重量部の範囲とすることが望ましい。Examples of the polymer binder blended in the mixture include sodium polyacrylate, polytetrafluoroethylene (
PTFE), carboxymethyl cellulose (CMC)
etc. can be mentioned. The blending ratio of the polymer binder is 0.5 to 100 parts by weight of the hydrogen storage alloy powder.
It is desirable that the amount is in the range of 5 parts by weight.
前記合剤中に配合される導電性粉末としては、例えばカ
ーボンブラック、黒鉛等を挙げることができる。かかる
導電性粉末の配合割合は、前記水素吸蔵合金粉末100
重量部に対して0.1〜4重量部とすることが望ましい
。Examples of the conductive powder blended in the mixture include carbon black and graphite. The blending ratio of the conductive powder is 100% of the hydrogen storage alloy powder.
It is desirable that the amount is 0.1 to 4 parts by weight.
前記集電体である導電性芯体としては、例えばパンチト
メタル、エキスバンドメタル、金網等の二次元構造のも
の、発泡メタル、網状焼結金属繊維などの三次元構造の
もの等を挙げることができる。Examples of the conductive core that is the current collector include those with a two-dimensional structure such as punched metal, expanded metal, and wire mesh, and those with a three-dimensional structure such as foamed metal and reticulated sintered metal fiber. I can do it.
前記水素吸蔵合金負極の前記非焼結式ニッケル正極に対
する単位表面積当りの容量を限定した理由は、その容量
を1.2倍未満にすると負極容量規制を防止する等の効
果が達成できなくなるからである。The reason for limiting the capacity per unit surface area of the hydrogen storage alloy negative electrode relative to the non-sintered nickel positive electrode is that if the capacity is less than 1.2 times, the effect of preventing negative electrode capacity regulation cannot be achieved. be.
(作用)
本発明によれば、水素吸蔵合金負極の単位表面積当りの
容量が非焼結式ニッケル正極の単位表面積当りの容量の
1.2倍以上にすることによって、従来のように全容
量や単位容積で容量を規定した場合に比べて電池反応の
実態により適合した条件で正極、負極の容量を決定して
いるため、過放電時や大電流放電時においても、水素吸
蔵合金負極の利用率が非焼結式ニッケル正極の利用率よ
り劣ることに起因する負極容量規制を回避できる。その
結果、負極容量規制に伴う充放電サイクル特性の悪化や
電池内圧の大幅な上昇を防止したニッケル・水素アルカ
リ蓄電池を得ることができる。しかも、完全放電のかな
り以前の状態で放電を終了させる必要がなく、また予め
水素吸蔵合金負極の一部を充電状態にして製造する必要
もないため、前記蓄電池を簡単かつ安全な方法で製造す
ることができる。(Function) According to the present invention, by making the capacity per unit surface area of the hydrogen storage alloy negative electrode 1.2 times or more the capacity per unit surface area of the non-sintered nickel positive electrode, the total capacity and Compared to the case where the capacity is specified by unit volume, the capacity of the positive and negative electrodes is determined under conditions that are more suitable for the actual state of battery reactions, so even during overdischarge or large current discharge, the utilization rate of the hydrogen storage alloy negative electrode is reduced. It is possible to avoid negative electrode capacity restrictions due to the fact that the utilization rate is lower than that of non-sintered nickel positive electrodes. As a result, it is possible to obtain a nickel-hydrogen alkaline storage battery that prevents deterioration of charge/discharge cycle characteristics and a significant increase in battery internal pressure due to negative electrode capacity regulations. Furthermore, there is no need to terminate the discharge well before complete discharge, and there is no need to manufacture the hydrogen storage alloy negative electrode with a part of it in a charged state in advance, so the storage battery can be manufactured in a simple and safe manner. be able to.
