JPH031077B2 - - Google Patents
Info
- Publication number
- JPH031077B2 JPH031077B2 JP59254631A JP25463184A JPH031077B2 JP H031077 B2 JPH031077 B2 JP H031077B2 JP 59254631 A JP59254631 A JP 59254631A JP 25463184 A JP25463184 A JP 25463184A JP H031077 B2 JPH031077 B2 JP H031077B2
- Authority
- JP
- Japan
- Prior art keywords
- copper
- water
- copper ion
- sterilization
- ion elution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 claims description 112
- 229910001431 copper ion Inorganic materials 0.000 claims description 112
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 102
- 238000010828 elution Methods 0.000 claims description 77
- 230000001954 sterilising effect Effects 0.000 claims description 73
- 238000004659 sterilization and disinfection Methods 0.000 claims description 64
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 43
- 229910052802 copper Inorganic materials 0.000 claims description 41
- 239000010949 copper Substances 0.000 claims description 41
- 210000004508 polar body Anatomy 0.000 claims description 4
- 239000011810 insulating material Substances 0.000 claims description 3
- 150000002500 ions Chemical class 0.000 claims description 2
- 238000000034 method Methods 0.000 description 19
- 239000000126 substance Substances 0.000 description 17
- 238000007654 immersion Methods 0.000 description 12
- 239000000463 material Substances 0.000 description 12
- 239000002351 wastewater Substances 0.000 description 12
- 230000005611 electricity Effects 0.000 description 11
- 239000000645 desinfectant Substances 0.000 description 8
- 239000010840 domestic wastewater Substances 0.000 description 8
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 7
- 239000000460 chlorine Substances 0.000 description 7
- 229910052801 chlorine Inorganic materials 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 239000008151 electrolyte solution Substances 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- 241000894006 Bacteria Species 0.000 description 6
- 238000002386 leaching Methods 0.000 description 6
- 241000588724 Escherichia coli Species 0.000 description 5
- 230000000844 anti-bacterial effect Effects 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 239000010842 industrial wastewater Substances 0.000 description 5
- 238000003487 electrochemical reaction Methods 0.000 description 4
- 239000004745 nonwoven fabric Substances 0.000 description 4
- 238000000746 purification Methods 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 238000004065 wastewater treatment Methods 0.000 description 4
- 238000009825 accumulation Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229910021645 metal ion Inorganic materials 0.000 description 3
- 239000007769 metal material Substances 0.000 description 3
- 239000005416 organic matter Substances 0.000 description 3
- 239000012466 permeate Substances 0.000 description 3
- ZKQDCIXGCQPQNV-UHFFFAOYSA-N Calcium hypochlorite Chemical compound [Ca+2].Cl[O-].Cl[O-] ZKQDCIXGCQPQNV-UHFFFAOYSA-N 0.000 description 2
- 239000005708 Sodium hypochlorite Substances 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- CEJLBZWIKQJOAT-UHFFFAOYSA-N dichloroisocyanuric acid Chemical compound ClN1C(=O)NC(=O)N(Cl)C1=O CEJLBZWIKQJOAT-UHFFFAOYSA-N 0.000 description 2
- 238000005868 electrolysis reaction Methods 0.000 description 2
- 239000012634 fragment Substances 0.000 description 2
- 239000010797 grey water Substances 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910000510 noble metal Inorganic materials 0.000 description 2
- 239000002957 persistent organic pollutant Substances 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 239000008399 tap water Substances 0.000 description 2
- 235000020679 tap water Nutrition 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- UOCLXMDMGBRAIB-UHFFFAOYSA-N 1,1,1-trichloroethane Chemical compound CC(Cl)(Cl)Cl UOCLXMDMGBRAIB-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 238000004378 air conditioning Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 230000000711 cancerogenic effect Effects 0.000 description 1
- 231100000315 carcinogenic Toxicity 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 235000020188 drinking water Nutrition 0.000 description 1
- 239000003651 drinking water Substances 0.000 description 1
- 238000002848 electrochemical method Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 230000037406 food intake Effects 0.000 description 1
- 239000010794 food waste Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 244000144972 livestock Species 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000008635 plant growth Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 235000014102 seafood Nutrition 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 229910021655 trace metal ion Inorganic materials 0.000 description 1
Landscapes
- Water Treatment By Electricity Or Magnetism (AREA)
Description
(イ) 産業上の利用分野
本発明は水中に混在する細菌類を安全且簡便な
方法を以つて瞬時に而も連続して完全に殺菌する
ことのできる水の殺菌処理方法及びその装置に係
るもので、工場廃水や生活廃水等多量の廃水を連
続的に浄化殺菌して河川等に排水する、所謂排水
処理には特に好適な水の殺菌処理方法及びその装
置に関するものである。
(ロ) 従来技術
工場廃水や生活廃水等多量に廃出される排水を
河川等に排水する際には、排水基準に見合つたPH
値、BOD値、COD値、SS値並びに殺菌値(大腸
菌群数/ml)を以つて排水することが義務づけら
れてなるため、廃水の排水には浄化工程並びに殺
菌工程からなる排水処理がなされるものである
が、工場廃水や生活廃水中には多量の有機性汚濁
物が混在しているため、浄化工程においては専ら
好気性微生物或いは嫌気性微生物を関与させ、そ
の保持する吸着能、酸化能或いは沈降能等の作用
を用いて有機性汚濁物の浄化を図る所謂活性汚泥
法や生物膜法が採用されている。そして該浄化工
程により浄化された廃水は、次なる殺菌工程にお
いて塩素系化学殺菌剤例えは次亜塩素酸ナトリウ
ム、次亜塩素酸カルシウム、或いはジクロルイソ
シアヌール酸等を廃水1に略10mg以上の割合で
添加し所要基準の殺菌値となし排水している。
(ハ) 発明が解決しようとする問題点
しかしながらかかる塩素系化学殺菌剤による殺
菌処理において、次亜塩素酸ナトリウムの如き液
状殺菌剤を用いる場合には、添加量の調整のため
に高価な薬注ポンプを装備せねばならぬことか
ら、専ら次亜塩素酸カルシウムやジクロルイソシ
アヌール酸等の固形状殺菌剤を用い、これを直接
廃水中に浸漬しその自然溶出量を以つて殺菌がな
されているため、溶出量所謂廃水中えの添加量の
変動が著るしく、これがため所要基準の殺菌値を
維持させるための安全度を予め見込んで可成り多
量の該固形状殺菌剤が浸漬使用されており、而も
殺菌処理後廃水は直ちに排水されるため排水中に
は極めて多量の残留塩素が混在する結果となつて
いる。そして該残留塩素が有機物と結合して多量
のトリハロメタンやトリクロルエタン等の発ガン
物質を生成するため、これが魚介類に摂取され或
いは農作物に蓄積されて、これらの食物を介して
人体への摂取危険が著るしく増大される結果とな
り、また塩素系化学殺菌剤は取扱作業時に独特の
刺激臭を発散するばかりか、その飛散する粉体や
液滴の吸入に伴う発ガン危険も存在する等健康管
理上重大な問題を抱えるばかりか、その揮発ガス
で機械装置や構築物の腐蝕が著るしく促進されて
おり、更に該塩素系化学殺菌剤は光や熱或いは水
分等に不安定で、度々保管中における自然発火や
変質事故が招来されている等、現状の塩素系化学
殺菌剤を用いる殺菌処理には多くの問題を内在し
ている。
かかる問題を解決するため発明者等は数多研究
を重ねたる結果、細菌類特には大腸菌が所定の銅
イオン濃度以上の条件下においては瞬時に且完全
に殺菌がなしえることを求明した。
即ち銀や銅等貴金属の微量金属イオンが殺菌作
用を有すること、所謂オリゴデイナミー作用を保
持することは古くから解明されており、該オリゴ
デイナミー作用を用いて水の殺菌をなすことも先
願特開昭48−100959号公報や特願昭49−44744号
明細書等で開示されている。従つて該先願技術を
用いて水の殺菌をなすためには、貴金属と水との
接触で殺菌をなしうるに足る濃度の貴金属イオン
を溶出せしむることが当然に必要となる。
然るに発明者等の数次に亘る実験の結果では銅
イオン濃度と大腸菌の殺菌性とは第一表の如き関
係にあり、少なくとも殺菌のためには水中の銅イ
オン濃度が0.3mg/以上に保持されることが肝
要となる。