また、前記非焼結式ニッケル正極が一酸化コバルトを酸
化ニッケルに対して5〜20重量%の配合割合で含有す
れば、低電流等で初充電することにより前記−酸化コバ
ルトを酸化してその後の放電時に還元されずに安定して
残存するオキシ水酸化コバルトを生成できる。したがっ
て、前記−酸化コバルトの酸化に消費された電気量に相
当する水素が水素吸蔵合金負極に常に吸蔵された状態に
なるため、放電時における水素吸蔵合金負極の利用率が
向上し、負極容量規制をより一層効果的に防止すること
ができる。なお、前記のような水素が水素吸蔵合金負極
に常に吸蔵された状態になることに伴って、その水素量
だけ水素吸蔵合金負極が吸収できる水素量が少なくなる
が、水素吸蔵合金負極の容量を前述したように規定して
いるため、充電時において酸化ニッケルの酸化に伴って
発生する水素を水素吸蔵合金により充分に吸収すること
ができ、電池内圧の大幅な上昇を防止できる。In addition, if the non-sintered nickel positive electrode contains cobalt monoxide at a blending ratio of 5 to 20% by weight relative to nickel oxide, the cobalt oxide can be oxidized by initial charging with a low current, etc. It is possible to produce cobalt oxyhydroxide that remains stably without being reduced during discharge. Therefore, hydrogen corresponding to the amount of electricity consumed in the oxidation of cobalt oxide is always stored in the hydrogen storage alloy negative electrode, which improves the utilization rate of the hydrogen storage alloy negative electrode during discharge, and limits the negative electrode capacity. can be prevented even more effectively. In addition, as hydrogen is always stored in the hydrogen storage alloy negative electrode as described above, the amount of hydrogen that the hydrogen storage alloy negative electrode can absorb decreases by the amount of hydrogen, but the capacity of the hydrogen storage alloy negative electrode is Since it is defined as described above, the hydrogen generated as a result of oxidation of nickel oxide during charging can be sufficiently absorbed by the hydrogen storage alloy, and a significant increase in battery internal pressure can be prevented.
(実施例) 以下、本発明の実施例を詳細に説明する。(Example) Examples of the present invention will be described in detail below.
実施例1
まず、LIN14.2 COo、2 Mno5AIIo
、s (L■;La富化ミツシュメタル)で示される
組成の水素吸蔵合金に水素を2回吸収放出させて微粉化
し、200メツシユバスの水素吸蔵合金粉末を用いた。Example 1 First, LIN14.2 COo, 2 Mno5AIIo
, s (L■; La-enriched metal) was made to absorb and release hydrogen twice and was pulverized, and 200 mesh baths of hydrogen storage alloy powder were used.
つづいて、前記水素吸蔵合金粉末に高分子結着剤として
PTFE3ffi量%、導電性粉末としてカーボンブラ
ック1重量%及び水を添加してペーストを混合調製した
後、このペーストをパン千トメタル基板に塗布・乾燥・
圧延し83X 39X 0.40a+++に裁断するこ
とにより水素吸蔵合金負極を作製した。Next, 3% of PTFE as a polymer binder, 1% of carbon black as a conductive powder, and water were added to the hydrogen storage alloy powder to mix and prepare a paste, and then this paste was applied to a pan-metal substrate.・Drying・
A hydrogen storage alloy negative electrode was prepared by rolling and cutting into 83×39×0.40a+++.
一方、水酸化ニッケル90重量部及び−酸化コバルト1
0重量部に、結合剤、粘性材及び水を添加−してペース
トを混合調製した。このペーストを多孔度95%のニッ
ケル焼結繊維基板に充填・乾燥・圧延し63X 39X
0.70amに裁断することにより非焼結式ニッケル
正極を作製した。On the other hand, 90 parts by weight of nickel hydroxide and -1 part by weight of cobalt oxide
A paste was prepared by adding a binder, a viscous material, and water to 0 parts by weight. This paste was filled into a nickel sintered fiber substrate with a porosity of 95%, dried, and rolled.
A non-sintered nickel positive electrode was produced by cutting it to 0.70 am.
前記水素吸蔵合金負極及び非焼結式ニッケル正極を、ポ
リアミド製の0.201厚の不織布を介して捲回して電
極群を作製した。この電極群を圧力検出器を付けたアク
リル樹脂製容器のAAサイズの空間に挿入し、この空間
にKOH7規定、Li0H1規定の電解液を2.41m
g注液し、封口し、電池の容量がlooomAhで、水
素吸蔵合金負極の単位表面積当りの容量が非焼結式ニッ
ケル正極に対して1.23倍である第1図に示すような
試験セルを製造した。即ち、この試験セルは前記アクリ
ル樹脂製のケース本体1とキャップ2とからなる電池ケ
ースを備える。前記ケース本体1の中心部には、AAサ
イズの電池の金属容器と同一の内径及び高さを有する空
間3が形成されており、この空間3内部には電極群4が
収納され、更に電解液が収容されている。前記キャップ
2は封目板の役割を果たしていると共に、圧力検出器5
を取り付けて電池内圧を検出できるようになっている。An electrode group was prepared by winding the hydrogen storage alloy negative electrode and non-sintered nickel positive electrode with a polyamide nonwoven fabric having a thickness of 0.201 interposed therebetween. This electrode group was inserted into the AA size space of an acrylic resin container equipped with a pressure detector, and 2.41 m of electrolyte solution of KOH7 standard and Li0H1 standard was poured into this space.
A test cell as shown in Fig. 1 in which the battery capacity is LOOMAh and the capacity per unit surface area of the hydrogen storage alloy negative electrode is 1.23 times that of the non-sintered nickel positive electrode. was manufactured. That is, this test cell includes a battery case consisting of the case body 1 and the cap 2 made of the acrylic resin. A space 3 having the same inner diameter and height as the metal container of an AA size battery is formed in the center of the case body 1, and an electrode group 4 is housed inside this space 3, and an electrolyte is also contained in the space 3. is accommodated. The cap 2 serves as a sealing plate and also serves as a pressure detector 5.
can be installed to detect battery internal pressure.
前記ケース本体1上には前記キャップ2がゴムシート6
及びOリング7を介してボルト8及びナツト9により気
密に固定されている。水素吸蔵合金負極からの負極リー
ド10と非焼結式ニッケル正極からの正極リード11は
前記ゴムシート6と前記Oリング7との間を通して導出
されている。The cap 2 is mounted on a rubber sheet 6 on the case body 1.
and is airtightly fixed by bolts 8 and nuts 9 via O-rings 7. A negative electrode lead 10 from the hydrogen storage alloy negative electrode and a positive electrode lead 11 from the non-sintered nickel positive electrode are led out through between the rubber sheet 6 and the O-ring 7.
実施例2
水素吸蔵合金負極の合金充填密度を高めて単位容積当り
の容量を実施例1よりも 100mAh/cc増加させ
た以外は実施例1と同様な試験セルを製造した。なお、
この時の水素吸蔵合金負極の単位表面積当りの容量は、
非焼結式ニッケル正極に対して1.33倍であった。Example 2 A test cell similar to Example 1 was manufactured except that the alloy packing density of the hydrogen storage alloy negative electrode was increased to increase the capacity per unit volume by 100 mAh/cc compared to Example 1. In addition,
At this time, the capacity per unit surface area of the hydrogen storage alloy negative electrode is:
It was 1.33 times that of a non-sintered nickel positive electrode.
実施例3
水素吸蔵合金負極の合金充填密度を高めて単位容積当り
の容量を実施例1よりも200mAh/cc増加させた
以外は実施例1と同様な試験セルを製造した。なお、こ
の時の水素吸蔵合金負極の単位表面に当りの容量は、非
焼結式ニッケル正極に対して1.43倍であった。Example 3 A test cell similar to Example 1 was manufactured except that the alloy packing density of the hydrogen storage alloy negative electrode was increased to increase the capacity per unit volume by 200 mAh/cc compared to Example 1. The capacity per unit surface of the hydrogen storage alloy negative electrode at this time was 1.43 times that of the non-sintered nickel positive electrode.
比較例1
水素吸蔵合金負極の合金充填密度を低めて単位容積当り
の容量を実施例1よりも20G+aAh/cc減少させ
た以外は実施例1と同様な試験セルを製造した。なお、
この時の水素吸蔵合金負極の単位表面積当りの容量は、
非焼結式ニッケル正極に対して0.95倍であった。Comparative Example 1 A test cell similar to Example 1 was manufactured except that the alloy packing density of the hydrogen storage alloy negative electrode was lowered to reduce the capacity per unit volume by 20 G+aAh/cc than in Example 1. In addition,
At this time, the capacity per unit surface area of the hydrogen storage alloy negative electrode is:
It was 0.95 times that of a non-sintered nickel positive electrode.
比較例2
水素吸蔵合金負極の合金充填密度を低めて単位容積当り
の容量を実施例1よりも1oOIIAh/cc減少させ
た以外は実施例1と同様な試験セルを製造した。なお、
この時の水素吸蔵合金負極の単位表面積当りの容量は、
非焼結式ニッケル正極に対して1.14倍であった。Comparative Example 2 A test cell similar to Example 1 was manufactured except that the alloy packing density of the hydrogen storage alloy negative electrode was lowered to reduce the capacity per unit volume by 10OIIAh/cc than in Example 1. In addition,
At this time, the capacity per unit surface area of the hydrogen storage alloy negative electrode is:
It was 1.14 times that of a non-sintered nickel positive electrode.
実施例1〜3及び比較例1.2の試験セルを100−A
で15時間充電しIAでQ、8Vまで放電し、つづいて
IAで1.5時間充電しIAで0.8vまで放電する条
件で充放電を繰り返し、充電から放電の休止時間と放電
から充電の休止時間とをそれぞれ30分としてサイクル
特性試験を行ない、各サイクルの充電末期における電池
内部圧力を測定した。The test cells of Examples 1 to 3 and Comparative Example 1.2 were
Charged for 15 hours at IA, discharged to Q, 8V at IA, then charged at IA for 1.5 hours, and discharged to 0.8V at IA. A cycle characteristic test was conducted with a rest time of 30 minutes, and the battery internal pressure at the end of charging in each cycle was measured.