(B) Industrial Application Field The present invention relates to a method and apparatus for sterilizing water that can instantly and continuously completely sterilize bacteria mixed in water using a safe and simple method. The present invention relates to a water sterilization method and apparatus particularly suitable for so-called wastewater treatment, in which a large amount of wastewater, such as industrial wastewater or domestic wastewater, is continuously purified and sterilized and discharged into a river or the like. (b) Conventional technology When discharging large quantities of wastewater, such as industrial wastewater or domestic wastewater, into rivers, etc., it is necessary to
Since it is mandatory to discharge wastewater according to the following values: BOD value, COD value, SS value, and bactericidal value (coliform count/ml), wastewater is treated with a purification process and a sterilization process. However, since industrial wastewater and domestic wastewater contain a large amount of organic pollutants, aerobic or anaerobic microorganisms are mainly involved in the purification process, and their adsorption and oxidation abilities are evaluated. Alternatively, the so-called activated sludge method and biofilm method are employed, which purify organic pollutants by using effects such as sedimentation ability. The wastewater purified by this purification step is then subjected to the next sterilization step, in which approximately 10 mg or more of a chlorine-based chemical disinfectant such as sodium hypochlorite, calcium hypochlorite, or dichloroisocyanuric acid is added to the wastewater 1. It is added in a proportion that meets the required standard sterilization value and is discharged without wastewater. (c) Problems to be solved by the invention However, when using liquid disinfectants such as sodium hypochlorite in sterilization treatment using chlorine-based chemical disinfectants, expensive chemical injections are required to adjust the amount added. Since a pump must be installed, solid disinfectants such as calcium hypochlorite and dichloroisocyanuric acid are used, and sterilization is accomplished by directly immersing them in wastewater and allowing the amount of natural elution to take place. As a result, the elution amount and the amount added to the wastewater vary significantly, and for this reason, a considerable amount of the solid disinfectant is used by dipping, taking into account the safety level in order to maintain the required standard sterilization value. However, since the wastewater is immediately drained after sterilization, an extremely large amount of residual chlorine is mixed in the wastewater. Since the residual chlorine combines with organic matter to produce large amounts of carcinogenic substances such as trihalomethane and trichloroethane, this is ingested by seafood or accumulated in agricultural products, and there is a risk of ingestion to the human body through these foods. In addition, chlorine-based chemical disinfectants not only emit a unique irritating odor when handled, but also pose a risk of cancer if the scattered powder or droplets are inhaled. Not only do they pose serious management problems, but their volatile gases significantly accelerate the corrosion of machinery and structures.Furthermore, chlorine-based chemical disinfectants are unstable to light, heat, moisture, etc., and are frequently stored. There are many problems inherent in the current sterilization process using chlorine-based chemical disinfectants, such as spontaneous combustion and deterioration accidents. In order to solve this problem, the inventors conducted numerous studies and found that bacteria, especially Escherichia coli, can be instantly and completely sterilized under conditions where the concentration of copper ions exceeds a predetermined concentration. In other words, it has been known for a long time that trace metal ions such as silver and copper have a bactericidal effect, that is, they have a so-called oligodynamic effect, and it is also possible to use this oligodynamic effect to sterilize water. This is disclosed in Japanese Patent Application Laid-Open No. 100959/1982, Japanese Patent Application No. 44744/1980, etc. Therefore, in order to sterilize water using the technique of the prior application, it is naturally necessary to elute noble metal ions at a concentration sufficient to effect sterilization upon contact between the noble metal and water. However, as a result of several experiments conducted by the inventors, the relationship between copper ion concentration and E. coli sterilization is shown in Table 1, and at least for sterilization, the copper ion concentration in water must be maintained at 0.3 mg/min or more. It is essential that this is done.
【表】
更に発明者等は、該大腸菌殺菌に足る銅イオン
濃度が水との接触により溶出しえるか否かの確認
のため、以下の様な銅イオン溶出テストを行つ
た。即ち銅イオンの溶出量は、溶出素材たる銅と
接触する水のPH値や汚濁度を初め、接触面積、接
触抵抗、接触時間等により種々変動することが推
測されるため、溶出テスト条件を次の通りに定め
た。
溶出材
a 直径30μの銅細線(表面積/体積≒400倍)
をm2当り350gの目付になるよう不織布状に
絡合積層させた銅不織布。
b 厚さ0.1mm巾10mmの銅板材。(表面積/体積
≒20倍)
溶出のための浸漬液
a 純水(PH7.0)
b 濁水(PH6.7)BOD値38mg/.COD値21
mg/SS値44mg/の生活廃水を浄化した
もの。
溶出方法
a 静水状態における浸漬。
b 撹拌状態(1分間80回転の撹拌モーターに
て撹拌)における浸漬。
溶出に係る浸漬時間
10秒、30秒、30分、1時間、3時間、6時
間、12時間、24時間、48時間。
浸漬液に対する溶出材の浸漬量
浸漬液1に対し、溶出材を2g及び5gの
割合で浸漬。但し銅板材については銅不織布に
比べ浸漬液との接触面積が極めて少ないため5
gのみテストを行つた。
以上の如き条件にて銅イオン溶出テストを行つ
た結果を第二表に示す。[Table] Furthermore, the inventors conducted the following copper ion elution test in order to confirm whether a copper ion concentration sufficient to sterilize E. coli could be eluted by contact with water. In other words, the elution amount of copper ions is estimated to vary depending on the PH value and pollution level of the water that comes into contact with the elution material copper, as well as the contact area, contact resistance, contact time, etc. Therefore, the elution test conditions were set as follows. Established as follows. Elution material a Fine copper wire with a diameter of 30μ (surface area/volume ≒ 400 times)
Copper non-woven fabric made by intertwining and laminating them into a non-woven fabric to have a basis weight of 350g per m2 . b Copper plate material with a thickness of 0.1 mm and a width of 10 mm. (Surface area/volume ≒ 20 times) Immersion liquid for elution a Pure water (PH7.0) b Turbid water (PH6.7) BOD value 38 mg/. COD value 21
Purified domestic wastewater with an SS value of 44 mg/mg/SS. Elution method a. Immersion in static water. b Immersion under stirring (stirring with a stirring motor at 80 revolutions per minute). Immersion time for elution: 10 seconds, 30 seconds, 30 minutes, 1 hour, 3 hours, 6 hours, 12 hours, 24 hours, 48 hours. Amount of eluted material immersed in immersion liquid: immersed eluted material in proportions of 2g and 5g per immersion liquid 1. However, for copper plate materials, the contact area with the immersion liquid is extremely small compared to copper non-woven fabrics, so
Only g was tested. Table 2 shows the results of a copper ion elution test conducted under the above conditions.
【表】【table】
【表】
第二表から明らかな如く、銅イオン溶出量は静
水状態と撹拌状態所謂接触流水抵抗の付可及び繰
返し接触がなされた状態や、溶出材の接触表面積
率や浸漬量の多少により、或いは浸漬時間の長短
や浸漬液の清濁等溶出条件如何で溶出値が著るし
く変動し且バラツキも非常に大きく、而も浸漬時
間経過とともに溶出材表面に酸化銅、水酸化銅等
の被膜の形成や、或いは汚濁水においては混在す
る無機物や有機物等の溶出材表面えの付着等によ
る溶出性の阻害も確認され、従つて仮令接触表面
積率の非常に大きな銅不織布を溶出材として使用
しても浸漬液1に対し5gもの多量な割合で且
撹拌状態にて浸漬させた場合でも大腸菌を殺菌す
るに足る銅イオン濃度0.3mg/以上の溶出のた
めには略30分以上もの溶出時間を要し、従つて該
先願技術思想では到底多量の水を連続的に且瞬時
に而も完全に殺菌することは出来ず、また実用上
においても殺菌処理に係る所要銅イオン濃度を定
量的に調整することは不可能である。そして長時
間滞留する水に仮令銅不織布を用いて殺菌をなす
場合でも、かかる銅細線による不織布は非常に高
価なうえ浸漬時間経過とともに銅イオンの溶出性
が逐次低減し殺菌性が著るしく損われる結果とな
り、また銅イオンの溶出に伴い銅細線が短時に脆
化崩壊し、該脆化崩壊した銅細線壊片が多量に水
中に混入され、却つてその濾除の必要が生ずる。
かかる経過に鑑み、発明者等は全く新規な電気
化学的方法を以つて銅イオンを安定且定量的に溶
出させることを解明した。即ち電解質溶液中に金
属素材よりなる陽極及び陰極を設け、該電極間に
直流電流を付加することにより、陽極を形成する
金属素材がその通過電気量に対応して電気化学反
応をなし、金属イオン化して溶出されること所謂
フアラデーの法則が成り立つことが知られてい
る。このフアラデーの法則は電気化学工業、とり
わけ水の電気分解による水素ガスや酸素ガス生成
工業を初め、電気メツキ工業等に利用されている
ものであるが、これら電気化学工業での利用には
通過電気量に伴う電極における化学変化量を目的
とするため、使用される通過電気量も、その電流
密度において少なくとも10〜30mA/cm2以上の通
過電気量が必要となり、電解質溶液も電離度を大
きく保持させるため電解質を多量に添加せしめ中
電解質若しくは強電解質溶液となす必要があり、
また通過電気量に対応して陽極においては金属イ
オンの溶出等電気化学反応とともに多量のスケー
ルの発生が招来され、これが電気化学反応を阻害
するため、常時通過電気量の調整が必要となり特
に無機質や有機質分が多量に混在する汚濁水等を
電解質溶液として使用する場合には、その傾向は
一段と顕著に表れる。
また陽極が金属素材の場合にはその金属イオン
が通過電気量に従つて多量に電解質溶液中に溶出
され且これが陰極に再び多量に析出されるため、
折角金属イオンとして溶出させても殺菌のための
利用率が極めて悪く、また水自体も電気的分解で
酸性水やアルカリ水化され極度に溶存酸素量が欠
乏し、その排水後における動植物の育成阻害の危
険も考慮する必要が生ずる。
かかる問題に対し、発明者等は鋭意研究を重ね
たる結果、銅素材よりなる極体に直流電流を付加
し電気化学反応をなさしめることで、殺菌に必要
な銅イオン濃度とされる0.3mg/以上の溶出が
第三表に示すとおり極めて微弱な電流密度を以つ
てなしえることを解明した。[Table] As is clear from Table 2, the amount of copper ions eluted depends on the static water state and agitation state, the presence of so-called contact flow resistance, the state of repeated contact, the contact surface area ratio of the eluted material, and the amount of immersion. Alternatively, the elution value varies significantly depending on the elution conditions such as the length of the immersion time and the turbidity of the immersion liquid, and the dispersion is also very large. It has also been confirmed that the elution performance is inhibited due to formation or adhesion of mixed inorganic and organic substances on the surface of the eluate material in polluted water. Even when immersed in a large amount of 5 g per 1 part of the immersion liquid and with stirring, elution time of about 30 minutes or more is required to elute a copper ion concentration of 0.3 mg/or more, which is sufficient to kill E. coli. Therefore, with the technical idea of the prior application, it is impossible to completely sterilize a large amount of water continuously and instantaneously, and in practice, it is difficult to quantitatively adjust the copper ion concentration required for sterilization. It is impossible to do so. Even when a nonwoven copper fabric is used to sterilize water that remains for a long time, the nonwoven fabric made of thin copper wires is very expensive, and the elution of copper ions gradually decreases as the immersion time progresses, resulting in a significant loss of sterilization properties. Moreover, as the copper ions are eluted, the thin copper wire becomes brittle and disintegrates in a short period of time, and a large amount of the embrittled and disintegrated copper thin wire fragments are mixed into the water, making it necessary to filter them out. In view of this progress, the inventors have discovered that copper ions can be eluted stably and quantitatively using a completely new electrochemical method. That is, by providing an anode and a cathode made of a metal material in an electrolyte solution and applying a direct current between the electrodes, the metal material forming the anode undergoes an electrochemical reaction in response to the amount of electricity that passes through it, resulting in metal ionization. It is known that the so-called Faraday's law holds true. Faraday's law is used in the electrochemical industry, especially in the production of hydrogen gas and oxygen gas through the electrolysis of water, as well as in the electroplating industry. Since the aim is to measure the amount of chemical change at the electrode due to the amount of electricity, the amount of electricity used must be at least 10 to 30 mA/cm 2 or more at the current density, and the electrolyte solution also maintains a high degree of ionization. In order to
In addition, in response to the amount of electricity passing through, a large amount of scale is generated at the anode along with electrochemical reactions such as the elution of metal ions, and this inhibits the electrochemical reaction, so it is necessary to constantly adjust the amount of electricity passing through the anode. This tendency becomes even more pronounced when polluted water or the like containing a large amount of organic matter is used as an electrolyte solution. In addition, when the anode is made of a metal material, a large amount of metal ions are eluted into the electrolyte solution according to the amount of electricity that passes through it, and a large amount of this is deposited on the cathode again.
Even if it is eluted as metal ions, its utilization rate for sterilization is extremely poor, and the water itself becomes acidic or alkaline through electrolysis, resulting in an extremely low amount of dissolved oxygen, which inhibits the growth of plants and animals after the water is drained. It becomes necessary to consider the risks of In order to solve this problem, the inventors conducted intensive research and found that by applying direct current to the pole body made of copper material to cause an electrochemical reaction, the copper ion concentration of 0.3mg/ It has been found that the above elution can be achieved with extremely weak current density as shown in Table 3.
【表】
そしてかかる微弱な電流密度で銅イオンが溶出
可能なることは電離度の小さな水でも直接電解質
溶液と同等に使用でき、而も微弱な電流密度のた
め陽極面えのスケール発生が著るしく抑制される
とともに、水自体の分解も完全に抑制され、而も
長期に亘る場合には、適宜に極性変換を図ること
により、陰極面に析出される銅の再イオン化に伴
う有効利用とともに、陽極面に付着したスケール
の剥離除去がなしえること等を解明し本発明に至
つたものである。
(ニ) 問題を解決するための手段
即ち本発明は工場廃水や家庭廃水等細菌類とと
もに原材料の破片や食物残滓、糞尿処理紙、或い
は生理用品屑等多量の有機物や無機物等が様々な
形状で混濁混在された未処理水を対象とするもの
であるから、混濁混在する有機物や無機物等の内
部にまで銅イオンが十分拡散浸透され、しかも殺
菌処理時に未処理水の停滞や詰まり等の障害が発
生せぬような特段の技術的配慮が必要となる。こ
れがために所要の径及び長さの銅管を用いてこれ
を外部銅イオン溶出極体となし、この外部銅イオ
ン溶出極体内に所定の均質な間隔を保持しえるよ
うな径を有する銅管若しくは銅棒を内部銅イオン
溶出極体とし、これを絶縁且挿通させて外部銅イ
オン溶出極体と内部銅イオン溶出極体とに囲ま
れ、且極めてシンプルな空間形態の殺菌通水路を
形成させ、この殺菌通水路内に未処理水を通水せ
しめながら外部若しく内部銅イオン溶出極体の一
方側を陽極として、他方側陰極との間に1.0m
A/cm2以下の電流密度の直流電流を、該通水され
た未処理水中を横断するように通電して未処理水
はもとより混濁混在する有機物や無機物等の内部
にまで、実質0.3mg/以上の銅イオンが十分拡
散浸透しえるよう溶出せしめ、多量の未処理水を
連続的に且瞬時に而も完全に殺菌をなし、また適
宜に極性変換をなすことにより、析出した銅イオ
ンの有効利用とスケールの剥離除去をなし、長期
に亘つて安定した殺菌処理をなしえることを可能
となす水の殺菌処理方法及びその装置を提供する
ことに存する。
以下により詳細に本発明の構成を述べれば、銅
イオン溶出極体を形成する銅素材としては、他の
金属類等の混入のない純銅を用いることが望ま
れ、そして該銅イオン溶出極体からの銅イオンの
溶出には微弱な電流密度の直流電流を付加してな
すものであるから、該銅イオン溶出極体自体は未
処理水との接触表面積を大きくなす如き特段の形
状や構造を必要とせず、寧ろ未処理水の接触通水
に際し該未処理水中の無機質や有機質等の物理的
付着の防止や、殺菌処理に際しての未処理水の停
滞や詰まりを防止するうえから平滑で且その通水
路は出来る限りシンプルな空間で形成されること
が好都合である。そして一方の銅イオン溶出極体
は、所要の径及び長さの銅管を用いてこれを外部
銅イオン溶出極体となすとともに、この外部銅イ
オン溶出極体内に所定且均質な間隔を保持しえる
ような径を有する銅管若しくは銅棒を内部銅イオ
ン溶出極体として、これを絶縁し且挿通させるこ
とにより外部銅イオン溶出極体と内部銅イオン溶
出極体とに囲まれ、且極めてシンプルな空間形態
の殺菌通水路が形成される。この場合の殺菌通水
路の間隔としては狭いほど通電性は良好となる
が、反面長期の使用に際して未処理水中の有機質
や無機質の物理的付着増加やスケールの蓄積によ
り通水が阻害される危険が生ずるため、少なくと
も4mm以上好ましくは8〜15mm程度に設定するこ
とが望まれる。銅管使用に際しては、所要の径の
銅管を適宜長さに切断のうえ、その両端部にそれ
ぞれ通水口及び排水口を設けてこれを外部銅イオ
ン溶出極体となし、この内側に該外部銅イオン溶
出極体と同じ長さに切断され且所要の間隔が形成
できる程度の外径を有した銅管又は銅棒材を挿通
させて内部銅イオン溶出極体となすとともに、該
外部銅イオン溶出極体と内部銅イオン溶出極体が
所要の間隔と絶縁を保持し且通水される未処理水
が漏水せぬよう、その両端側には絶縁材よりなる
支承蓋が嵌着されて形成される。
かかる如くに形成された殺菌通水路に未処理水
を通水せしめながらその通水量に対して実質0.3
mg/以上の割合の銅イオンが未処理水及び該未
処理水中に混濁混在せる有機物や無機物の内部ま
で十分拡散浸透しえるよう且定量的に溶出せしむ
るに足る直流電流を付加するもので、銅イオン溶
出極体相互には該直流電流付加のための通電線が
接続され且その他端には、+及び−の極性を適宜
に変換できる極性変換スイツチを介して直流電源
と連結されており、適宜に極性変換をなして+極
側に蓄積されるスケールの剥離除去と−極側に析
出された銅を再び銅イオン化して利用することも
できえる。
(ホ) 作用
本発明はかかる如き技術的手段を用いてなるも
のであつて、銅素材よりなる外部及び内部銅イオ
ン溶出極体を所要の間隔を保持して絶縁且対向し
て配置された殺菌通水路内に、細菌類の混在せる
未処理水を通水せしめながら、一方側銅イオン溶
出極体を+極とし他方側銅イオン溶出極体との間
に1.0mA/cm2以下の電流密度で直流電流を通電
せしむるものであつて、銅イオン溶出極体からの
銅イオン溶出が極めて微弱な電流密度即ち1.0m
A/cm2以下で十分殺菌に足る銅イオンの溶出がで
きうるものであるから、未処理水の如く電離度の
小さなものでも電解質溶液として殺菌通水路内を
直接通水させることで、相互の銅イオン溶出極体
間に銅イオン溶出可能な通電効果が発揮され、而
も通水する未処理水を横断して通電されるため、
該未処理水とともに混濁混在する有機物や無機物
内に銅イオンが十分拡散浸透するため確実な殺菌
がなされ、また電流密度の変化で銅イオンの溶出
量が調整できるため多量の未処理水でも定量的に
銅イオンの溶出がなしえ、瞬時に且完全な殺菌も
なされる。更に銅イオン溶出極体相互が銅素材で
あるから、+極、−極の変換でいずれの銅イオン溶
出極体からも銅イオン溶出がなしえるとともに、
該極性の変換で一方側銅イオン溶出極体の極度の
消耗化がなくなり、また+極側に蓄積されるスケ
ールの剥離除去と−極側に析出される銅の再銅イ
オン化がなしえる。
(ヘ) 実施例
以下に本発明を図面に基づき詳細に説明すれ
ば、第1図は工場廃水や生活廃水の排水処理にお
ける本発明排水処理工程の説明図であつて、排水
処理においては前処理たる浄化処理に連続して本
発明が採用されるものであるが、本発明は廃水の
みならず冷暖房や工場の生産設備に用いられる循
環水所謂中水、或いは飲料用水の如き上水等全て
の水の殺菌に使用できることは当然で、中水や上
水に使用の場合は特別な前処理を要することなく
直接本発明により殺菌処理がなされる。
第2図は本発明殺菌方法の説明図、第3図は本
発明殺菌装置の一部切欠見取図であつて、所要の
径を有する銅管を適宜の長さに切断しその両端部
にそれぞれ通水口1A及び排水口1Bを設けて外
部銅イオン溶出極体1となすとともに、該外部銅
イオン溶出極体1の内側には該外部銅イオン溶出
極体1と同じ長さに切断され且所要の間隔が形成
できる程度の外径を有する銅管又は銅棒よりなる
内部銅イオン溶出極体2が挿通されて所要の間隔
及び長さの殺菌通水路3が形成され且この外部銅
イオン溶出極体1と内部銅イオン溶出極体2とが
所要の間隔を均質に保持し且絶縁され、而も殺菌
通水路3に通水される水の漏出を防止するためこ
れらの両側縁部には絶縁材よりなる支承蓋4が嵌
着されて密閉されている。該支承蓋4はかかる機
能を有するものであればいかなる形状のものでも
採用できる。そして外部銅イオン溶出極体1及び
内部銅イオン溶出極体2には、殺菌通水路3を通
水される未処理水中にその通水量に対し定量的に
銅イオン溶出をなさしむる直流電流付加のための
通電線5が連結されており、この他端は外部銅イ
オン溶出極体1と内部銅イオン溶出極体2との極
性を適宜に変換できるよう極性変換スイツチ6を
介して直流電源7と接続されている。そして本発
明で殺菌処理をなす場合には適宜の送水ポンプA
より送水管Bを経て通水路1Aに未処理水を注水
させて殺菌通水路内3を通水させるとともに、そ
の通水中に実質0.3mg/以上の銅イオンを溶出
させうる最大でもその電流密度1mA/cm2以下の
直流電流を付加させることで連続して殺菌処理が
なしえ、また長期間連続して殺菌処理をなす場合
においては、+極側銅イオン溶出極体面の銅イオ
ン溶出に伴う消耗度合やスケールの蓄積度合或い
は−極側の銅析出度合等を判断しながら、適宜極
性の変換をなすことでかかる問題の解決を図れば
良い。
第4図は補助水路で本発明殺菌方法を用いる説
明図であつて、特に多量の未処理水を処理する場
合には殺菌通水路を多数併設したり或いは殺菌通
水容量を大きくして対処することとなるが、かか
る方法では装置全体が大型化し設置スペースの面
や設置費用も割高となる。従つて送水ポンプAよ
り多量の未処理水を送水管Bで排水管Cに直接送
水させながら、未処理水の一定量を補助送水路
B′に導き、本発明にて予め所定の高濃度の銅イ
オンを溶出させた銅イオン溶出水を作成し、該銅
イオン溶出水を再び排水管Cの前部で未処理水中
に混入させ、実質的に銅イオン濃度を0.3mg/
以上に保持させることでも殺菌処理がなしえる。
以下に本発明を用いた殺菌処理の各種実験結果
を述べる。
実験例 1
内径40.4mm肉厚2mmの銅管を2mの長さに切断
し、その両端部に内口径が26mm高さ25mmの通水口
及び排水口を外方に突出形成してなる外部銅イオ
ン溶出極体の内側に、外径が25.5mm肉厚1mmの銅
管を2mの長さに切断してなる内部銅イオン溶出
極体を挿通し、この外部銅イオン溶出極体と内部
銅イオン溶出極体とが、均質な間隔を保持し且絶
縁されるよう、また未処理水の通水に際して漏水
を防止するためその両端縁部は合成樹脂よりなる
支承蓋が嵌着されて密閉されて相互の銅イオン溶
出極体の間隔が7.45mm、通水容積量1.54の殺菌
通水路が形成された本発明装置を用いて、これに
生活廃水を浄化処理したPH値6.7BOD値29ppm、
SS値20ppm、大腸菌群数1060個/mlの未処理水
を1分間8.1及び16.2の通水量において種々
の電流密度において殺菌処理を行つた結果を第四
表に示す。但し殺菌処理に際しての極性は外部銅
イオン溶出極体を+極として用い、また殺菌率=
殺菌処理後の生存大腸菌数/原大腸菌群数/mlで求めた
。[Table] The fact that copper ions can be eluted with such a weak current density means that even water with a low degree of ionization can be used in the same way as a direct electrolyte solution, and the scale formation on the anode surface is noticeable due to the weak current density. At the same time, the decomposition of water itself is also completely suppressed, and in the case of long-term decomposition, by appropriately changing the polarity, the copper deposited on the cathode surface can be effectively utilized through reionization. The present invention was achieved by discovering that scale attached to the anode surface can be peeled off and removed. (d) Means for solving the problem That is, the present invention deals with bacteria such as industrial wastewater, domestic wastewater, etc., as well as large amounts of organic and inorganic substances such as fragments of raw materials, food residue, waste disposal paper, and sanitary napkin waste, etc., in various shapes. Since the target is turbid untreated water, copper ions are sufficiently diffused and penetrated into the turbid organic and inorganic substances, and also prevents problems such as stagnation and clogging of untreated water during sterilization. Special technical consideration is required to prevent this from occurring. For this purpose, a copper tube of the required diameter and length is used as an external copper ion elution pole body, and the copper tube has a diameter such that a predetermined homogeneous spacing can be maintained within this external copper ion elution pole body. Alternatively, a copper rod is used as the internal copper ion elution pole body, and this is insulated and inserted to form a sterilization passageway surrounded by the external copper ion elution pole body and the internal copper ion elution pole body, and having an extremely simple spatial form. While passing untreated water through this sterilization channel, one side of the external or internal copper ion elution electrode body is used as an anode, and the distance between the other side and the cathode is 1.0 m.
A direct current with a current density of A/cm 2 or less is passed across the untreated water to penetrate not only the untreated water but also the turbid organic matter and inorganic matter, effectively 0.3 mg/cm2 or less. By eluting the above copper ions so that they can sufficiently diffuse and permeate, sterilizing a large amount of untreated water continuously and instantaneously, and by changing the polarity as appropriate, the precipitated copper ions can be effectively sterilized. It is an object of the present invention to provide a water sterilization method and an apparatus therefor, which enable stable sterilization over a long period of time by peeling off and removing scale. Describing the structure of the present invention in more detail below, it is desirable to use pure copper without any other metals mixed in as the copper material forming the copper ion eluting electrode body, and from the copper ion eluting pole body. Since elution of copper ions is achieved by applying a direct current with a weak current density, the copper ion elution pole itself requires a special shape and structure that increases the surface area of contact with untreated water. Rather, it should be smooth and smooth in order to prevent physical adhesion of inorganic and organic substances in the untreated water when contacting the untreated water, and to prevent stagnation and clogging of the untreated water during sterilization. It is advantageous for the waterway to be formed in as simple a space as possible. One copper ion eluting pole body is made into an external copper ion leaching pole body by using a copper tube of the required diameter and length, and a predetermined and uniform spacing is maintained within this external copper ion leaching pole body. A copper tube or copper rod with a diameter of A sterilization waterway with a spatial form is formed. In this case, the narrower the spacing between the sterilization channels, the better the electrical conductivity, but on the other hand, there is a risk that water flow will be inhibited due to increased physical adhesion of organic and inorganic substances and scale accumulation in untreated water during long-term use. Therefore, it is desirable to set it to at least 4 mm or more, preferably about 8 to 15 mm. When using a copper tube, cut a copper tube of the required diameter to an appropriate length, provide a water inlet and a drainage outlet at each end, and use this as an external copper ion elution electrode body. A copper tube or copper rod cut to the same length as the copper ion elution pole body and having an outer diameter sufficient to form the required spacing is inserted to form the internal copper ion elution pole body, and the external copper ion In order to maintain the required spacing and insulation between the eluting pole body and the internal copper ion leaching pole body, and to prevent the untreated water flowing through from leaking, support covers made of insulating material are fitted on both ends of the pole body. be done. While allowing untreated water to flow through the sterilization channel formed in this way, the water flow rate is actually 0.3%.
A direct current is applied that is sufficient to allow copper ions in a proportion of 1.0 mg/mg/kg or more to sufficiently diffuse and permeate into the interior of untreated water and the organic and inorganic substances turbidly mixed in the untreated water, and to elute quantitatively. A current-carrying wire for applying the DC current is connected to each of the copper ion elution pole bodies, and the other end is connected to a DC power source via a polarity conversion switch that can change the polarity of + and - as appropriate, It is also possible to appropriately change the polarity, peel off and remove the scale accumulated on the positive electrode side, and re-ionize the copper deposited on the negative electrode side for use. (E) Effect The present invention is constructed using such technical means, and includes a sterilizer in which external and internal copper ion eluting electrode bodies made of copper material are insulated and arranged facing each other with a required spacing between them. While passing untreated water containing bacteria through the water passage, a current density of 1.0 mA/cm 2 or less is applied between the copper ion elution pole on one side and the copper ion elution pole on the other side, with the positive pole. This is a device that passes a direct current at a current density of 1.0 m at which copper ion elution from the copper ion elution electrode is extremely weak.
Since it is possible to elute copper ions sufficient for sterilization at A/cm 2 or less, even if the degree of ionization is low, such as untreated water, by directly passing water through the sterilization channel as an electrolyte solution, the mutual sterilization can be achieved. Copper ion elution The energization effect that allows copper ions to be eluted is exhibited between the pole bodies, and the current is passed across the untreated water flowing through it, so
Copper ions sufficiently diffuse and permeate into the organic and inorganic substances that are mixed with the untreated water, ensuring reliable sterilization.Also, the elution amount of copper ions can be adjusted by changing the current density, so even large amounts of untreated water can be quantitatively sterilized. There is no elution of copper ions, and sterilization is instantaneous and complete. Furthermore, since both the copper ion elution pole bodies are made of copper material, copper ions can be eluted from either copper ion elution pole body by changing the + and - poles.
By changing the polarity, extreme wear of the copper ion elution electrode body on one side is eliminated, and scale accumulated on the positive electrode side can be peeled off and copper deposited on the negative electrode side can be recopper ionized. (f) Examples The present invention will be explained in detail below based on the drawings. Figure 1 is an explanatory diagram of the wastewater treatment process of the present invention in the treatment of industrial wastewater and domestic wastewater. The present invention is applied continuously to the purification treatment of barrels, but the present invention is applicable not only to wastewater but also to all types of water, including circulating water used for air conditioning and production equipment in factories, so-called gray water, and tap water such as drinking water. It goes without saying that it can be used to sterilize water, and when used for gray water or tap water, sterilization can be directly performed according to the present invention without requiring any special pretreatment. Fig. 2 is an explanatory diagram of the sterilization method of the present invention, and Fig. 3 is a partially cutaway sketch of the sterilizer of the present invention, in which a copper pipe having a required diameter is cut to an appropriate length and threaded through each end of the pipe. A water port 1A and a drain port 1B are provided to form an external copper ion elution pole body 1, and the inside of the external copper ion elution pole body 1 is cut to the same length as the external copper ion elution pole body 1 and has the required length. An internal copper ion elution pole body 2 made of a copper tube or a copper rod having an outer diameter large enough to form a gap is inserted through it to form a sterilizing passageway 3 with the required spacing and length, and this external copper ion elution pole body 1 and the internal copper ion elution pole body 2 are insulated and maintain a uniform distance between them, and insulating material is provided on both side edges of these to prevent leakage of water flowing into the sterilization water passage 3. A support lid 4 made of the following is fitted and sealed. The supporting lid 4 may have any shape as long as it has such a function. A direct current is applied to the external copper ion eluting pole body 1 and the internal copper ion leaching pole body 2 to quantitatively elute copper ions into the untreated water flowing through the sterilizing water passage 3 according to the amount of water flowing therethrough. The other end is connected to a DC power supply 7 via a polarity conversion switch 6 so that the polarity of the external copper ion elution pole body 1 and the internal copper ion elution pole body 2 can be changed as appropriate. is connected to. When carrying out sterilization treatment according to the present invention, an appropriate water pump A is used.
Untreated water is injected into the water supply channel 1A via the water pipe B, and the water is passed through the sterilization water channel 3, and the current density is 1 mA at the maximum that can substantially elute 0.3 mg/or more of copper ions in the flowing water. Continuous sterilization can be performed by applying a direct current of / cm2 or less, and when sterilization is performed continuously for a long period of time, the copper ions on the positive electrode side elute and the wear due to the elution of copper ions on the electrode surface. This problem can be solved by changing the polarity as appropriate while determining the degree of scale accumulation, the degree of copper precipitation on the negative side, and the like. Fig. 4 is an explanatory diagram of using the sterilization method of the present invention in an auxiliary waterway, and particularly when treating a large amount of untreated water, it is recommended to install a large number of sterilization waterways or increase the sterilization water flow capacity. However, in such a method, the entire device becomes large, and the installation space and installation cost are also relatively high. Therefore, while sending a large amount of untreated water from water pump A directly to drain pipe C through water pipe B, a certain amount of untreated water is sent to the auxiliary water supply channel.
A copper ion eluted water is prepared by eluting copper ions at a predetermined high concentration according to the present invention, and the copper ion eluted water is mixed into the untreated water at the front of the drain pipe C again. Effectively reduces copper ion concentration to 0.3mg/
Sterilization can also be achieved by holding the sample at a higher temperature. Below, various experimental results of sterilization using the present invention will be described. Experimental example 1 External copper ion made by cutting a copper pipe with an inner diameter of 40.4 mm and a wall thickness of 2 mm into a length of 2 m, and forming a water inlet and a drain port with an inner diameter of 26 mm and a height of 25 mm at both ends of the tube to protrude outward. An internal copper ion elution pole body made by cutting a copper tube with an outer diameter of 25.5 mm and a wall thickness of 1 mm into a length of 2 m is inserted into the inside of the elution pole body, and this external copper ion elution pole body and internal copper ion elution pole body are connected. In order to maintain uniform spacing and insulation between the pole bodies, and to prevent water leakage when untreated water is passed through, both ends of the pole bodies are fitted with synthetic resin bearing covers and sealed together. Using the device of the present invention, which has a sterilization channel with a spacing of 7.45 mm between copper ion elution electrodes and a water flow volume of 1.54, domestic wastewater was purified using this device, with a pH value of 6.7, a BOD value of 29 ppm,
Table 4 shows the results of sterilizing untreated water with an SS value of 20 ppm and a coliform group count of 1060 cells/ml at various current densities at water flow rates of 8.1 and 16.2 per minute. However, for the polarity during sterilization, the external copper ion elution polar body is used as the + pole, and the sterilization rate is
It was calculated as the number of surviving E. coli bacteria after sterilization/number of original coliform bacteria/ml.
【表】
上記第四表からも明らかなように、銅イオン溶
出量が0.3mg/以上であれば極めて高い殺菌性
が発揮され、而も銅イオンは処理後の時間経過と
ともに殺菌率が上昇する傾向も理解される。
実験例 2
実験例1の殺菌装置を用いて汚濁度の高い未浄
化処理水、即ちPH値6.7、BOD値117ppm、SS値
93、大腸菌群数2.36×106個/mlの未処理水を1
分間31.8の多量な割合で通水させた状況下で殺
菌処理を行つた結果を第五表に示す。[Table] As is clear from Table 4 above, extremely high bactericidal properties are exhibited when the amount of copper ions eluted is 0.3mg/or more, and the bactericidal rate of copper ions increases as time passes after treatment. Trends are also understood. Experimental Example 2 Using the sterilizer of Experimental Example 1, highly polluted unpurified water, i.e. PH value 6.7, BOD value 117ppm, SS value
93, untreated water with a coliform count of 2.36 x 106 /ml
Table 5 shows the results of sterilization treatment performed under conditions where water was passed at a high rate of 31.8 minutes per minute.
【表】
但し銅イオン溶出極体の極性並びに殺菌率
の測定は実験例(1)に準ずる。
実験例 3
実験例1の殺菌装置を用い、浄化処理が施され
たPH値6.7〜6.9、BOD値16〜24ppm、SS値14〜
22ppmの生活廃水を用いて1分間8.11日11.6
m3の割合で且外部銅イオン溶出極体を+極として
電流密度0.39mA/cm2の条件のもとに連続殺菌処
理を行い、168時間後に極性変換をなして殺菌処
理経過時間毎に外部銅イオン溶出極体及び内部銅
イオン溶出極体の重量を測定し、それぞれの原重
量に対する重量増加を以つて+極におけるスケー
ル発生並びに−極における銅析出を調べた結果を
第六表に示す。[Table] However, the polarity and sterilization rate of the copper ion eluting electrode were measured in accordance with Experimental Example (1).
Experimental Example 3 Using the sterilizer of Experimental Example 1, the PH value 6.7-6.9, BOD value 16-24ppm, and SS value 14-14 were purified.
1 minute 8.11 days 11.6 using 22ppm domestic wastewater
Continuous sterilization was carried out at a current density of 0.39 mA/cm 2 at a ratio of 3 m 3 and the external copper ion eluting pole body was set as the + pole, and after 168 hours, the polarity was changed and the external The weights of the copper ion elution electrode body and the internal copper ion elution electrode body were measured, and scale formation at the + electrode and copper precipitation at the - electrode were investigated based on the weight increase relative to the original weight of each. The results are shown in Table 6.
【表】
(但し連続殺菌処理168時間後に内部銅イオン溶
出極体を+極に極性変換させた場合の電流密度
は、外部銅イオン溶出極体の銅イオン溶出に係る
内表面積が、内部銅イオン溶出極体の銅イオン溶
出に係る外表面積に比べて略2.51倍であり、所定
の銅イオン溶出量は+極表面積×電流密度の所謂
通電電気量で決定されるため、0.39mA/cm2×
2.51=0.98mA/cm2に調整して殺菌処理を継続し
た。)
上記第六表からも明らかな如く、+極側にはそ
の溶出銅イオン量を著るしく超越したスケールの
蓄積が窺れ、これが極性変換とともに一時的に剥
離除去されることが理解される。
(ト) 発明の効果
本発明は上述の如き技術的手段を用いてなるも
ので、人畜或いは植物に全く無害で且細菌類に対
し著るしい殺菌性を保持した銅イオンを以つて殺
菌をなすものであるから取扱作業はもとより排水
処理後の二次公害もなく極めて安全であり、而も
未処理水が通水される殺菌通水路は極めてシンプ
ル空間形態を有するから、多様の有機物や無機物
が混濁混在する未処理水でも停滞や詰まりの危険
がなく、且未処理水を横断して通電されることか
ら未処理水中の有機物や無機物の内部まで銅イオ
ンが十分拡散浸透され、而も溶出される銅イオン
も0.3mg/以上であるから確実に且完全な殺菌
処理がなされる。そして通過電流密度も1.0m
A/cm2以下でなしえるから、閉鎖系回路でも爆鳴
気の危険がない。更に適宜に極性の変換がなしえ
且この変換に際して電圧や電流密度の調整をなす
必要上から、陽極側の付着スケールの剥落除去が
容易になされるとともに、陰極に析出した銅イオ
ンの再利用も図れるため、長期に亘つて安定した
殺菌処理がなしえる等特徴の多い殺菌処理方法と
いえる。
他方本発明殺菌装置においては、径の異る銅管
を一対組を互に所要の間隔を保持し且絶縁するこ
とにより外部銅イオン溶出極体と内部銅イオン溶
出極体が対向した殺菌通水路が形成され、銅イオ
ン溶出が極めて微弱な電流密度でなしえることと
相埃つて、電離度の小さな未処理水でも直接電解
質溶液とし使用ができ且該未処理水を殺菌通水路
を通水させるのみで外部銅イオン溶出極体と内部
銅イオン溶出極体との間に通電がなしえ、その+
極側より通電電気量に従つた銅イオン量が未処理
水中に溶出され殺菌がなされるために、殺菌処理
操作が極めて簡便になしえるばかりか構造が簡単
なためコスト的に極めて安価に作成できる。そし
て外部銅イオン溶出極体と内部銅イオン溶出極体
が共に銅管で形成されてなるため、+極側のスケ
ールの蓄積や−極側の銅の析出に際しても極性変
換が可能で且該極性変換も単に切替スイツチのみ
で容易になしえる。而も本発明装置では外部銅イ
オン溶出極体と内部銅イオン溶出極体とで形成さ
れる円筒状殺菌通水路内を未処理水が流通される
ものであつて、一方銅イオン溶出極体に発生する
スケールは、該銅イオン溶出極体と接触流通する
未処理水の遅速に比例するが、本願構成では流通
する未処理水を適宜手段で渦流化させることによ
り、接触流通速度を高めてスケールの発生を抑制
することも可能となる。更に支承蓋を取除すこと
により銅イオン溶出に伴い消耗した外部銅イオン
溶出極体若しくは内部銅イオン溶出極体のいづれ
も自在に交換ができる。更に本発明装置では微弱
な電流密度で銅イオン溶出がなされるため、殺菌
処理に係る電力費が著るしく安価である等特徴の
多い水の殺菌処理装置といえる。[Table] (However, when the polarity of the internal copper ion elution pole body is changed to + after 168 hours of continuous sterilization treatment, the current density is as follows: It is approximately 2.51 times larger than the outer surface area of the elution electrode body for copper ion elution, and the predetermined amount of copper ion elution is determined by the so-called energized electricity amount of + electrode surface area x current density, so 0.39 mA/cm 2 x
The sterilization treatment was continued by adjusting to 2.51=0.98 mA/cm 2 . ) As is clear from Table 6 above, there is an accumulation of scale on the positive electrode side that significantly exceeds the amount of eluted copper ions, and it is understood that this is temporarily peeled off and removed as the polarity changes. . (g) Effects of the invention The present invention uses the technical means described above, and sterilizes using copper ions, which are completely harmless to humans, livestock, and plants, and which retain remarkable bactericidal properties against bacteria. It is extremely safe to handle, as there is no secondary pollution after wastewater treatment, and since the sterilization waterway through which untreated water flows has an extremely simple spatial form, it is possible to collect a variety of organic and inorganic substances. There is no risk of stagnation or clogging even in turbid untreated water, and since electricity is applied across the untreated water, copper ions are sufficiently diffused into the organic and inorganic substances in the untreated water, and are not eluted. Since the amount of copper ions contained in the product is 0.3 mg/or more, reliable and complete sterilization can be achieved. And the passing current density is also 1.0m
Since it can be done at less than A/ cm2 , there is no risk of explosion even in a closed circuit. Furthermore, since the polarity can be changed as appropriate, and the voltage and current density must be adjusted during this conversion, it is easy to peel off the adhering scale on the anode side, and it is also possible to recycle the copper ions deposited on the cathode. It can be said that it is a sterilization method with many characteristics, such as being able to perform stable sterilization over a long period of time. On the other hand, in the sterilizer of the present invention, a pair of copper tubes with different diameters are maintained at a required distance from each other and insulated, thereby creating a sterilization flow channel in which the outer copper ion elution pole body and the inner copper ion elution pole body face each other. Coupled with the fact that copper ions can be eluted with an extremely weak current density, even untreated water with a low degree of ionization can be used directly as an electrolyte solution, and the untreated water can be passed through a sterilizing water channel. With only a
Since the amount of copper ions corresponding to the amount of electricity applied from the pole side is eluted into the untreated water and sterilization is performed, the sterilization process is not only extremely simple but also extremely inexpensive to manufacture due to its simple structure. . Since both the external copper ion elution pole body and the internal copper ion elution pole body are formed of copper tubes, polarity can be changed even when scale accumulates on the + pole side or copper is deposited on the – pole side. Conversion can also be easily done with just a changeover switch. In addition, in the device of the present invention, untreated water is passed through a cylindrical sterilizing passageway formed by an external copper ion leaching pole body and an internal copper ion leaching pole body; The scale generated is proportional to the slow speed of the untreated water flowing in contact with the copper ion elution electrode body, but in the configuration of the present invention, the flowing untreated water is turned into a vortex by an appropriate means, thereby increasing the contact flow speed and reducing the scale. It also becomes possible to suppress the occurrence of. Furthermore, by removing the support lid, either the external copper ion elution pole body or the internal copper ion elution pole body, which has been consumed due to copper ion elution, can be freely replaced. Furthermore, since the device of the present invention elutes copper ions with a weak current density, it can be said that the water sterilization device has many features such as significantly lower electricity costs for sterilization.
第1図は本発明を用いた排水処理工程の説明
図、第2図は本発明殺菌方法の説明図、第3図は
本発明殺菌装置の一部切欠見取図、第4図は補助
水路での本発明殺菌方法を用いる場合の説明図で
ある。
符号の説明、1……外部銅イオン溶出極体、1
A……通水口、1B……排水口、2……内部銅イ
オン溶出極体、3……殺菌通水路、4……支承
蓋、5……通電線、6……極性変換スイツチ、7
……直流電源。
Figure 1 is an explanatory diagram of the wastewater treatment process using the present invention, Figure 2 is an explanatory diagram of the sterilization method of the present invention, Figure 3 is a partially cutaway sketch of the sterilizer of the present invention, and Figure 4 is an illustration of the auxiliary waterway. It is an explanatory view when using the sterilization method of the present invention. Explanation of symbols, 1...External copper ion elution pole body, 1
A...Water port, 1B...Drain port, 2...Internal copper ion elution polar body, 3...Sterilizing water passage, 4...Support lid, 5...Electricity wire, 6...Polarity conversion switch, 7
...DC power supply.
Claims (1)
自在に変換でき、且両極体間に1.0mA/cm2以下
の電流密度で直流電流を通電し、且未処理水中に
実質0.3mg/以上の銅イオンを溶出せしめて瞬
時に且連続的に殺菌する水の殺菌処理装置におい
て、所要の径及び長さの銅管の両端部に通水口及
び排水口が形成されてなる外部銅イオン溶出極体
の内側に、該外部銅イオン溶出極体と長さが等し
く且所要の間隔を以て殺菌通水路が形成されるよ
うな外径の銅管若しくは銅棒よりなる内部銅イオ
ン溶出極体が挿通されてなり、而もこれら相互の
両端縁部には、外部銅イオン溶出極体及び内部銅
イオン溶出極体とが、所要の間隔を均等に保持し
且絶縁され、而も殺菌通水路の水の漏出防止のた
めの絶縁材よりなる支承蓋が嵌着され密閉されて
なることを特徴とする水の殺菌処理装置。1. The polarity of the external or internal copper ion elution polar body can be changed freely, and a direct current is passed between the two polar bodies at a current density of 1.0 mA/cm 2 or less, and the amount of copper in the untreated water is substantially 0.3 mg/cm or more. In a water sterilization treatment device that instantly and continuously sterilizes water by eluting ions, an external copper ion elution pole body is made of a copper pipe with a required diameter and length, and a water inlet and a drainage port are formed at both ends of the pipe. An internal copper ion elution electrode body made of a copper tube or a copper rod having an outer diameter that is equal in length to the outer copper ion elution electrode body and has a sterilizing passageway formed at a required interval is inserted inside the electrode body. Moreover, at both ends of each other, the outer copper ion elution pole body and the inner copper ion elution pole body are maintained at the required intervals and insulated, and the leakage of water from the sterilization passageway is prevented. A water sterilization treatment device characterized in that a support lid made of an insulating material is fitted and sealed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25463184A JPS61133194A (en) | 1984-12-01 | 1984-12-01 | Method and device for sterilizing water |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25463184A JPS61133194A (en) | 1984-12-01 | 1984-12-01 | Method and device for sterilizing water |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61133194A JPS61133194A (en) | 1986-06-20 |
JPH031077B2 true JPH031077B2 (en) | 1991-01-09 |
Family
ID=17267699
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25463184A Granted JPS61133194A (en) | 1984-12-01 | 1984-12-01 | Method and device for sterilizing water |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61133194A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4614163B2 (en) * | 2005-03-25 | 2011-01-19 | 株式会社 クロス | Manufacturing method of pipe plated with copper on inner wall |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100777399B1 (en) | 2006-06-30 | 2007-11-29 | 최중철 | Propagation suppression apparatus of algae |
CN103588258B (en) * | 2012-08-14 | 2016-01-20 | 虞文豪 | A kind of disinfection system of aquaculture |
-
1984
- 1984-12-01 JP JP25463184A patent/JPS61133194A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4614163B2 (en) * | 2005-03-25 | 2011-01-19 | 株式会社 クロス | Manufacturing method of pipe plated with copper on inner wall |
Also Published As
Publication number | Publication date |
---|---|
JPS61133194A (en) | 1986-06-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0675081B1 (en) | Apparatus and method for purification of water | |
Patermarakis et al. | Disinfection of water by electrochemical treatment | |
Ghernaout et al. | From chemical disinfection to electrodisinfection: The obligatory itinerary? | |
Zarei et al. | Disinfecting poultry slaughterhouse wastewater using copper electrodes in the electrocoagulation process | |
US7615195B2 (en) | Photocatalyst water treating apparatus | |
RU2119802C1 (en) | Device for performing electrochemical treatment of liquid media | |
US6773575B2 (en) | Electrolytic cell and process for the production of hydrogen peroxide solution and hypochlorous acid | |
KR101220891B1 (en) | A porous 3-dimensional bipolar electrode, an electrolyzer having the porous 3-dimensional bipolar electrode, and water treatment method using the electrolyzer having the porous 3-dimensional bipolar electrode | |
EP1017633A1 (en) | Method and apparatus for decontamination of fluids | |
AU2009298257A1 (en) | Device and process for removing microbial impurities in water based liquids as well as the use of the device | |
Ghernaout | Electric field (EF) in the Core of the Electrochemical (EC) Disinfection | |
US5756051A (en) | Apparatus and method for an anodic oxidation biocidal treatment | |
PL202453B1 (en) | Device for treating water | |
JP3363248B2 (en) | Sterilized water, its production method and production equipment | |
JPH031077B2 (en) | ||
JP2006158384A (en) | Method for preparation of culture solution for hydroponic culture and method for supplying minor element | |
Bagastyo | Electrocoagulation for drinking water treatment: A review | |
US3701728A (en) | Water purification system | |
RU2322394C1 (en) | Device for processing drinking water | |
RU2135417C1 (en) | Plant for water treatment with silver ions | |
JP2004089916A (en) | Treatment method for wastewater containing organic matter | |
Abraham et al. | Electrochemical treatment of skim serum effluent from natural rubber latex centrifuging units | |
Ganizadeh et al. | Elimination of pathogenic bacteria using electrochemical process containing steel mesh electrode | |
AU2003201434A1 (en) | Device for electrolytic purification of liquids | |
RU2131399C1 (en) | Plant to treat water with ions of silver |