その結果を第2図に示す。また、前記サイクル特性試験
において30サイクル目で過放電を行ない、過放電時間
に対する電池内部圧力の変化を調べた。The results are shown in FIG. In addition, in the cycle characteristic test, overdischarge was performed at the 30th cycle, and changes in battery internal pressure with respect to overdischarge time were investigated.
その結果を第3図に示す。この第2図、第3図から実施
例1〜3及び比較例1,2の試験セルにおけるサイクル
寿命、過放電特性を下記第1表にまとめて示す。なお、
サイクル寿命は第2図の特性図において電池内部圧カカ
月Okg/e12に達したサイクル数で表示した。The results are shown in FIG. From FIG. 2 and FIG. 3, the cycle life and overdischarge characteristics of the test cells of Examples 1 to 3 and Comparative Examples 1 and 2 are summarized in Table 1 below. In addition,
The cycle life is expressed in the characteristic diagram of FIG. 2 by the number of cycles at which the battery internal pressure reaches Okg/e12 per month.
第 1 表
*1・・・水素吸蔵合金負極の単位表面積当りの容量÷
非焼結式ニッケル正極の単位表面積当りの容量。Table 1 *1... Capacity per unit surface area of hydrogen storage alloy negative electrode ÷
Capacity per unit surface area of non-sintered nickel positive electrode.
*2・・・水素吸蔵合金負極の全容量+非焼結式ニッケ
ル正極の全容量。*2...Total capacity of hydrogen storage alloy negative electrode + total capacity of non-sintered nickel positive electrode.
*3・・・水素吸蔵合金負極の単位容積当りの容量+非
焼結式ニッケル正極の単位容積当りの容量。*3: Capacity per unit volume of hydrogen storage alloy negative electrode + Capacity per unit volume of non-sintered nickel positive electrode.
前記第1表より明らかなように、実施例1〜3の電池は
サイクル寿命が長く、過放電特性が良好であった。なお
、第1表には示さなかったが実施例1〜3及び比較例1
,2の電池はいずれも過充電特性が良好であった。これ
に対し、比較例1の電池は、電極の全容量及び単位容積
当りの容量とも、水素吸蔵合金負極の方が非焼結式ニッ
ケル正極よりも大きいにもかかわらず、単位表面積当り
の容量では水素吸蔵合金負極電極が非焼結式ニッケル正
極の0.95倍であり1.20倍未満なので、サイクル
寿命が短く、過放電特性が劣るのがわかった。As is clear from Table 1, the batteries of Examples 1 to 3 had long cycle lives and good overdischarge characteristics. Although not shown in Table 1, Examples 1 to 3 and Comparative Example 1
, 2 had good overcharge characteristics. On the other hand, in the battery of Comparative Example 1, although the hydrogen storage alloy negative electrode is larger than the non-sintered nickel positive electrode in both the total capacity and the capacity per unit volume of the electrode, the capacity per unit surface area is It was found that the hydrogen storage alloy negative electrode had a short cycle life and inferior overdischarge characteristics because it was 0.95 times as strong as the non-sintered nickel positive electrode, but less than 1.20 times.
また、比較例2の電池は比較例1の電池よりもサイクル
寿命及び過放電特性が改善されているものの、比較例1
と同様に単位表面積当りの容量では水素吸蔵合金負極が
非焼結式ニッケル正極の1.14倍であり1.20倍未
満なので、それらの特性が実用的に充分に満足できる程
度のものではないのがわかった。In addition, although the battery of Comparative Example 2 has improved cycle life and overdischarge characteristics than the battery of Comparative Example 1,
Similarly, the capacity per unit surface area of the hydrogen storage alloy negative electrode is 1.14 times that of the non-sintered nickel positive electrode, but less than 1.20 times, so these characteristics are not sufficiently satisfactory for practical use. I realized that.
[発明の効果コ
以上詳述した如く、本発明によれば過放電時や大電流放
電でも負極容量規制にならず、充放電サイクル特性等の
電池特性が良好に安定して維持され電池内圧の大幅な上
昇を抑えることができ、しかも簡単に安全な方法で製造
することが可能なニッケル・水素アルカリ蓄電池を提供
することができる。[Effects of the Invention] As detailed above, according to the present invention, the negative electrode capacity is not restricted even during overdischarge or large current discharge, battery characteristics such as charge/discharge cycle characteristics are maintained well and stably, and the internal pressure of the battery is reduced. It is possible to provide a nickel-metal hydride alkaline storage battery that can suppress a significant increase in price and can be manufactured easily and safely.
第1図は本発明の実施例で用いた試験セルを示す断面図
、第2図は実施例のサイクル特性試験におけるサイクル
数に対する電池内部圧力の変化を示す特性図、第3図は
実施例の過放電試験における過放電時間に対する電池内
部圧力の変化を示す特性図である。
1・・・ケース本体、2・・・キャップ、4・・・電極
群、5・・・圧力検出器。Figure 1 is a sectional view showing the test cell used in the example of the present invention, Figure 2 is a characteristic diagram showing the change in battery internal pressure with respect to the number of cycles in the cycle characteristic test of the example, and Figure 3 is the characteristic diagram of the test cell used in the example. FIG. 3 is a characteristic diagram showing changes in battery internal pressure with respect to overdischarge time in an overdischarge test. 1... Case body, 2... Cap, 4... Electrode group, 5... Pressure detector.
Claims (2)
正極に対して単位表面積当りの容量が1.2倍以上であ
る水素吸蔵合金負極とを具備することを特徴とするニッ
ケル・水素アルカリ蓄電池。(1) A nickel-hydrogen material comprising a non-sintered nickel positive electrode and a hydrogen storage alloy negative electrode having a capacity per unit surface area of 1.2 times or more that of the non-sintered nickel positive electrode. alkaline storage battery.
有することを特徴とする請求項1記載のニッケル・水素
アルカリ蓄電池。(2) The nickel-hydrogen alkaline storage battery according to claim 1, wherein the non-sintered nickel positive electrode contains cobalt monoxide.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP01244946A JP3101622B2 (en) | 1989-09-22 | 1989-09-22 | Nickel-hydrogen alkaline storage battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP01244946A JP3101622B2 (en) | 1989-09-22 | 1989-09-22 | Nickel-hydrogen alkaline storage battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03108259A true JPH03108259A (en) | 1991-05-08 |
JP3101622B2 JP3101622B2 (en) | 2000-10-23 |
Family
ID=17126314
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP01244946A Expired - Fee Related JP3101622B2 (en) | 1989-09-22 | 1989-09-22 | Nickel-hydrogen alkaline storage battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3101622B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7824800B1 (en) * | 2004-04-08 | 2010-11-02 | Electrochemical Systems, Inc. | Lithium-ion cell with a wide operating temperature range |
-
1989
- 1989-09-22 JP JP01244946A patent/JP3101622B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP3101622B2 (en) | 2000-10-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3097347B2 (en) | Nickel-metal hydride battery | |
EP0869565B1 (en) | Alkaline storage battery | |
JP3246345B2 (en) | Nickel positive electrode for alkaline storage battery and nickel-hydrogen storage battery using the same | |
US5032475A (en) | Nickel-metal hydride secondary cell | |
EP0544011A1 (en) | Nickel electrode for alkali storage batteries | |
JPH0278155A (en) | Dry manufacturing process of hydrogen storage alloy electrode | |
JP2001338645A (en) | Paste type positive electrode for alkaline battery and nickel hydrogen battery | |
JPH0521064A (en) | Nickel hydroxide4 active material powder and nickel positive electrode and alkaline storage battery using this | |
JPH0541212A (en) | Nickel hydroxide active material and positive nickel electrode and alkaline storage battery using same | |
JP3389252B2 (en) | Alkaline storage battery and charging method thereof | |
US5131920A (en) | Method of manufacturing sealed rechargeable batteries | |
JPH03108259A (en) | Nickel-hydrogen alkaline storage battery | |
JP2989877B2 (en) | Nickel hydride rechargeable battery | |
JP2591988B2 (en) | Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate | |
JPH04109556A (en) | Closed-type secondary battery | |
JP3012658B2 (en) | Nickel hydride rechargeable battery | |
JP2591985B2 (en) | Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate | |
JP2577964B2 (en) | Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate | |
JP2796674B2 (en) | Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate | |
JP2591987B2 (en) | Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate | |
JP2600307B2 (en) | Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate | |
JP3392700B2 (en) | Alkaline secondary battery | |
JPH103940A (en) | Nickel-metal hydride storage battery and its manufacture | |
JP3362400B2 (en) | Nickel-metal hydride storage battery | |
JP2595664B2 (en) | Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080818 Year of fee payment: 8 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080818 Year of fee payment: 8 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080818 Year of fee payment: 8 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |