JP2006158384A - Method for preparation of culture solution for hydroponic culture and method for supplying minor element - Google Patents

Method for preparation of culture solution for hydroponic culture and method for supplying minor element Download PDF

Info

Publication number
JP2006158384A
JP2006158384A JP2005235117A JP2005235117A JP2006158384A JP 2006158384 A JP2006158384 A JP 2006158384A JP 2005235117 A JP2005235117 A JP 2005235117A JP 2005235117 A JP2005235117 A JP 2005235117A JP 2006158384 A JP2006158384 A JP 2006158384A
Authority
JP
Japan
Prior art keywords
culture
solution
insoluble
electrode
supplying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005235117A
Other languages
Japanese (ja)
Other versions
JP4552219B2 (en
Inventor
Yukie Matsumoto
幸英 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2005235117A priority Critical patent/JP4552219B2/en
Publication of JP2006158384A publication Critical patent/JP2006158384A/en
Application granted granted Critical
Publication of JP4552219B2 publication Critical patent/JP4552219B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Hydroponics (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problems in the circulating use of a culture solution for hydroponic culture such as water culture comprising the difficulty in the control of pH of the solution, the accumulation of unnecessary nutrients and the contamination of the culture solution with pathogenic microorganisms and enable the circulating use of the culture solution, to provide a method for the preparation of the culture solution for hydroponic culture enabling the control of major elements and minor elements necessary for crops and having different requiring amounts according to the kind and the growing stages of the crop, and to provide a method for supplying the minor elements. <P>SOLUTION: A culture solution for hydroponic culture such as water culture is used as an electrolytic solution and directly electrolyzed by passing a DC current with insoluble electrodes to control the pH of the culture solution for hydroponic culture, supply oxygen to the culture solution, remove the accumulated nutrients and sterilize microorganisms to enable the circulating use as the culture solution for hydroponic culture. A metal or alloy composed of a minor element is used as a soluble electrode and the culture solution is electrolyzed by passing superposed DC and AC current to supply the minor element and keep the element concentration within a controlled range. The root area is heated by controlling the distance between the electrodes and the amount of the current. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、養液栽培用培養液のpH調整、殺菌と酸素供給、微量要素の供給方法及び培養液温度を調整する方法において、養液栽培用培養液を電解液として電解するにあたり、電極に直流電流と交流電流を重畳して電解することにより、電極性能に由来する電極反応に基づく養液栽培用培養液のpH調整、温度調整、殺菌と植物の生育、ライフサイクルに必要な酸素、微量要素を供給する方法に関する。 The present invention provides a method for adjusting the pH of a culture solution for hydroponics, sterilization and oxygen supply, a method for supplying trace elements, and a method for adjusting a culture solution temperature. Electrolysis by superimposing direct current and alternating current, pH adjustment, temperature adjustment, sterilization and plant growth, oxygen necessary for life cycle, trace amount based on electrode reaction derived from electrode performance It relates to a method of supplying elements.

水溶液の殺菌方法、特に電気化学的な手段による殺菌方法は、古くから多くの研究がされている。該電気化学的手法には、交流電解による方法と直流電解による方法があり、交流電解による方法は、飲料水、ジュースやビール等の液体或いは産業用水等の液体を連続的に殺菌処理する方法として、高電圧の交流電圧を印加して殺菌する方法、例えば印加する電極線間隙d(mm)に印加する電圧H(V)が200<H/d<2000の高電界中に処理水を供給し殺菌する装置が開示されている(特許文献1)。 Many researches have been made on sterilization methods for aqueous solutions, especially sterilization methods by electrochemical means. The electrochemical method includes a method using alternating current electrolysis and a method using direct current electrolysis, and the method using alternating current electrolysis is a method for continuously sterilizing liquids such as drinking water, juice and beer or industrial water. A method of sterilizing by applying a high-voltage AC voltage, for example, supplying treated water into a high electric field where the voltage H (V) applied to the applied electrode wire gap d (mm) is 200 <H / d <2000 An apparatus for sterilization is disclosed (Patent Document 1).

一方、廃水の処理方法として、特定の高い周波数の交流電流を電極間に通電し、電極の金属イオンを溶出し、被処理液の不純物を高い周波数の交流電界により細分化し水との分離作用の促進性を高めて酸化還元電位を低下させ多量の水処理を容易にし、廃水を処理させる廃水処理方法及び装置が開示されている(特許文献2、3)。 On the other hand, as a wastewater treatment method, a specific high-frequency alternating current is passed between the electrodes, the metal ions of the electrode are eluted, and impurities in the liquid to be treated are subdivided by a high-frequency alternating electric field to separate it from water. Disclosed are wastewater treatment methods and apparatuses that enhance the facilitating property, reduce the oxidation-reduction potential, facilitate a large amount of water treatment, and treat wastewater (Patent Documents 2 and 3).

また、汚水の電解処理方法として直流・交流及び交流ク形波を使用した排水処理技術が開示されている(特許文献4)。さらに、電気化学的に微生物の制菌、殺菌や滅菌を効果的に行う方法として、微生物を含む被処理水に交流又は直流を印加して電気化学的処理を行う方法が開示されている(特許文献5、6、7)。 Also, a wastewater treatment technique using direct current / alternating current and alternating current square wave as an electrolytic treatment method for wastewater is disclosed (Patent Document 4). Furthermore, as a method of effectively performing sterilization, sterilization and sterilization of microorganisms electrochemically, a method of performing an electrochemical treatment by applying alternating current or direct current to water to be treated containing microorganisms is disclosed (patent) Literature 5, 6, 7).

直流電解による殺菌方法は、淡水中の塩化物イオンや希塩酸を電解し次亜塩素酸を生成し、該次亜塩素酸の酸化力により殺菌することは既に公知であり、多くの製品が販売されている。該直流電解技術では、陰極にカルシウムやマグネシウムが析出するため定期的に陽極と陰極の極性を変換する技術も開示されている。最近では、光触媒技術を利用した酸化チタンによる殺菌、浄液技術の実用化がなされ、光触媒による養液の浄化・殺菌及び太陽光による農業廃液処理等の技術が開示されている(例えば、非特許文献1)。 As for the sterilization method by direct current electrolysis, it is already known that electrolysis of chloride ions and dilute hydrochloric acid in fresh water produces hypochlorous acid and sterilization by the oxidizing power of the hypochlorous acid, and many products are sold. ing. In the DC electrolysis technique, a technique is also disclosed in which the polarity of the anode and the cathode is periodically changed because calcium and magnesium are deposited on the cathode. Recently, sterilization with titanium oxide using photocatalytic technology, and practical use of liquid purification technology have been made, and technologies such as purification and sterilization of nutrient solution using photocatalyst and agricultural wastewater treatment with sunlight have been disclosed (for example, non-patented) Reference 1).

特許第2848591号Patent No. 2848591 特開2000-263050号公報JP 2000-263050 A US6706168B2US6706168B2 特許第2958545号Patent No. 2958545 特許第3150355号Patent No. 3150355 特許第3180318号Patent No. 3180318 特許第3216015号Japanese Patent No. 3216015 施設と園芸119号Facility and Gardening No.119

本発明は、養液栽培用培養液の調整及び微量要素の供給方法において、養液栽培用培養液中で、電極に直流電流と交流電流を重畳して電解することにより、電極性能に由来する電極反応に基づき、養液栽培用培養液のpH調整、温度調整、殺菌と植物の生育、ライフサイクルに必要な酸素、微量要素を供給する方法に関する。従来技術のうち、殺菌方法として高電界中に処理水を供給し、設置してある金属チタン製コイルに交流電流を負荷して、電極が交流電流を放電することにより殺菌を行う方法が特許文献1に開示されている。ここで発明者が開示しているように、電極は、「また、殺菌される周波数については、低くする方が殺菌効果が高くなると予想されるが、電極の腐食、処理の安定性を考慮すると、50kHz以下、好ましくは20kHz以下とする。」と、さらに、「また、上記一対の電極線3、3間に印加する交流電圧は、通常の商用高周波数よりも高い周波数の交流を用いることが好ましい。すなわち、これにより、電極3、3の表面に発生する電気分解を低減することが可能となり、装置の耐久性が向上すると共に、処理される水への影響をも低減することが可能となる。」と開示している。しかしながら、該特許技術では、印加される交流電流により発生する電極である金属チタン製コイルの腐食、溶解等と金属チタン製コイル上で生じる電極反応自体が致命的な問題となり、長期間に亘り使用することが不可能である。 The present invention is derived from electrode performance by electrolyzing a DC current and an AC current superimposed on an electrode in a culture solution for nutrient solution cultivation in the method for adjusting the nutrient solution culture solution and supplying the trace element. The present invention relates to a method for supplying oxygen and trace elements necessary for pH adjustment, temperature adjustment, sterilization and plant growth, life cycle, and life cycle of a culture solution for hydroponics based on an electrode reaction. Among conventional techniques, as a sterilization method, a method of supplying treated water in a high electric field, applying an alternating current to an installed metal titanium coil, and sterilizing the electrode by discharging the alternating current is a patent document. 1 is disclosed. Here, as disclosed by the inventor, the electrode is "Also, the frequency of sterilization is expected to increase the sterilization effect, but considering the corrosion of the electrode and the stability of the treatment, , 50 kHz or less, preferably 20 kHz or less. Furthermore, “Alternatively, the alternating voltage applied between the pair of electrode wires 3 and 3 may be an alternating current having a frequency higher than a normal commercial high frequency. In other words, this makes it possible to reduce the electrolysis generated on the surfaces of the electrodes 3 and 3, thereby improving the durability of the apparatus and reducing the influence on the treated water. It is disclosed. However, in this patented technology, corrosion and dissolution of the metal titanium coil, which is an electrode generated by the applied alternating current, and the electrode reaction itself occurring on the metal titanium coil are fatal problems, and are used for a long time. Is impossible to do.

さらに、該特許技術には、「また、殺菌される液体の電気伝導率が大きすぎると、必要な電圧を印加することができず、殺菌効果が低下する。したがって、殺菌される液体の電気伝導率はある程度以下であることが好ましい。」と直流電流による電解反応に好ましい電解液の高電気伝導率が、該特許技術の問題として記載されている。 Further, the patent technology states that “If the electric conductivity of the liquid to be sterilized is too large, a necessary voltage cannot be applied and the sterilizing effect is reduced. The rate is preferably less than or equal to some extent, ”the high electrical conductivity of the electrolyte preferred for the electrolytic reaction by direct current is described as a problem of the patented technique.

しかしながら、殺菌をするために高電界中に処理水を導入することは、放電による漏れ電流、感電等に繋がるため非常に危険であり、消費電力が高いこと、装置の腐食等の問題を有していると共に電極に高電圧を負荷するため電極の腐食による短寿命のため長期間の安全且つ安定な操業が困難となる。したがって、継続的な電気分解による殺菌効果が得られないという根本的且つ致命的な問題を有している。 However, introducing treated water into a high electric field for sterilization is very dangerous because it leads to leakage current, electric shock, etc. due to discharge, and has problems such as high power consumption and corrosion of the device. At the same time, since a high voltage is applied to the electrode, a short life due to corrosion of the electrode makes it difficult to operate safely and stably for a long time. Therefore, there is a fundamental and fatal problem that the bactericidal effect by continuous electrolysis cannot be obtained.

特許文献2及び3には、廃水処理方法として、該特許技術に使用する電極に関し、「電極は、板状電極や多重の同心パイプ状電極が用いられ、被処理水により各種の金属が選択可能であり、例えばチタン、白金、パラジウム、イリジウム、カーボン、アルミニウム、マグネシウム、亜鉛、銅、銀などの金属イオンの特性を応用する。」が開示され、さらに、「このような多重の同心パイプ状電極を用いることにより、例えば、油、純粋、超純粋等の電気伝導率の低い水溶液に特に有効であり、かつ水温の低い水溶液の電気分解を効率良く行うことが可能である。同心パイプ状電極の材質として、好ましくはステンレス、銅、銀、白金、亜鉛、アルミニウム、マグネシウム、チタンなどが選択できる。」と開示し、該電極に「・・・前記交流電圧の周波数は被処理液に対する交流の電気分解における金属イオンの溶出する周波数帯域の内、水質に合わせた高い周波数を用いることを特徴とする・・」と記載されているように、金属電極に交流電流を負荷して金属イオンを溶出させて汚泥、有機物等の不純物を凝集・分離する廃水処理を行う方法が開示されている。該特許技術に使用される交流電圧の高いほうの周波数が70〜310kHzで、セルフクリーニング作用を有する低いほうの周波数が10〜70Hzが開示されている。すなわち、特許文献2〜3では、金属電極を使用して、交流電解を行い、該金属電極が溶解させて溶解した金属イオンの凝集力により廃水処理を行う方法である。 Patent Documents 2 and 3 relate to electrodes used in the patented technology as wastewater treatment methods. “The electrodes are plate electrodes and multiple concentric pipe electrodes, and various metals can be selected depending on the water to be treated. For example, applying the properties of metal ions such as titanium, platinum, palladium, iridium, carbon, aluminum, magnesium, zinc, copper, silver, etc. "and further," such multiple concentric pipe electrodes. Is effective particularly for aqueous solutions with low electrical conductivity such as oil, pure, ultrapure, etc., and can efficiently perform electrolysis of aqueous solutions with low water temperature. As the material, preferably, stainless steel, copper, silver, platinum, zinc, aluminum, magnesium, titanium, etc. can be selected. " The frequency is a high frequency that matches the water quality in the frequency band in which metal ions are eluted in AC electrolysis of the liquid to be treated. A method of performing wastewater treatment in which metal ions are eluted by loading and agglomerating and separating impurities such as sludge and organic matter is disclosed. The higher frequency of the AC voltage used in the patent technology is 70 to 310 kHz, and the lower frequency having a self-cleaning action is 10 to 70 Hz. That is, Patent Documents 2 to 3 are methods in which alternating current electrolysis is performed using a metal electrode, and the wastewater treatment is performed by the cohesive force of the dissolved metal ions by dissolving the metal electrode.

該特許技術は、交流電解を利用し、金属イオンを供給する方法であるが、交流電流を金属に通電することにより金属を溶解する場合、電流は、陽分極時に金属のイオン化、金属酸化物及び酸素発生等の生成に消費される。一方、陰分極時には、電流は金属イオンや金属水酸化物等の還元、水素発生等の種々の電極反応に消費される。この他に、交流電解では、該陽極反応と陰極反応が交互に1秒間に周波数の回数だけ発生し、イオン拡散速度等に由来する交流電流の交番電場に対する電極反応の遅れ等があるため交流電解では、特定の金属イオンの供給量を一定に調整することは困難であるという欠点を有する。 The patented technology is a method of supplying metal ions using alternating current electrolysis, but when the metal is dissolved by passing an alternating current through the metal, the current is ionized during the anodic polarization, the metal oxide, Consumed to generate oxygen. On the other hand, during negative polarization, current is consumed for various electrode reactions such as reduction of metal ions and metal hydroxides, generation of hydrogen, and the like. In addition, in AC electrolysis, the anodic reaction and the cathodic reaction occur alternately by the number of times per second, and there is a delay in the electrode reaction with respect to the alternating electric field of the alternating current derived from the ion diffusion rate, etc. Then, it has the fault that it is difficult to adjust the supply amount of a specific metal ion to be constant.

特許文献4では、汚水の処理方法として、銅、アルミニウム、鉄の金属を電極として使用し、該電極に直流、交流または交流ク形波を通電し、電極間に汚水を通液して接触酸化後、処理液の固形物を分離して金属イオン、BOD、COD、大腸菌、一般細菌、リン酸を減少させる汚水処理方法で、電極は、特許技術2〜3と同様に溶性陽極であり溶出した大量の金属イオンの凝集力により凝集・分離することにより汚水を処理する方法であり、本特許技術が目的とする、殺菌と同時に特定の金属イオンの極微少量の供給量を一定に調整することは困難であるという欠点を有する。また、該技術に使用されている電極に直流電流を通電することにより、陽極として使用されている金属電極が溶解し、金属イオンが溶液中に多量に溶出してしまい、環境の2次汚染を惹き起こすという問題を有している。 In Patent Document 4, as a method for treating sewage, copper, aluminum, or iron metal is used as an electrode, DC, AC, or AC square wave is applied to the electrode, and sewage is passed between the electrodes for contact oxidation. After that, the solids in the treatment liquid were separated to reduce metal ions, BOD, COD, Escherichia coli, general bacteria, and phosphoric acid, and the electrode was a soluble anode as in Patent Technologies 2-3 and eluted. It is a method of treating sewage by agglomerating and separating by the cohesive force of a large amount of metal ions, and the purpose of this patented technology is to adjust the supply amount of a specific metal ion to a very small amount simultaneously with sterilization. It has the disadvantage of being difficult. In addition, by applying a direct current to the electrode used in the technology, the metal electrode used as the anode is dissolved, and a large amount of metal ions are eluted in the solution, resulting in secondary pollution of the environment. It has the problem of being aroused.

特許文献5〜7に開示されている特許技術は、微生物を含有する処理水を電気化学的に処理するにあたり、炭素系材料からなる複極式三次元電極を有する複極式三次元電極式電解槽で該電解槽内に設置されている三次元電極に直流又は交流電圧を印加して三次元電極を分極し、処理水を該分極した三次元電極に接触することにより処理水を殺菌することが開示されている。該特許技術には、三次元電極として、炭素系材料、白金族金属酸化物被覆チタン材(寸法安定性電極)、白金被覆チタン材、ニッケル、フェライト等、あるいは該炭素系材料に貴金属のコーティングを施した材料から形成されたものが開示されている。 Patent technology disclosed in Patent Documents 5 to 7 is a bipolar three-dimensional electrode electrolysis having a bipolar three-dimensional electrode made of a carbon-based material for electrochemically treating treated water containing microorganisms. Applying DC or AC voltage to the three-dimensional electrode installed in the electrolytic cell in the tank to polarize the three-dimensional electrode, and sterilize the treated water by contacting the treated water with the polarized three-dimensional electrode Is disclosed. In this patented technology, as a three-dimensional electrode, a carbon-based material, a platinum group metal oxide-coated titanium material (dimensionally stable electrode), a platinum-coated titanium material, nickel, ferrite, etc., or a noble metal coating on the carbon-based material What is formed from the applied material is disclosed.

しかしながら、養液栽培用培養液中には植物の生育、ライフサイクルに必要な養分が溶解されている。該膨大な表面を有する三次元電極では、効率良く酸化還元反応を行うばかりでなく吸着、濾過の機能を有するため養液栽培用培養液中の養分が吸着・除去されるという致命的な欠陥を有するばかりか、特に炭素系材料からなる三次元電極は、陽極時の酸素発生に伴う発生期酸素と炭素が反応し、炭素が消耗して短期間のうちに均一な処理が出来なくなる。該消耗は、炭素系材料に貴金属のコーティングを施した材料でも発生し、さらに炭素材の消耗が進行すると、炭素が崩落し、処理水を汚染することもある。従って、これらの材料を電極として使用することは出来ない。該本発明との技術的相違により、特許文献5〜7に開示されている技術は、本発明の技術とは全く異なるものである。 However, nutrients necessary for the growth and life cycle of plants are dissolved in the culture solution for hydroponics. The three-dimensional electrode having an enormous surface has not only an efficient redox reaction, but also has a function of adsorption and filtration, and therefore has a fatal defect that nutrients in the culture medium for nutrient solution cultivation are adsorbed and removed. In particular, a three-dimensional electrode made of a carbon-based material reacts with the nascent oxygen accompanying the generation of oxygen at the time of anode, and the carbon is consumed, so that uniform treatment cannot be performed within a short period of time. The exhaustion occurs even in a material obtained by coating a carbon-based material with a noble metal coating, and when the exhaustion of the carbon material further proceeds, the carbon collapses and may contaminate the treated water. Therefore, these materials cannot be used as electrodes. Due to technical differences from the present invention, the techniques disclosed in Patent Documents 5 to 7 are completely different from the techniques of the present invention.

さらに、ニッケル、フェライト等の炭素系以外の電極でも、炭素系電極と同様に溶解による消耗、崩落を発生する。また、養液栽培用培養液中の養分が吸着・濾過されて除去されるという致命的な欠陥を避けることが出来ない。また、三次元電極層内に吸着物による目詰まりを発生し、処理水中のカルシウム、マグネシウム化合物の析出により液が流れなくなると共に分極が困難になり処理水と接触が出来ず、目的とする殺菌等の性能が低下してくる。 Further, even with electrodes other than carbon such as nickel and ferrite, consumption and collapse due to dissolution occur as in the case of carbon electrodes. Moreover, the fatal defect that the nutrient in the culture solution for hydroponics is adsorbed, filtered and removed cannot be avoided. In addition, clogging due to adsorbate occurs in the three-dimensional electrode layer, and the liquid does not flow due to precipitation of calcium and magnesium compounds in the treated water, and polarization becomes difficult and cannot be contacted with the treated water. The performance of will decline.

非特許文献1には、酸化チタン光触媒による養液の浄化・殺菌方法の結果が開示されている。該文献では、有機質培地を用いて培養液を循環利用した場合、循環培養液中に蓄積する有機物による植物の成長阻害と安定生産のための植物病原菌が懸念され、該課題の対策を目的として太陽光を利用した培養液の浄化・殺菌が行われた。培養液の浄化処理効果はTOC(全有機体炭素)の分析と吸光度を測定することにより行われた。その結果、酸化チタン光触媒による効果が明白となり、曇天でも該技術が有効であることが示された。 Non-Patent Document 1 discloses a result of a nutrient solution purification / sterilization method using a titanium oxide photocatalyst. In this document, when a culture solution is circulated using an organic medium, there is a concern about plant pathogens for plant growth inhibition and stable production due to organic substances accumulated in the circulation culture solution. The culture medium was purified and sterilized using light. The purification treatment effect of the culture broth was performed by analyzing the TOC (total organic carbon) and measuring the absorbance. As a result, the effect of the titanium oxide photocatalyst became clear and it was shown that the technique is effective even in cloudy weather.

しかしながら、太陽光中の紫外線の強さは、1mW/cm2と低いため装置の面積を大きくして、効率をあげる必要がある。したがって、さらに高効率の光触媒の開発が継続してなされている。また、太陽光の代替として紫外線ランプを使用した装置やオゾン発生装置との併用が検討されている。紫外線ランプを光源として使用する方法は、養液の汚れや養液中の有機物の蓄積により光路が短くなり処理能力が低下するという欠点を有する。また、該問題を解決するための洗浄装置が必要となり装置が大型になりコストアップの原因となる。同様に、オゾン発生装置の併用も装置の大型化とコストアップの原因となる。 However, since the intensity of ultraviolet rays in sunlight is as low as 1 mW / cm2, it is necessary to increase the area of the device to increase efficiency. Therefore, the development of higher efficiency photocatalysts has been continued. Moreover, the combined use with the apparatus which uses an ultraviolet lamp as an alternative to sunlight, or an ozone generator is examined. The method of using an ultraviolet lamp as a light source has a drawback that the optical path is shortened due to soiling of the nutrient solution or accumulation of organic substances in the nutrient solution, resulting in a decrease in processing capability. In addition, a cleaning device for solving the problem is required, which increases the size of the device and increases costs. Similarly, the combined use of an ozone generator causes an increase in size and cost of the device.

本発明は、肥料や植物のライフサイクルに必要な微量要素及び有機物を含有する養液栽培用培養液を循環利用する際、培養液の組成を変化せずpH調整、培養液温度、根域温度調整と殺菌、且つ酸素と微量要素を供給することを目的とし、培養液中で不溶性電極と微量要素を供給するための溶性電極に直流電流と交流電流を重畳し電解することにより、従来技術の諸問題を解決した安全で且つ安価に処理する方法を提供することにある。 The present invention, when circulating and using nutrient solution culture medium containing trace elements and organic matter necessary for the life cycle of fertilizers and plants, pH adjustment, culture solution temperature, root zone temperature without changing the composition of the culture solution For the purpose of adjusting and sterilizing, and supplying oxygen and trace elements, electrolysis by superimposing direct current and alternating current on the soluble electrode for supplying insoluble electrodes and trace elements in the culture solution, It is an object of the present invention to provide a safe and inexpensive method for solving various problems.

養液栽培用培養液は、各肥料メーカーにより製造された肥料を栽培する植物の種類に合わせ調合し、水道水や井戸水で希釈して調製されている。該肥料は、水溶性の硝酸塩、リン酸塩、硫酸塩、有機酸塩やキレート塩等からなる。該調製された培養液の濃度管理は、主に電気伝導度の測定することにより行われている。推奨されている電気伝導度の値は、植物の生育段階によっても異なるが、0.1〜0.3S/mの範囲となっている。循環培養液は、非特許文献1に指摘されているように富栄養化により病原菌の温床となりやすく、一旦発病すれば培養液を通して短時間の内に全体に蔓延してしまう。 The culture solution for hydroponics is prepared according to the type of plant that grows the fertilizer produced by each fertilizer manufacturer, and diluted with tap water or well water. The fertilizer includes water-soluble nitrates, phosphates, sulfates, organic acid salts, chelate salts, and the like. The concentration control of the prepared culture solution is mainly performed by measuring electric conductivity. The recommended value of electrical conductivity varies depending on the growth stage of the plant, but is in the range of 0.1 to 0.3 S / m. As pointed out in Non-Patent Document 1, the circulating culture solution tends to become a hotbed of pathogenic bacteria due to eutrophication, and once it becomes sick, it spreads throughout the culture solution in a short time.

電気化学的手段による方法以外に培養液を熱処理によって行う方法も検討されているが、装置が大型化し、費用も膨大であり償却年数がかかってしまう。したがって、電気化学的処理方法は、培養液の組成を変化させなければ、装置、エネルギーコスト等の面で有利な法である。 In addition to the method using electrochemical means, a method in which the culture solution is subjected to heat treatment has been studied, but the apparatus becomes large, the cost is enormous, and it takes a long time to depreciate. Therefore, the electrochemical treatment method is advantageous in terms of equipment, energy cost, etc., unless the composition of the culture solution is changed.

養液栽培用培養液のような特殊な水溶液を直接電解し、組成を変化することなく、殺菌し、且つ植物に必要な微量要素を供給することは、これまで実施されたことはなかった。これは、培養液を直接電解することにより、培養液に電極成分が溶出することや電解による酸化還元反応により培養液中の成分が変質する恐れがあるためであると推察される。 Direct electrolysis of a special aqueous solution such as a culture solution for hydroponics, sterilization without changing the composition, and supplying the trace elements necessary for plants have never been carried out. This is presumably because direct electrolysis of the culture broth may elute electrode components into the culture broth or alter the components in the culture broth due to oxidation-reduction reactions caused by electrolysis.

上記問題を解決すべく鋭意研究の結果、不溶性電極により養液栽培用培養液のような特殊な水溶液を直接電解すると、陽極や陰極の電極表面に析出物を生ずることも無く、培養液のpHを変化させることが可能で、次亜塩素酸の生成することなく培養液の殺菌が可能であることが判明した。さらに、植物の生育に不可欠で、供給すべき成分を含有する金属、特に、培養液のように酸性度がpH4.5〜pH8と弱酸性から弱アルカリ性水溶液中で陽分極時に金属表面に不働態化による酸化皮膜を形成する金属を不溶性電極により直流電解を継続している陰極に並列に接続し、且つ交流電流を重畳することにより、供給する微量要素の金属表面に陽分極時、スライムやスマットの原因となる不働態化による酸化膜等を形成することなく溶解し、通電量による溶解量の制御が可能であること、すなわち、不溶性電極と供給する微量要素からなる溶性電極に直流電流と交流電流を重畳し、培養液を電解液として直接電解することにより、養液栽培用培養液のpH、病原菌数、微量要素の溶解量、発生酸素量、根域温度、培養液温度、全炭素濃度を調整することが可能であることを見出し本発明するに至った。 As a result of diligent research to solve the above problems, direct electrolysis of a special aqueous solution such as a culture solution for hydroponics with an insoluble electrode does not produce deposits on the surface of the anode or cathode, and the pH of the culture solution It has been found that the culture medium can be sterilized without producing hypochlorous acid. In addition, metals that contain the components to be supplied, which are indispensable for the growth of plants, especially those that are passively attached to the metal surface during anodic polarization in a weakly acidic to weakly alkaline aqueous solution with a pH of 4.5 to 8 as in the culture solution. By connecting the metal that forms the oxide film due to oxidization in parallel to the cathode that continues DC electrolysis with an insoluble electrode and superimposing AC current, the metal surface of the trace element to be supplied is positively polarized on the metal surface of slime and smut It can be dissolved without forming an oxide film or the like due to passivation, and the amount of dissolution can be controlled by the amount of energization. By superimposing current and directly electrolyzing the culture solution as an electrolyte, the pH of the culture solution for nourishing culture, the number of pathogenic bacteria, the amount of dissolved trace elements, the amount of oxygen generated, the root zone temperature, the culture solution temperature, the total carbon concentration Adjust As a result, the present invention was found.

詳細には、本発明に使用される不溶性陽極、不溶性陰極及び不溶性電極は、該電極基体がチタン、タンタル、ニオブ、ジルコニウムの金属若しくはこれらの合金に電極触媒として白金、イリジウム、ルテニウム、パラジウムから選択される一種以上の金属又は金属酸化物を含む電極触媒とチタン、錫、タンタル、アンチモン、ニオブ、ジルコニウムの金属酸化物から選択される電極触媒の分散材を含有してなる複合酸化物被覆層を有する不溶性陽極、不溶性陰極及び不溶性電極であり、既に市販されている電極が使用可能であるが、不溶性であることが不可欠である。 Specifically, the insoluble anode, insoluble cathode and insoluble electrode used in the present invention are selected from platinum, iridium, ruthenium and palladium as an electrode catalyst when the electrode base is a metal of titanium, tantalum, niobium, zirconium or an alloy thereof. A composite oxide coating layer comprising an electrode catalyst containing at least one metal or metal oxide and a dispersion of an electrode catalyst selected from metal oxides of titanium, tin, tantalum, antimony, niobium and zirconium An insoluble anode, an insoluble cathode, and an insoluble electrode that are already commercially available can be used, but it is essential that they are insoluble.

不溶性であることは、培養液を電極成分で汚染することを防止出来るばかりでなく、目的とする電極反応を制御するうえで不可欠な要素である。鉄、ニッケル、ステンレス、銅、銀等の金属は、アノード溶解し、炭素系やフェライト系の電極では酸化、還元による崩壊のため本発明の不溶性陽極、不溶性陰極及び不溶性電極としては使用できない。 Insolubility not only prevents the culture solution from being contaminated with electrode components, but is an indispensable element for controlling the target electrode reaction. Metals such as iron, nickel, stainless steel, copper, and silver cannot be used as the insoluble anode, insoluble cathode, or insoluble electrode of the present invention due to anodic dissolution and carbon or ferrite type electrode collapse due to oxidation or reduction.

不溶性陽極、不溶性陰極及び不溶性電極としては、例えば、日本カーリット株式会社製焼成電極が使用できる。さらに、特開2003-293196や特開2004-204328で開示されているような耐食性が向上された白金族金属酸化物を電極触媒とする焼成電極も使用可能であり、本発明に使用する不溶性陽極、不溶性陰極及び不溶性電極として好適である。 As the insoluble anode, insoluble cathode and insoluble electrode, for example, a calcined electrode manufactured by Nippon Carlit Co., Ltd. can be used. Furthermore, a calcined electrode using a platinum group metal oxide with improved corrosion resistance as disclosed in JP-A-2003-293196 and JP-A-2004-204328 can also be used, and the insoluble anode used in the present invention can be used. Suitable as an insoluble cathode and an insoluble electrode.

本発明に使用される不溶性陰極は、不溶性陽極と同様に培養液に対して不溶性であることが必須条件となる。陰極材料としては、チタン、タンタル、ニオブ、ジルコニウム等の高耐蝕性金属やこれらの合金が好適である。さらに、これらの金属を電極基体とし、該電極基体に電極触媒として白金、イリジウム、ルテニウム、パラジウムから選択される一種以上からなる金属、合金又は金属酸化物を被覆した不溶性陰極を使用し、陰極反応である水素発生の過電圧を抑えることにより、電解電圧を減少させ消費電力を軽減することが可能であり、本発明の不溶性陰極として好適である。 The insoluble cathode used in the present invention is indispensable to be insoluble in the culture solution like the insoluble anode. As the cathode material, a highly corrosion resistant metal such as titanium, tantalum, niobium, zirconium, or an alloy thereof is suitable. Furthermore, using these metals as electrode substrates, and using an insoluble cathode coated with one or more metals, alloys or metal oxides selected from platinum, iridium, ruthenium and palladium as electrode catalysts on the electrode substrates, cathodic reaction By suppressing the overvoltage of hydrogen generation, it is possible to reduce the electrolysis voltage and reduce the power consumption, which is suitable as the insoluble cathode of the present invention.

本発明の陽極及び陰極の形状は、該基材が金属であるため、用途に応じて任意の形状が可能である。又、不溶性であるため溶解等による形状の変化が無いので、使用される養液栽培システムの形態、菌の混入源、微量要素の供給位置、管理の容易さ等の設置場所に適合させて電極形状を決定すればよい。例えば、培養液の通路内に無隔膜の状態で設置するのであれば、培養液の流れを妨げないエキスパンドメタルを電極基板とする網状電極や棒状基材を溶接等の手段により電気的に接合した櫛状電極が好ましい。 The shape of the anode and cathode of the present invention can be any shape depending on the application because the substrate is a metal. In addition, since it is insoluble, there is no change in shape due to dissolution, etc., so the electrode should be adapted to the installation location such as the form of the nourishing culture system used, the source of bacterial contamination, the supply position of trace elements, the ease of management, etc. What is necessary is just to determine a shape. For example, if it is installed in the state of a non-diaphragm in the passage of the culture solution, a mesh electrode or a rod-shaped substrate having an expanded metal electrode substrate that does not interfere with the flow of the culture solution is electrically joined by means such as welding. Comb electrodes are preferred.

又、培養液を集中管理している養液栽培を実施している養液栽培システムであれば、集中管理タンク内に板状、棒状若しくは網状の電極のいずれの形状の電極も使用可能である。さらに、棒状電極に網状電極を溶接等の手段で電気的に接合した電極、同様に、網状電極を複数枚接合した電極が好適である。該形状の電極であれば、本発明の目的以外にストレナーとして使用することも可能である。 In addition, in the case of a hydroponic culture system that performs hydroponic cultivation in which the culture broth is centrally managed, any plate-like, rod-like, or net-like electrode can be used in the centralized control tank. . Furthermore, an electrode in which a mesh electrode is electrically joined to a rod-like electrode by means such as welding, and similarly, an electrode in which a plurality of mesh electrodes are joined is suitable. If it is the electrode of this shape, it can also be used as a strainer other than the objective of this invention.

電極の設置場所は、任意の場所に設置可能である。肥料調整後にpH調整用、酸素供給設備、微量要素供給装置として設置しても良い。特に、殺菌用として設置する場合には、大気と接し、細菌等が混入しやすい培養液通路内が好適である。又、これらを併設し、複数の電極を分散設置しても良く、特に、根域加温栽培を実施するためには、電極を栽培する生物の根域に設置し、電解による発熱により根域を加温し、各電極設置場所にて電気伝導度とpH、微量要素濃度、根域温度や培養液温度、微生物由来のアデノシンリン酸塩(ATP等)による発光量あるいは養液を採取し培地に培養し菌数を測定管理し、肥料濃度、電極設置位置、電極間距離及び通電電流量を調整することが望ましい。 The electrode can be installed at any place. After adjusting the fertilizer, it may be installed as a pH adjusting device, an oxygen supply facility, or a trace element supply device. In particular, in the case of installation for sterilization, the inside of the culture solution passage which is in contact with the atmosphere and easily contaminated with bacteria is preferable. Moreover, these may be provided side by side, and a plurality of electrodes may be installed in a distributed manner. In particular, in order to carry out root area warming cultivation, the electrodes are installed in the root area of the organism to be cultivated, and the root area is generated by heat generated by electrolysis. , And the electrical conductivity and pH, concentration of trace elements, root zone temperature, culture solution temperature, luminescence from microorganism-derived adenosine phosphate (ATP, etc.) or nutrient solution at each electrode installation location. It is desirable to measure and control the number of bacteria and adjust the fertilizer concentration, electrode installation position, distance between electrodes, and the amount of energization current.

本発明に使用される溶性電極は、チタン、珪素、アルミニウム、鉄、マンガン、亜鉛、銅、モリブデン、ニッケル、リン、カルシウム、マグネシウム、ホウ素、硫黄、窒素、炭素より選択される1種以上からなる金属若しくは合金である。例えば、鉄と珪素の合金である高珪素鋳鉄、含リン銅、アルミニウムマグネシウム亜鉛、フェロマンガン、フェロモリブデン、フェロチタン、フェロボロン、シリコマンガン、フェロアルミ、炭素フェロマンガン、フェロ亜鉛ニッケル、亜鉛ニッケル、カルシウムモリブデン、フェロモリブデンタングステン、フェロホスホス、フェロニオブ、炭素フェロモリブデン、シリコマンガンフェロクロム、フェロジルコン、マグネシウム亜鉛ジルコニウムカルシウム、カルシウム珪素チタン、チタン銅ニッケル、チタンボロン、チタンモリブデン等が使用可能であり、実用上は培養液を電解液として電解することによる溶解量を分析して通電量を制御することが好ましい。 The soluble electrode used in the present invention comprises one or more selected from titanium, silicon, aluminum, iron, manganese, zinc, copper, molybdenum, nickel, phosphorus, calcium, magnesium, boron, sulfur, nitrogen, and carbon. It is a metal or an alloy. For example, high-silicon cast iron, which is an alloy of iron and silicon, phosphorous copper, aluminum magnesium zinc, ferromanganese, ferromolybdenum, ferrotitanium, ferroboron, silicomanganese, ferroaluminum, carbon ferromanganese, ferrozinc nickel, zinc nickel, calcium Molybdenum, ferromolybdenum tungsten, ferrophosphos, ferroniobium, carbon ferromolybdenum, silicomanganese ferrochrome, ferrozircon, magnesium zinc zirconium calcium, calcium silicon titanium, titanium copper nickel, titanium boron, titanium molybdenum, etc. can be used. It is preferable to control the amount of energization by analyzing the amount of dissolution by electrolyzing the solution as an electrolyte.

さらに、養液栽培用培養液が、元素として窒素、リン、カリウム、カルシウム、マグネシウム、硫黄、炭素、酸素、水素、鉄、マンガン、ホウ素、銅、亜鉛、モリブデン、塩素、ナトリウム、珪素、アルミニウム、ニッケルからなり硝酸塩、リン酸塩、硫酸塩、アンモニウム塩、有機酸塩、キレート塩、有機肥料成分の水溶液で構成され、循環型の養液栽培用培養液である。 Furthermore, the culture medium for hydroponics contains nitrogen, phosphorus, potassium, calcium, magnesium, sulfur, carbon, oxygen, hydrogen, iron, manganese, boron, copper, zinc, molybdenum, chlorine, sodium, silicon, aluminum, It consists of nickel, phosphate, sulfate, ammonium salt, organic acid salt, chelate salt, organic fertilizer component aqueous solution, and is a circulating culture solution for hydroponics.

一般に、不溶性電極を用いて、直流電流を通じ、無隔膜にて水電解を行うと、陽極では電解酸化反応として、水を電解し酸素を発生し、陰極では電解還元反応として水素を発生する。この結果、水は、酸素と水素に分解され減少するが、電解液のpHは変動しない。一方、塩素イオンを含有する水溶液を電解すると、pHが上昇して、アルカリ性次亜塩素酸水溶液が得られる。 In general, when water electrolysis is performed on a non-transparent membrane through a direct current using an insoluble electrode, water is electrolyzed and oxygen is generated at the anode as an electrolytic oxidation reaction, and hydrogen is generated as an electrolytic reduction reaction at the cathode. As a result, water is decomposed and reduced to oxygen and hydrogen, but the pH of the electrolyte does not change. On the other hand, when an aqueous solution containing chlorine ions is electrolyzed, the pH rises and an alkaline hypochlorous acid aqueous solution is obtained.

しかしながら、養液栽培用培養液を電解液として、不溶性陽極と不溶性陰極を用いて無隔膜にて電解することにより、養液栽培用培養液のpHが酸性側に変動すると共に微生物反応に由来するアデノシンリン酸塩(ATP等)基づく発光量が減少すること、すなわち、電解により、pH調整が可能であること、殺菌効果が得られること、培養液中の溶存酸素濃度が上昇し、さらに、電極間の距離、通電電流値及び培養液の電気伝導度を制御することにより培養液の温度を上昇することが可能であるため、電解が植物の栽培に有効であることすなわち、不溶性陽極と不溶性陰極を用い養液栽培用培養液を電解液として直流電解することにより、養液栽培用培養液の調整が可能である本発明に至った。 However, the electrolysis of the culture solution for nutrient solution cultivation using an insoluble anode and an insoluble cathode as an electrolyte solution causes the pH of the culture solution for nutrient solution cultivation to change to the acidic side and to originate from a microbial reaction. The amount of luminescence based on adenosine phosphate (ATP, etc.) decreases, that is, the pH can be adjusted by electrolysis, the bactericidal effect is obtained, the dissolved oxygen concentration in the culture solution increases, and the electrode It is possible to increase the temperature of the culture solution by controlling the distance between them, the current value and the electrical conductivity of the culture solution, so that electrolysis is effective for plant cultivation, that is, insoluble anode and insoluble cathode The present invention is capable of adjusting the culture solution for nutrient solution cultivation by direct current electrolysis using the culture solution for nutrient solution cultivation as an electrolyte solution.

一方、本発明の不溶性陽極、不溶性陰極及び不溶性電極を用いて交流電解を行う場合は、これらの電極では、電極性能としてコンデンサー容量を有することに由来し、交流の周波数に対応した分極時に電流を充電し、電極反応に寄与する放電電流に至る前に極性が変化するため、見かけ上は電解反応が進行していない。これは、これら不溶性電極が電極触媒として不溶性の金属酸化物の被覆層を有していることに由来する。 On the other hand, when AC electrolysis is performed using the insoluble anode, the insoluble cathode and the insoluble electrode of the present invention, these electrodes are derived from having a capacitor capacity as an electrode performance, and current is applied at the time of polarization corresponding to the AC frequency. Since the polarity changes before charging and the discharge current contributing to the electrode reaction, the electrolytic reaction does not proceed apparently. This is because these insoluble electrodes have an insoluble metal oxide coating layer as an electrode catalyst.

これに対して、金属を交流電解用の電極として使用した場合は、金属は、電気容量を有しないため交流電流に対応した電極反応、特に培養液のような電解質濃度が低い場合には、金属イオンの溶解、不働態化、酸素発生、水素発生、金属水酸化物生成や還元反応の電極反応を行う。 On the other hand, when a metal is used as an electrode for alternating current electrolysis, the metal does not have an electric capacity, so the electrode reaction corresponding to alternating current, particularly when the electrolyte concentration is low such as a culture solution, the metal Electrode reactions such as ion dissolution, passivation, oxygen generation, hydrogen generation, metal hydroxide generation and reduction reactions are performed.

従って、不溶性電極と培養液に供給する微量要素からなる金属又は合金の金属電極を用いて培養液を電解液として交流電解した場合、陽分極時、珪素、チタン、タンタル等の弁金属以外は金属電極を構成する金属がイオンとして溶解する。しかしながら、弁金属の場合には、金属表面に安定な酸化皮膜を形成し、不働態化或いは酸素を発生し不溶性化するものと考えられる。例えば、珪素と鉄の合金である高珪素鋳鉄を溶性電極として使用した場合、珪素は不働態化し不溶性化するが、鉄がイオン化し溶解するため、培養液中に微量要素として鉄イオンを供給することが可能となる。同様に、チタンとアルミニウムの合金を使用した場合は、チタンが不働態化し、アルミニウムがイオンとして溶解する。 Therefore, when AC electrolysis is performed using an insoluble electrode and a metal electrode of a trace element supplied to the culture medium or an alloy as the electrolyte, the metal other than valve metals such as silicon, titanium, and tantalum when positively polarized The metal constituting the electrode dissolves as ions. However, in the case of a valve metal, it is considered that a stable oxide film is formed on the metal surface and is rendered passivated or insoluble by generating oxygen. For example, when high-silicon cast iron, which is an alloy of silicon and iron, is used as a soluble electrode, silicon is passivated and insoluble, but iron ionizes and dissolves, so iron ions are supplied as a trace element in the culture solution. It becomes possible. Similarly, when an alloy of titanium and aluminum is used, titanium is passivated and aluminum is dissolved as ions.

さらに、該交流電解に直流電流を重畳させると、マンガンやモリブデンのような不働態化しやすい金属を含有する溶性電極を直流電極の陰極として通電することにより該溶性電極の電極電位を低下し、不働態化せず溶解電位と金属が安定な電位域に維持されるため金属が不働態化することなく溶解、供給することが可能となる。供給量は、交流電流量を調整するか、電解装置として形成した電気回路内の可変抵抗器を調整することによっても調整可能である。又、不溶性電極間に複数種類及び複数枚の養液栽培用培養液に供給する微量要素からなる溶性金属電極を複極となるよう電気的に接合することによっても供給微量要素の種類と供給量を調整することも可能である。又、通電する交流電流の周波数に特に限定は無い。一般に使用されている周波数を使用することが、高価な周波数変換装置等の機器も必要なく安価でよい。電極電位を測定し、操業条件を設定することが望ましいが、実用上は、直流電解の陽極でpH調整、殺菌、酸素供給等を実施しているため、溶性電極の種類、金属組成等により溶解量が変動するため溶性電極の種類ごとに直流電流の通電量と交流電流の通電量及び金属イオンの溶解量に関する検量線を作成することが望ましい。該操作により、交流電流による交流電解においても、直流電流に交流電流を重畳した電解を行っても安定な電解を継続し、微量要素を安定供給が可能となる。 Furthermore, when a direct current is superimposed on the alternating current electrolysis, the electrode potential of the soluble electrode is lowered by passing a soluble electrode containing a metal that is easily passivated, such as manganese or molybdenum, as the cathode of the direct current electrode. Since the dissolution potential and the metal are maintained in a stable potential range without being activated, the metal can be dissolved and supplied without being deactivated. The supply amount can also be adjusted by adjusting the amount of alternating current or by adjusting a variable resistor in an electric circuit formed as an electrolyzer. In addition, the type and supply amount of the supply trace element can also be obtained by electrically joining a plurality of kinds of soluble metal electrodes consisting of trace elements supplied to the culture medium for hydroponics between the insoluble electrodes so as to be bipolar. It is also possible to adjust. Moreover, there is no particular limitation on the frequency of the alternating current to be energized. The use of a commonly used frequency can be inexpensive because it does not require expensive equipment such as a frequency converter. It is desirable to measure the electrode potential and set the operating conditions, but in practice, since pH adjustment, sterilization, oxygen supply, etc. are performed at the anode of direct current electrolysis, it dissolves depending on the type of soluble electrode, metal composition, etc. Since the amount varies, it is desirable to create a calibration curve regarding the amount of direct current applied, the amount of alternating current applied, and the amount of dissolved metal ions for each type of soluble electrode. By this operation, even in the alternating current electrolysis using alternating current, stable electrolysis can be continued even if the direct current is superimposed on the alternating current, and the trace element can be stably supplied.

すなわち、本発明の電解技術により、養液栽培用培養液のpH制御、培養液の殺菌、培養液への溶存酸素の富化、培養液温度の調整及び根域加温栽培の根域温度の制御等の培養液調整及び微量要素の供給と濃度制御が可能となる。 That is, by the electrolytic technique of the present invention, the pH control of the culture solution for hydroponics, the sterilization of the culture solution, the enrichment of dissolved oxygen in the culture solution, the adjustment of the culture solution temperature and the root zone temperature of the root zone warming cultivation It is possible to adjust the culture medium such as control and supply and concentration control of trace elements.

本発明は、養液栽培用培養液の調整方法と微量要素の供給方法において、培養液に酸、アルカリや農薬を添加することなく、養液栽培用培養液中で、本発明の不溶性電極、及び微量要素を含有する溶性電極に直流電流と交流電流を通電し、電気分解することにより、培養液のpHを植物の生育の各段階で適切なpHに調整にすると共に、培養液に酸素を供給し、酸欠状態による「嫌気性脱窒素菌」の発生を防止することにより「窒素肥料」の消費分解を抑え、さらに、培養液を殺菌することにより、根の腐敗、発酵により変動するpHを安定化させることが可能になる等の養液栽培植物を健全に、品質が均一に育成することが可能となる。又、植物の生育、ライフサイクルに必要な微量要素を培養液に供給することも可能となるため、培養液の調整を容易に、安全に且つ安価に行うことが出来、さらに、培養液の寿命が延長され、循環再利用が可能となることにより、環境保全、肥料の節減、廃水の減少による環境汚染防止の観点からも極めて有効であることが判明した。 The present invention provides a method for preparing a culture solution for nutrient solution cultivation and a method for supplying a trace element, wherein the insoluble electrode of the present invention is used in the culture solution for nutrient solution cultivation without adding acid, alkali or pesticide to the culture solution, In addition, by applying direct current and alternating current to the soluble electrode containing trace elements and electrolysis, the pH of the culture solution is adjusted to an appropriate pH at each stage of plant growth, and oxygen is added to the culture solution. By supplying and preventing the generation of “anaerobic denitrifying bacteria” due to lack of oxygen, the consumption decomposition of “nitrogen fertilizer” is suppressed, and furthermore, by sterilizing the culture solution, the pH fluctuates due to root decay and fermentation This makes it possible to grow a nutrient solution cultivated plant in a healthy and uniform quality. In addition, since it is possible to supply trace elements necessary for plant growth and life cycle to the culture solution, the culture solution can be adjusted easily, safely and inexpensively. It has been proved that it is extremely effective from the viewpoint of environmental conservation, fertilizer saving, and prevention of environmental pollution due to reduction of wastewater.

以下、本発明の実施の形態を説明する。本発明は、以下の例に限定されるものではない。 Embodiments of the present invention will be described below. The present invention is not limited to the following examples.

トマトの水耕栽培用培養液の養育時におけるpHの管理と微量要素である亜鉛の濃度を管理することが可能か否かを検討するために、10トンのトマト培養液を電解液として、本発明の不溶性陽極として電解面積が幅300mm、長さ1000mm、厚さ2mmのチタン板に白金をめっきした石福金属興業株式会社製白金めっきチタン電極PLATINODE-101B、不溶性陰極として同じ大きさのチタン製エキスパンドメタル(目開き:LW6mm、SW3.5mm) に酸化ルテニウムを電極触媒とする複合酸化物の被覆を熱分解により施した焼成電極である日本カーリット株式会社製エクセロードCを用い、該一対の不溶性陽極と不溶性陰極に20Aの直流電流を通電し、一方、不溶性電極として電解面積が縦横50mmの日本カーリット株式会社製エクセロードC、溶性電極として金属亜鉛板を使用し、これらを対として金属亜鉛板を陽極、エクセロードCを陰極として15mAの直流電流を通電し、トマトを栽培しながらpHと亜鉛濃度の経時変化を調査した。トマト培養液は、10トンに対し肥料の追加を行わず、本発明の無隔膜電解を導入しなかった場合と電解を実施した本発明のpH変化と亜鉛濃度の変化を調査した結果を図1、図2に示した。 In order to examine whether it is possible to control the pH of the culture medium for hydroponic cultivation of tomatoes and the concentration of zinc, which is a trace element, 10 tons of tomato culture solution was used as the electrolyte. Platinum-plated titanium electrode PLATINODE-101B made by Ishifuku Metal Industry Co., Ltd., in which platinum is plated on a titanium plate with a width of 300 mm, a length of 1000 mm, and a thickness of 2 mm as an insoluble anode of the invention. Exelode C manufactured by Nippon Carlit Co., Ltd., which is a calcined electrode in which expanded metal (aperture: LW6mm, SW3.5mm) is coated with a composite oxide using ruthenium oxide as an electrode catalyst by pyrolysis, is used. A 20 A direct current was passed through the anode and insoluble cathode. On the other hand, Exelod C manufactured by Nippon Carlit Co., Ltd. with an electrolytic area of 50 mm in length and width was used as the insoluble electrode, and a metal zinc plate was used as the soluble electrode. Anode zinc metal plate as a counter, Exerciser load C by energizing a direct current of 15mA as a cathode was investigated the time course of pH and concentration of zinc while growing tomatoes. As for tomato culture solution, fertilizer was not added to 10 tons, and the results of investigating changes in pH and zinc concentration in the present invention when electrolysis was not introduced and when the electrolysis was performed were shown in FIG. As shown in FIG.

図1、図2の結果より、電解を実施しなかった比較例の培養液のpHは、管理範囲外のpH6.6まで達したが、本発明の不溶性電極により培養液を直接電解した場合の培養液のpHは、トマトの生育に適したpH5.5〜pH6.5の範囲とすることが可能であった。 From the results of FIG. 1 and FIG. 2, the pH of the culture solution of the comparative example in which electrolysis was not performed reached pH 6.6, which was outside the control range, but when the culture solution was directly electrolyzed with the insoluble electrode of the present invention. The pH of the culture solution could be in the range of pH 5.5 to pH 6.5 suitable for tomato growth.

一方、微量要素である亜鉛濃度は、電解を実施しなかった比較例の培養液の亜鉛濃度は、0.29ppmまで低下し、管理範囲以下となったが、本発明の方法では0.66ppm〜0.47ppmとなり亜鉛濃度の管理範囲に維持可能であることが判明した。 On the other hand, the zinc concentration, which is a trace element, decreased to 0.29 ppm in the culture solution of the comparative example in which electrolysis was not performed, and was below the control range, but in the method of the present invention, 0.66 ppm to 0.47 ppm. It became clear that it could be maintained within the zinc concentration control range.

マンガンは、陽極として電解すると電極表面に酸化物が生成し、溶解しにくくなるためマンガンの供給を交流電流にて行った。本発明の不溶性陽極及び不溶性陰極にチタン製エキスパンドメタルを電極基体として、電解面積が幅300mm、長さ1000mm、厚さ1mmの該電極基体に酸化イリジウム60%、酸化タンタル40%からなる電極触媒となるように調製した塩化イリジウムと塩化タンタルの塩酸溶液を熱シュウ酸に浸漬した後、水洗したチタン製エキスパンドメタル(目開き:LW4.5mm、SW3mm)に塗布し、550℃で熱分解する操作を繰り返し行い不溶性陽極と不溶性陰極を製作した。該一対の不溶性陽極と不溶性陰極に20Aの直流電流を通電した。一方、直流電流を通電した不溶性電極と同じ電極を使用し、溶性電極として金属電解マンガンを用い、該縦横が100mmの大きさの電極の一対に100mAの交流電流を通電し、トマトを栽培しながらpHとマンガン濃度の経時変化を調査した。トマト培養液は、10トンに対し肥料の追加を行わず、本発明の無隔膜電解を導入しなかった比較例と本発明の電解方法を導入したトマト培養液のpH変化とマンガン濃度の変化を調査した結果を図3、図4に示した。 When manganese was electrolyzed as an anode, an oxide was generated on the electrode surface and it was difficult to dissolve, so manganese was supplied by an alternating current. The insoluble anode and insoluble cathode of the present invention are made of titanium expanded metal as an electrode substrate, and an electrode catalyst having an electrolysis area of 300 mm wide, 1000 mm long, and 1 mm thick is formed of 60% iridium oxide and 40% tantalum oxide. After immersing the hydrochloric acid solution of iridium chloride and tantalum chloride prepared in hot oxalic acid, apply it to titanium expanded metal (mesh opening: LW4.5mm, SW3mm) and heat-decompose at 550 ℃ Repeatedly, an insoluble anode and an insoluble cathode were produced. A direct current of 20 A was applied to the pair of insoluble anode and insoluble cathode. On the other hand, using the same electrode as the insoluble electrode energized with direct current, using metal electrolytic manganese as the soluble electrode, energizing 100 mA alternating current to a pair of electrodes with a size of 100 mm in length and width, while growing tomato The changes with time of pH and manganese concentration were investigated. Tomato broth was not added fertilizer to 10 tons, pH change and change in manganese concentration of tomato broth introduced with the comparative example in which the diaphragm electrolysis of the present invention was not introduced and the electrolysis method of the present invention. The survey results are shown in FIGS.

図3の結果より、電解を実施しなかった比較例では、pHがpH6.5以上となり管理範囲値を超え、マンガン濃度は、0.12ppmまで低下し、管理範囲値以下となった。一方、本発明の電解方法を導入したトマト培養液のpH及びマンガン濃度は、管理範囲内であり、本発明の不溶性電極による直流電解及び微量要素からなる金属を溶性電極として、不溶性電極に交流電流を通電する交流電解を培養液中で行うことにより、養液栽培用培養液の調整と微量要素であるマンガン成分の供給が可能であることが判明した。 From the results shown in FIG. 3, in the comparative example in which the electrolysis was not performed, the pH was 6.5 or more, exceeding the control range value, and the manganese concentration was reduced to 0.12 ppm, which was below the control range value. On the other hand, the pH and manganese concentration of the tomato culture solution into which the electrolysis method of the present invention has been introduced are within the control range, and direct current electrolysis by the insoluble electrode of the present invention and a metal composed of a trace element as a soluble electrode, an alternating current is supplied to the insoluble electrode. It was found that by performing AC electrolysis to energize in a culture solution, it is possible to prepare a culture solution for nutrient culture and supply a manganese component as a trace element.

さらに、培養液中にマンガンイオンを容易に供給するため、実施例2と同様に電解をする際、一対の不溶性陽極と不溶性陰極に20Aの直流電流を通電し、一方直流電流を通電した不溶性電極と同じ電極を使用し、溶性電極として金属電解マンガン板を用い、該縦と横が100mmの大きさの電極の一対に不溶性電極を陽極とし、金属電解マンガン板を陰極として10mAの直流電流を通電し、さらに100mAの交流電流を重畳通電しながらトマトを栽培しpHとマンガン濃度の経時変化を調査した。結果を図5に示した。 Furthermore, in order to easily supply manganese ions into the culture solution, when electrolysis was performed in the same manner as in Example 2, a 20 A DC current was passed through a pair of insoluble anode and insoluble cathode, while a DC current was passed through the insoluble electrode. The same electrode is used as a soluble electrode, and a metal electrolytic manganese plate is used as a soluble electrode. A pair of electrodes with a size of 100 mm in length and width is used as an anode, an insoluble electrode is used as a cathode, and a DC current of 10 mA is applied as a metal electrolytic manganese plate as a cathode. Furthermore, tomatoes were cultivated with 100 mA alternating current superimposed, and changes over time in pH and manganese concentration were investigated. The results are shown in FIG.

図5の結果より、本発明の不溶性電極による直流電解及び微量要素からなる金属を溶性電極として、不溶性電極に直流電流と交流電流を重畳通電する重畳電解を培養液中で行うことにより、養液栽培用培養液の調整と微量要素であるマンガン成分の供給が可能であることが判明した。 From the results shown in FIG. 5, the nutrient solution is obtained by performing direct current electrolysis using the insoluble electrode of the present invention and superposition electrolysis in which a direct current and an alternating current are superimposed and applied to the insoluble electrode in the culture solution. It was proved that the culture medium for cultivation and the supply of manganese components as trace elements were possible.

モリブデンは、培養液の管理pH領域では陽極として電解すると電極表面に酸化物が生成し、溶解しにくくなるためモリブデン酸イオンとして溶解・供給を直流と交流の重畳電流にて行った。本発明の不溶性陽極及び不溶性陰極として、電極基板がチタン製エキスパンドメタル(目開き:LW6mm、SW3.5mm)で、電解面積が幅300mm、長さ1000mm、厚さ1mmとした日本カーリット株式会社製エクセロードBを不溶性陽極に、同様にエクセロードCを不溶性陰極として用い、該一対の不溶性陽極と不溶性陰極に20Aの直流電流を通電した。一方、縦横が50mmの大きさのエクセロードCと溶性電極として同サイズのチタン(70原子%)-モリブデン(30原子%)合金を用い、該一対の電極にエクセロードCが陰極となるように直流電流5mAを通電し、さらに30mAの交流電流を重畳通電しながらトマトを栽培し、該トマト培養液栽培用培養液のpHとモリブデン濃度の経時変化を調査した。トマト培養液は、10トンに対し肥料の追加を行わずトマトを栽培し、電解を導入しなかった比較例と本発明の電解方法を導入したトマト培養液のpH変化とモリブデン濃度の変化を調査した結果を図6、図7に示した。 When molybdenum was electrolyzed as an anode in the control pH range of the culture solution, an oxide was formed on the electrode surface and it was difficult to dissolve, so dissolution and supply as molybdate ions were carried out with a superimposed current of direct current and alternating current. As an insoluble anode and an insoluble cathode of the present invention, an electrode substrate is an expanded metal made of titanium (aperture: LW 6 mm, SW 3.5 mm), an electrolytic area is 300 mm wide, 1000 mm long, and 1 mm thick. Load B was used as an insoluble anode, and Excel load C was used as an insoluble cathode, and a direct current of 20 A was applied to the pair of insoluble anode and insoluble cathode. On the other hand, using the same size titanium (70 atomic%)-molybdenum (30 atomic%) alloy as the soluble electrode and Excelo C having a size of 50 mm in length and breadth, Excel C is the cathode for the pair of electrodes. A tomato was cultivated while applying a direct current of 5 mA and further applying a 30 mA alternating current, and changes in pH and molybdenum concentration over time of the culture medium for tomato culture medium cultivation were investigated. Tomato broth was cultivated without adding fertilizer to 10 tons, investigating changes in pH and molybdenum concentration of the tomato broth introduced with the comparative example without electrolysis and the electrolysis method of the present invention. The results are shown in FIGS.

図6及び図7の結果より、電解を実施しなかった比較例では、pHがpH6.5以上となり管理範囲値を超え、モリブデン濃度は、0.04ppmまで低下し管理範囲値以下となった。一方、本発明の電解方法を導入したトマト培養液のpH及びモリブデン濃度は、管理範囲内であり、本発明の不溶性電極による直流電解及び微量要素からなる金属を溶性電極として、不溶性電極に直流電流と交流電流を重畳通電する電解を培養液中で行うことにより、養液栽培用培養液の調整と微量要素であるモリブデン成分の供給が可能であることが判明した。 From the results shown in FIGS. 6 and 7, in the comparative example in which the electrolysis was not performed, the pH was 6.5 or more, exceeding the control range value, and the molybdenum concentration was lowered to 0.04 ppm and was below the control range value. On the other hand, the pH and the molybdenum concentration of the tomato culture solution into which the electrolysis method of the present invention has been introduced are within the control range, and the direct current electrolysis with the insoluble electrode of the present invention and the metal consisting of trace elements as the soluble electrode, the direct current is applied to the insoluble electrode. It has been found that by performing electrolysis in which the alternating current is superimposed and applied in the culture solution, it is possible to adjust the culture solution for nutrient solution cultivation and supply the molybdenum component as a trace element.

溶性電極としてチタン(30原子%)-銅(70原子%)合金を用い、該溶性電極を陽極として、直流電流5mAを縦横が50mmの大きさの電極の一対に通電し、さらに25mAの交流電流を重畳通電したほかは、実施例4と同様に操作し、トマト栽培を行いながらpHと銅濃度及び微生物反応に由来するアデノシンリン酸塩(ATP等)に基づく発光量の経時変化を調査した。トマト培養液は、10トンに対し肥料の追加を行わず、本発明の無隔膜電解を導入しなかった比較例と本発明の電解方法を導入したトマト培養液のpH変化と銅濃度及び発光量の変化を調査した結果を図8、図9、図10に示した。 Using a titanium (30 atomic%)-copper (70 atomic%) alloy as a soluble electrode, with the soluble electrode as an anode, a direct current of 5 mA was passed through a pair of electrodes with a size of 50 mm in length and width, and an alternating current of 25 mA In the same manner as in Example 4 except that superposed energization was carried out, changes in luminescence based on pH, copper concentration, and adenosine phosphate (ATP, etc.) derived from microbial reaction were investigated while tomato cultivation was conducted. Tomato broth was not added fertilizer to 10 tons, pH change, copper concentration and luminescence amount of the tomato broth introduced the comparative example without introducing the diaphragm electrolysis of the present invention and the electrolysis method of the present invention The results of investigating these changes are shown in FIG. 8, FIG. 9, and FIG.

図8及び図9の結果より、電解を実施しなかった比較例では、銅濃度が12時間後に管理範囲の下限値以下の0.024ppmとなったが、本発明の方法では、管理範囲以内に維持できた。一方、図10より、本発明の電解方法を導入したトマト培養液の発光量が、120時間後に初期の約31%まで減少したが、比較例では初期よりやや増加傾向となった。本発明の方法により、トマト培養液のpH及び銅濃度は、管理範囲内に維持が出来、微生物反応に由来のATPによる発光量が減少することから、電解による殺菌効果が確認された。すなわち、本発明の不溶性電極による直流電解及び微量要素からなる金属を溶性電極として、不溶性電極に直流電流と交流電流を重畳通電する電解を培養液中で行うことにより、養液栽培用培養液の調整と微量要素である銅成分の供給が可能であり殺菌効果も有することが判明した。 From the results of FIG. 8 and FIG. 9, in the comparative example in which the electrolysis was not performed, the copper concentration became 0.024 ppm below the lower limit value of the control range after 12 hours, but in the method of the present invention, it was maintained within the control range. did it. On the other hand, as shown in FIG. 10, the amount of luminescence of the tomato culture solution into which the electrolysis method of the present invention was introduced decreased to about 31% of the initial value after 120 hours, but in the comparative example, it showed a slightly increasing tendency from the initial value. According to the method of the present invention, the pH and copper concentration of the tomato culture solution can be maintained within the control range, and the amount of luminescence by ATP derived from the microbial reaction is reduced, so that the bactericidal effect by electrolysis was confirmed. That is, by performing direct current electrolysis using the insoluble electrode of the present invention and a metal composed of a trace amount element as a soluble electrode, and performing electrolysis in which direct current and alternating current are superimposed on the insoluble electrode in the culture liquid, It was found that adjustment and supply of copper components as trace elements were possible and also had a bactericidal effect.

直径20mm、長さ500mmのチタン製の電解面積を有する丸棒に、実施例2と同じ電極触媒である酸化イリジウム60%、酸化タンタル40%となるように調製した塩化イリジウムと塩化タンタルの塩酸溶液を酸洗後のチタン製丸棒に塗布し、550℃で熱分解する操作を繰り返し行って、不溶性陽極を製作した。同じ形状の金属ジルコニウムを不溶性陰極として、栽培槽が50mのトマトのNFT水耕栽培用培養液の戻りタンクに該不溶性陽極及び不溶性陰極を浸漬し、30Aの直流電流を通電し、連続無隔膜電解を行った。一方、厚さ3mmの鉄-ホウ素合金を溶性電極、厚さ3mmの金属ジルコニウムに厚さ3μm白金めっきを施した電極を不溶性電極として、該電極の電解面積が縦横50mmである一対の電極板に鉄-ホウ素合金溶性電極が陽極となるよう直流電流を0.2A通電し、さらに1.5Aの交流電流を重畳して電解処理を行った。電解処理水を原水として、肥料調製・供給後、チャンネル出口の培養液中の溶存酸素濃度及びホウ素濃度を測定し、本発明の電解による培養液調整方法で培養に必要とされる培養液中の溶存酸素及び微量要素であるホウ素が管理濃度範囲に確保されるか否かについて、電解をしなかった場合と比較検討を行った。比較例の結果を図11、本発明の電解結果を図12に示した。 Hydrochloric acid solution of iridium chloride and tantalum chloride prepared so as to be 60% iridium oxide and 40% tantalum oxide which are the same electrode catalyst as in Example 2 on a round bar made of titanium having a diameter of 20 mm and a length of 500 mm Was applied to a titanium round bar after pickling and repeated thermal decomposition at 550 ° C. to produce an insoluble anode. Using the same shape of metal zirconium as an insoluble cathode, immersing the insoluble anode and the insoluble cathode in the NFT hydroponic culture medium return tank of a 50-m tomato cultivation tank, energizing a 30 A direct current, and continuous diaphragm electrolysis Went. On the other hand, a 3 mm thick iron-boron alloy was used as a soluble electrode, and a 3 mm thick metal zirconium platinum plated 3 μm thick electrode was used as an insoluble electrode. The electrolytic treatment was carried out by applying a direct current of 0.2 A so that the iron-boron alloy soluble electrode became an anode, and further superposing an alternating current of 1.5 A. Using the electrolyzed water as raw water, after preparing and supplying fertilizer, measure the dissolved oxygen concentration and boron concentration in the culture solution at the outlet of the channel, and in the culture solution required for culture by the culture solution adjustment method of the present invention Whether dissolved oxygen and boron, which is a trace element, are ensured in the control concentration range was compared with the case where electrolysis was not performed. The results of the comparative example are shown in FIG. 11, and the electrolysis results of the present invention are shown in FIG.

図11の結果より、電解を行わなかった場合、培養液中のpH、溶存酸素及びホウ素濃度が時間と共に変動し、管理濃度範囲より外れるようになることが判る。一方、図12の本発明の実施例の結果より、本発明の電解方法を導入することにより、培養液のpH、溶存酸素、及びホウ素濃度が管理濃度範囲に維持することが可能であるが判明した。このことにより、本発明の電解方法を導入することで、目的とする生産条件が維持され安定した高品質の製品と高い生産量が期待できる。 From the results of FIG. 11, it can be seen that when electrolysis is not performed, the pH, dissolved oxygen, and boron concentrations in the culture solution fluctuate with time and fall outside the control concentration range. On the other hand, from the results of the example of the present invention of FIG. 12, it was found that the pH, dissolved oxygen, and boron concentration of the culture solution can be maintained within the control concentration range by introducing the electrolysis method of the present invention. did. Thus, by introducing the electrolysis method of the present invention, stable high-quality products and a high production amount can be expected while maintaining target production conditions.

縦100mm、横100mm、厚さ1mmの電解面積を有するチタン製エキスパンドメタル(目開き:LW6mm、SW3mm)に酸化ルテニウムを電極触媒とする複合酸化物の被覆を熱分解により施した焼成電極である日本カーリット株式会社製エクセロードCを不溶性陽極、同様の形状のチタン製エキスパンドメタルに白金を電極触媒とするエクセロードR-1000を不溶性陰極として用い、溶性電極として銅とリンの合金である含リン銅板を使用し、不溶性陽極と溶性電極を同極、陰極側を共通の不溶性陰極とし不溶性陽極と不溶性陰極間に20Aの直流電流を、溶性電極と不溶性陰極の間に20〜30mAの交流電流を通電し、直流回路と交流回路間に抵抗器を接続して目的とする電流を通電可能な回路を形成し、該培養液を電解液として約3ヶ月の連続無隔膜直接電解を行いながらトマトの水耕栽培を行った。この間のpH、銅濃度及び該培養液を採取し、スリーエムヘルスケア株式会社製一般細菌数測定用ペトリフィルム培地を用い、35℃で48時間培養後、コロニー数を計測した培養結果を図13に示した。 Japan is a calcined electrode in which a titanium expanded metal (mesh opening: LW6mm, SW3mm) having an electrolytic area of 100mm in length, 100mm in width and 1mm in thickness is coated with a composite oxide using ruthenium oxide as an electrode catalyst by pyrolysis. Exceed C made by Carlit Co., Ltd. is used as an insoluble anode, Exeroad R-1000 using platinum as an electrocatalyst for titanium expanded metal of the same shape as an insoluble cathode, and a phosphorus-containing copper plate that is an alloy of copper and phosphorus as a soluble electrode The insoluble anode and soluble electrode are of the same polarity, the cathode side is a common insoluble cathode, 20A direct current is passed between the insoluble anode and insoluble cathode, and 20-30mA alternating current is passed between the soluble electrode and insoluble cathode. Then, a resistor is connected between the DC circuit and the AC circuit to form a circuit capable of supplying the desired current, and the tomato The cultivation was carried out. During this period, the pH, copper concentration, and the culture solution were collected, and after culturing at 35 ° C. for 48 hours using a Petrifilm medium for general bacterial count measurement manufactured by 3M Healthcare, the colony count was measured. Indicated.

図13の結果より、pHは、ほぼpH6に、銅濃度は、0.04ppm〜0.05ppmに維持された。また、一般細菌数は、初期量に比較して3ヵ月後には約99%殺菌された。本発明の方法により、長期間に亘り培養液の調整、管理が可能であり、殺菌効果も得られることが可能であった。 From the results of FIG. 13, the pH was maintained at approximately pH 6, and the copper concentration was maintained at 0.04 ppm to 0.05 ppm. In addition, the number of general bacteria was sterilized by about 99% after 3 months compared to the initial amount. According to the method of the present invention, the culture solution can be adjusted and managed over a long period of time, and a bactericidal effect can be obtained.

縦100mm、横100mm、厚さ1mmの電解面積を有するチタン製エキスパンドメタル(目開き:LW6mm、SW3mm)に酸化ルテニウムを電極触媒とする複合酸化物の被覆を大気中で熱分解により施した焼成電極である日本カーリット株式会社製エクセロードCを不溶性陽極、同様の形状のチタン製エキスパンドメタルに白金を電極触媒とするエクセロードR-1000を不溶性陰極として用い、20Aの直流電流を通電した。一方、縦横100mm、厚み3mmの電解面積を有する板状の石福興業株式会社製MODE-200焼成電極を不溶性陽極と不溶性陰極として該一対の不溶性電極間に溶性電極として厚み3mmの銅とリンの合金である含リン銅板を使用し、該溶性電極を極間が2mmとなるよう2mm厚みのバイトン製絶縁パッキンを介し挟み込み、20〜30mAの交流電流を通電し、直流電解と交流電解を併用して約3ヶ月の連続電解を行いながら培養液によるバラ水耕栽培を行った。この間培養液を採取し、pH、全有機炭素濃度、スリーエムヘルスケアー株式会社製一般細菌数測定用ペトリフィルム培地を用い、35℃で48時間培養後、コロニー数を計測した一般細菌数及び銅濃度を測定した結果を図14に示した。 A calcined electrode in which a titanium expanded metal (mesh opening: LW6mm, SW3mm) having an electrolytic area of 100mm in length, 100mm in width, and 1mm in thickness is coated with a composite oxide using ruthenium oxide as an electrode catalyst by thermal decomposition in the atmosphere. Exelode C manufactured by Nippon Carlit Co., Ltd. was used as an insoluble anode, Exelod R-1000 using platinum as an electrocatalyst for titanium expanded metal having the same shape as an insoluble cathode, and a direct current of 20 A was applied. On the other hand, a plate-shaped stone Fukukogyo Co., Ltd. MODE-200 fired electrode having an electrolytic area of 100 mm in length and width of 3 mm is used as an insoluble anode and an insoluble cathode. Using a phosphor-containing copper plate that is an alloy, the soluble electrode is sandwiched between 2 mm thick Viton insulation packing so that the distance between the electrodes is 2 mm, and an AC current of 20 to 30 mA is applied, and both DC electrolysis and AC electrolysis are used. Then, hydroponics of roses with the culture solution was performed while performing continuous electrolysis for about 3 months. During this period, the culture broth was collected, and the pH, total organic carbon concentration, and the general bacterial count and copper concentration were counted after colonization at 35 ° C for 48 hours using a Petrifilm medium for general bacterial count measurement manufactured by 3M Healthcare. The results of measuring are shown in FIG.

図14の結果より、pHは、ほぼpH6に、全有機炭素濃度は100ppm以下、銅濃度は、約0.06ppmに維持された。また、一般細菌数は、初期量に比較して3ヵ月後には約99%殺菌された。本発明の方法により、長期間に亘り培養液の調整、管理が可能であり、殺菌効果も得られることが可能であった。 From the results shown in FIG. 14, the pH was maintained at approximately pH 6, the total organic carbon concentration was maintained at 100 ppm or less, and the copper concentration was maintained at approximately 0.06 ppm. In addition, the number of general bacteria was sterilized by about 99% after 3 months compared to the initial amount. According to the method of the present invention, the culture solution can be adjusted and managed over a long period of time, and a bactericidal effect can be obtained.

バラの培養液に、実施例8と同様にして、電解面積を縦横500mm、厚さ1mmのサイズのチタン製エキスパンドメタル(目開き:LW8mm、SW4mm)に培養液調整用不溶性陽極として白金を1μmの厚さで電気めっきを施工した白金めっき電極、不溶性陰極として不溶性陽極と同じ形状の固体高分子形燃料電池用電極材料である多孔質炭素繊維に白金を担持させた電極触媒層と酸素ガスの拡散層を有するガス拡散電極を不溶性陰極とし、山陽電子株式会社製PSA酸素濃縮装置SO-004B型を酸素供給装置として使用し、該不溶性陽極と不溶性陰極であるガス拡散陰極に20Aの直流電流を通電し、養液栽培用培養液を電解液として電解した。一方、微量成分供給用不溶性電極として電解面積が縦横100mmの日本カーリット株式会社製エクセロードCを不溶性陽極、同様の形状のチタン製エキスパンドメタルに白金を電極触媒とするエクセロードR-1000を不溶性陰極として用い、該不溶性陽極と不溶性陰極の間に溶性電極として板状の鉄-ホウ素合金と鉄-珪素合金を溶性電極として絶縁パッキンを用いて挟み込み不溶性陽極と不溶性陰極に1Aの直流電流と1Aの交流電流を重畳し培養液を通液して培養液を電解液として電解した。さらに、同様の不溶性陽極と不溶性陰極の間に厚さ3mmの板状金属電解マンガンと同形状の金属亜鉛板を挟み込み0.1Aの直流電流と交流電流を重畳して培養液を通液して培養液を電解液として電解した。また、同様に不溶性陽極と不溶性陰極の間に厚さ3mmの銅とリンの合金である含リン銅板と同形状の金属モリブデン板を挟み込み50mAの直流電流と交流電流を重畳して通電した。これらの電解装置を用い、培養液を電解液として約3ヶ月の連続無隔膜直接電解を行いながら不溶性陰極より水素ガスの発生しないバラの水耕栽培を行った。この間該培養液を採取し、pH、ホウ素、鉄、マンガン、亜鉛、銅、モリブデン及び全炭素濃度とスリーエムヘルスケアー株式会社製一般細菌数測定用ペトリフィルム培地を用い、35℃で48時間培養後のコロニー数を計測した一般細菌数を測定した結果を図15に示した。 In the same manner as in Example 8, in a rose culture solution, 1 μm of platinum was used as an insoluble anode for adjusting the culture solution to a titanium expanded metal (mesh opening: LW8 mm, SW4 mm) having a size of 500 mm in length and width and 1 mm in thickness. Platinum-plated electrode with electroplating in thickness, electrocatalyst layer in which platinum is supported on porous carbon fiber, which is an electrode material for polymer electrolyte fuel cells having the same shape as insoluble anode as insoluble cathode, and diffusion of oxygen gas A gas diffusion electrode having a layer is used as an insoluble cathode, and a PSA oxygen concentrator SO-004B type manufactured by Sanyo Denshi Co., Ltd. is used as an oxygen supply device. A 20 A direct current is applied to the gas diffusion cathode which is the insoluble anode and the insoluble cathode. Then, the culture solution for hydroponics was electrolyzed as an electrolytic solution. On the other hand, as an insoluble electrode for supplying trace components, Exelod C manufactured by Nippon Carlit Co., Ltd. with an electrolysis area of 100 mm in length and width is an insoluble anode, Exelod R-1000 using platinum as an electrocatalyst on an expanded metal of the same shape and an insoluble cathode A plate-like iron-boron alloy and iron-silicon alloy are used as a soluble electrode between the insoluble anode and the insoluble cathode using an insulating packing as a soluble electrode. An alternating current was superimposed and the culture solution was passed through to electrolyze the culture solution as an electrolyte. Furthermore, sandwiching a metal zinc plate of the same shape as a 3 mm thick plate-like metal electrolytic manganese between the same insoluble anode and insoluble cathode, superposing 0.1 A DC current and AC current, passing the culture solution, and culturing The liquid was electrolyzed as an electrolytic solution. Similarly, a metal molybdenum plate having the same shape as a phosphorus-containing copper plate made of an alloy of copper and phosphorus having a thickness of 3 mm was sandwiched between the insoluble anode and the insoluble cathode, and a 50 mA direct current and an alternating current were superimposed to conduct electricity. These electrolyzers were used for hydroponics of roses that did not generate hydrogen gas from an insoluble cathode while performing direct electrolysis of the continuous diaphragm for about 3 months using the culture solution as the electrolyte. During this period, the culture solution was collected and cultured at 35 ° C. for 48 hours using pH, boron, iron, manganese, zinc, copper, molybdenum and total carbon concentrations and a Petrifilm medium for general bacterial count measurement manufactured by 3M Healthcare. The results of measuring the number of general bacteria in which the number of colonies was counted are shown in FIG.

図15の結果より、pHはpH5〜pH6の範囲に、ホウ素濃度は0.2ppm〜0.3ppm、鉄濃度は1.2ppm〜1.5ppm、マンガン濃度は0.17ppm〜0.2ppm、亜鉛濃度は0.2ppm、銅濃度は0.06ppm、モリブデン濃度は0.05ppmに維持された。また、全炭素濃度は12ppmまで低減し、初期量より97.5%減少した。さらに、一般細菌数は、初期量に比較して3ヵ月後には約99.5%殺菌された。本発明の方法により、長期間に亘り培養液の調整、管理が可能であり、殺菌効果が得られ、微量成分を供給し、該濃度を目的とする濃度に維持することが可能であった。 From the results of FIG. 15, the pH ranges from pH 5 to pH 6, the boron concentration is 0.2 ppm to 0.3 ppm, the iron concentration is 1.2 ppm to 1.5 ppm, the manganese concentration is 0.17 ppm to 0.2 ppm, the zinc concentration is 0.2 ppm, and the copper concentration Was maintained at 0.06 ppm and the molybdenum concentration at 0.05 ppm. In addition, the total carbon concentration was reduced to 12ppm, 97.5% lower than the initial amount. Furthermore, the general bacterial count was approximately 99.5% sterilized after 3 months compared to the initial amount. According to the method of the present invention, the culture solution can be adjusted and managed for a long period of time, a bactericidal effect can be obtained, a trace amount component can be supplied, and the concentration can be maintained at a target concentration.

ブドウ「デラウェア」のNFTによる栽培方式で、3年生接ぎ木苗を使用し、水気耕栽培の培養液濃度をEC0.5dS/m、硝酸性窒素とアンモニア性窒素比を2:1とした。また、全窒素濃度を20ppm(約1.4me/L)に維持した。該栽培ベッドの底部に電解面積が直径3mm、長さ5000mmであるチタン製丸形状ワイヤーの表面に電気めっき法により白金を被覆した石福金属興業株式会社製白金めっきチタン電極PLATINODE-101Bと同じ形状のチタン製ワイヤーを不溶性陰極として該不溶性陽極と不溶性陰極の極間を5mmとして5Aの直流電流を通電し、該電流値を制御して根域領域を26℃とした根域加温栽培を行いながら同時にpHをpH6からpH7の範囲に維持した。一方、微量成分供給用不溶性電極として電解面積が縦横100mmのチタン製エキスパンドメタルを電極基板とする日本カーリット株式会社製エクセロードCを不溶性陽極、同様の形状のチタン製エキスパンドメタルに白金を電極触媒とするエクセロードR-1000を不溶性陰極として用い、該不溶性陽極と不溶性陰極の間に溶性電極として厚さ3mmの金属電解マンガン板と同形状の金属亜鉛板を絶縁パッキンで挟み込み0.1Aの直流電流と交流電流を重畳して通電した。さらに、同様に不溶性陽極と不溶性陰極の間に溶性電極として厚さ3mmの銅とリンの合金である含リン銅板と同形状の金属モリブデン板を挟み込み50mAの直流電流と交流電流を重畳して通電した。これらの電解装置を用い、さらに該電解装置の電源として夫々複数台の三洋電機株式会社製HIP-200型太陽電池を併用し、根域領域温度を26℃に維持するよう通電電流値を調節しながら培養液を電解液として連続無隔膜直接電解を行いブドウ「デラウェア」の根域領域加温栽培を行った。この間本発明の培養液を採取し、pH、マンガン、亜鉛、銅、モリブデン濃度及びスリーエムヘルスケアー株式会社製一般細菌数測定用ペトリフィルム培地を用い、35℃で48時間培養後のコロニー数を計測した一般細菌数を測定した結果及び根域領域の温度を測定した結果を図16に示した。また、生育した果実に関し、本発明の養液栽培管理と根域領域加温栽培を実施した果実と実施しなかった果実について品質を比較した結果を表1に示した。 The cultivation method of grape "Delaware" by NFT, using 3 year-old grafted seedlings, the culture solution concentration of hydroponic cultivation was EC0.5dS / m, and the ratio of nitrate nitrogen to ammonia nitrogen was 2: 1. The total nitrogen concentration was maintained at 20 ppm (about 1.4 me / L). The same shape as the platinum-plated titanium electrode PLATINODE-101B manufactured by Ishifuku Metal Industry Co., Ltd., in which platinum is coated on the surface of a titanium round wire having a diameter of 3 mm and a length of 5000 mm at the bottom of the cultivation bed. A 5A direct current was applied with 5mm between the insoluble anode and the insoluble cathode as an insoluble cathode, and the root area was heated at a root area of 26 ° C by controlling the current value. At the same time, the pH was maintained in the range of pH 6 to pH 7. On the other hand, Exelode C manufactured by Nippon Carlit Co., Ltd., which uses titanium expanded metal with an electrolytic area of 100 mm in length and width as an electrode substrate as an insoluble electrode for supplying trace components, is used as an insoluble anode, and platinum is used as an electrode catalyst for titanium expanded metal of the same shape. Excel load R-1000 is used as an insoluble cathode, and a metal zinc plate of the same shape as a 3 mm thick metal electrolytic manganese plate is sandwiched between the insoluble anode and the insoluble cathode as a soluble electrode with an insulating packing, and a direct current of 0.1 A It was energized with an alternating current superimposed. Similarly, a metal molybdenum plate of the same shape as a 3mm-thick copper-phosphorus alloy plate is sandwiched between the insoluble anode and the insoluble cathode as a soluble electrode, and a 50mA DC current and an AC current are superimposed on each other. did. Using these electrolyzers, and also using multiple HIP-200 solar cells manufactured by Sanyo Electric Co., Ltd. as the power source for the electrolyzers, the energizing current value was adjusted to maintain the root region temperature at 26 ° C. While the culture solution was used as the electrolyte solution, continuous electrolysis was performed directly on the diaphragm, and the root region of the grape "Delaware" was heated. During this time, the culture solution of the present invention was collected, and the number of colonies after culturing at 35 ° C. for 48 hours was measured using pH, manganese, zinc, copper, molybdenum concentration and Petrifilm medium for general bacterial count measurement manufactured by 3M Healthcare Co., Ltd. The result of measuring the number of general bacteria and the result of measuring the temperature in the root zone region are shown in FIG. Table 1 shows the results of comparing the quality of the grown fruits with respect to the fruits that were subjected to the hydroponics management and root region warming cultivation of the present invention and the fruits that were not.

図16の結果より、pHはpH6.6〜pH6.8の範囲に、マンガン濃度は0.1ppm〜0.2ppm、亜鉛濃度は0.3ppm〜0.4ppm、銅濃度は0.06ppm〜0.07ppm、モリブデン濃度は0.04ppm〜0.05ppmに維持された。また、根域領域の温度は、26℃〜28℃に維持された。さらに、一般細菌数は、初期量に比較して約98.8%殺菌された。本発明の方法により、長期間に亘り培養液の調整、管理が可能であり、殺菌効果が得られ、微量成分を供給し、該微量成分濃度を目的とする濃度に維持することが可能であった。 From the results of FIG. 16, the pH is in the range of pH 6.6 to pH 6.8, the manganese concentration is 0.1 ppm to 0.2 ppm, the zinc concentration is 0.3 ppm to 0.4 ppm, the copper concentration is 0.06 ppm to 0.07 ppm, and the molybdenum concentration is 0.04. Maintained between ppm and 0.05 ppm. Moreover, the temperature of the root region was maintained at 26 ° C to 28 ° C. Furthermore, the general bacterial count was about 98.8% sterilized compared to the initial amount. According to the method of the present invention, it is possible to adjust and manage the culture solution over a long period of time, to obtain a bactericidal effect, to supply a trace component, and to maintain the trace component concentration at a target concentration. It was.

Figure 2006158384

表1の結果より、収量で約2.6倍及び房重で約2倍の増収が得られ、糖度でも本発明の方法によって生育した果実の品質が本発明を実施しない比較例と比較して優れていることが明らかである。
Figure 2006158384

From the results of Table 1, the yield was increased by about 2.6 times and the tuft weight by about 2 times, and the quality of the fruit grown by the method of the present invention was superior in sugar content as compared with the comparative example in which the present invention was not carried out It is clear that

トマト培養液のpH及びZn濃度経時変化を示す図面Drawing showing pH and Zn concentration change over time of tomato broth 本発明のトマト培養液のpH及びZn濃度経時変化を示す図面Drawing showing pH and Zn concentration change with time of tomato culture solution of the present invention トマト培養液のpH及びMn濃度経時変化を示す図面Drawing showing pH and Mn concentration change over time of tomato culture solution 本発明のトマト培養液のpH及びMn濃度経時変化を示す図面Drawing showing pH and Mn concentration change with time of tomato culture solution of the present invention 本発明のトマト培養液のpH及びMn濃度経時変化を示す図面Drawing showing pH and Mn concentration change with time of tomato culture solution of the present invention トマト培養液のpH及びMo濃度経時変化を示す図面Drawing showing pH and Mo concentration change over time of tomato broth 本発明のトマト培養液のpH及びMo濃度経時変化を示す図面Drawing showing pH and Mo concentration change with time of tomato culture solution of the present invention トマト培養液のpH及びCu濃度経時変化を示す図面Drawing showing pH and Cu concentration change over time of tomato culture solution 本発明のトマト培養液のpH及びCu濃度経時変化を示す図面Drawing showing pH and Cu concentration change with time of tomato culture solution of the present invention トマト培養液の電解の有無によるATP発光量経時変化を示す図面Drawing showing ATP luminescence change over time with and without electrolysis in tomato culture solution トマト培養液のpH、B濃度及び溶存酸素濃度経時変化を示す図面Drawing showing pH, B concentration and dissolved oxygen concentration change over time of tomato broth 本発明のトマト培養液のpH、B濃度及び溶存酸素濃度経時変化を示す図面Drawing showing pH, B concentration and dissolved oxygen concentration change over time of tomato culture solution of the present invention 本発明のトマト培養液のpH、Cu濃度及び一般細菌数経時変化を示す図面Drawing showing pH, Cu concentration and general bacterial count change over time of tomato culture solution of the present invention 本発明のバラ培養液のpH、全有機炭素濃度、Cu濃度及び一般細菌数経時変化を示す図面Drawing showing pH, total organic carbon concentration, Cu concentration and general bacterial count change with time of rose culture solution of the present invention 本発明のバラ培養液のpH、微量要素濃度、全有機炭素濃度及び一般細菌数経時変化を示す図面Drawing showing pH, trace element concentration, total organic carbon concentration and general bacterial count change with time of rose culture solution of the present invention 本発明のウドウ「デラウェア」培養液根域加温栽培のpH、根域温度、微量要素濃度及び一般細菌数経時変化を示す図面Drawing showing pH, root zone temperature, trace element concentration, and general bacterial count change over time in the root solution warming cultivation of Udo "Delaware" of the present invention

Claims (14)

養液栽培用培養液の調整及び微量要素の供給方法において、少なくとも一対の不溶性電極と養液栽培用培養液の微量要素からなる金属又は合金を含有する一種以上の溶性電極を使用して電気分解を実施するために電気的に接続した電気分解処理装置において、養液栽培用培養液を電解液として、電気回路に電流を通電し、電気分解によって養液栽培用培養液の調整及び溶性電極を腐食させて溶解することにより微量要素の供給を行うことを特徴とする養液栽培用培養液の調整方法及び微量要素の供給方法。 Electrolysis using one or more soluble electrodes containing at least a pair of insoluble electrodes and a trace element of the nutrient solution culture medium in the preparation of the nutrient solution culture medium and the trace element supply method In the electrolysis treatment apparatus electrically connected to carry out the above, the culture solution for nutrient solution cultivation is used as an electrolytic solution, an electric current is passed through the electrical circuit, and the adjustment of the culture solution for nutrient solution cultivation and the soluble electrode are performed by electrolysis. A method for preparing a culture solution for hydroponics and a method for supplying a trace element, wherein the trace element is supplied by being corroded and dissolved. 養液栽培用培養液の調整及び微量要素の供給方法において、少なくとも一対の不溶性電極と養液栽培用培養液の微量要素からなる金属又は合金を含有する一種以上の溶性電極を使用して電気分解を実施するために電気的に接続した電気分解処理装置において、養液栽培用培養液を電解液として、電気回路に直流電流と交流電流を通電し、電気分解によって養液栽培用培養液の調整及び溶性電極を腐食させて溶解することにより微量要素の供給を行うことを特徴とする養液栽培用培養液の調整方法及び微量要素の供給方法。 Electrolysis using one or more soluble electrodes containing at least a pair of insoluble electrodes and a trace element of the nutrient solution culture medium in the preparation of the nutrient solution culture medium and the trace element supply method In the electrolysis treatment apparatus electrically connected to carry out the above, the culture solution for nutrient solution cultivation is used as the electrolytic solution, the direct current and the alternating current are passed through the electric circuit, and the culture solution for nutrient solution cultivation is adjusted by electrolysis And a method for adjusting the culture medium for nutrient solution cultivation and a method for supplying the trace element, wherein the trace element is supplied by corroding and dissolving the soluble electrode. 養液栽培用培養液の調整及び微量要素の供給方法において、少なくとも一対の不溶性電極と養液栽培用培養液に必要とされる微量要素の金属又は合金を含有する一種以上の溶性電極を使用して電気分解を実施するために電気的に接続した電気分解処理装置において、養液栽培用培養液を電解液として、電気回路に直流電流と交流電流を重畳して通電し、電気分解によって養液栽培用培養液の調整方法及び溶性電極を腐食させて溶解することにより微量要素の供給を行うことを特徴とする養液栽培用培養液の調整及び微量要素の供給方法。 In the method for preparing the culture medium for nutrient solution cultivation and the method for supplying the trace element, at least one pair of insoluble electrodes and one or more soluble electrodes containing a trace element metal or alloy required for the culture medium for nutrient solution culture are used. In the electrolysis treatment apparatus electrically connected to carry out electrolysis, the culture solution for nutrient solution cultivation is used as an electrolytic solution, and a direct current and an alternating current are superimposed on the electric circuit, and the nutrient solution is obtained by electrolysis. A method for preparing a culture medium for cultivation and a method for supplying a culture element for nutrient cultivation and a method for supplying the trace element, characterized in that the trace element is supplied by corroding and dissolving a soluble electrode. 養液栽培用培養液の調整及び微量要素の供給方法において、不溶性陽極を直流電流の陽極、溶性電極を陰極とするように電気的に接続し、且つ該不溶性陽極と溶性電極に直流電流と交流電流を重畳して通電し、養液栽培用培養液を電解液として電気分解することにより養液栽培用培養液の調整及び微量要素の供給を行うことを特徴とする養液栽培用培養液の調整方法及び微量要素の供給方法。 In the adjustment of the culture medium for hydroponics and the method of supplying trace elements, the insoluble anode is electrically connected to the anode of the direct current and the soluble electrode is used as the cathode, and the insoluble anode and the soluble electrode are connected to the direct current and the alternating current. A hydroponic culture broth characterized in that it is energized by superimposing current and electrolyzing the hydroponic culture broth as an electrolyte to adjust the nutrient broth culture broth and supply trace elements. Adjustment method and trace element supply method. 養液栽培用培養液の調整及び微量要素の供給方法において、少なくとも一対の不溶性陽極と不溶性陰極の間に一種以上且つ1枚以上の溶性電極を挟み込み、不溶性陽極と不溶性陰極間に直流電流と交流電流を重畳して通電し、養液栽培用培養液を電解液として電気分解することにより養液栽培用培養液の調整及び微量要素の供給を行うことを特徴とする養液栽培用培養液の調整方法及び微量要素の供給方法。 In the preparation of nutrient solution culture medium and the method of supplying trace elements, one or more and one or more soluble electrodes are sandwiched between at least a pair of insoluble anodes and insoluble cathodes, and direct current and alternating current between the insoluble anodes and insoluble cathodes. A hydroponic culture broth characterized in that it is energized by superimposing current and electrolyzing the hydroponic culture broth as an electrolyte to adjust the nutrient broth culture broth and supply trace elements. Adjustment method and trace element supply method. 養液栽培用培養液の調整及び微量要素の供給方法において、直流電流を通電するための少なくとも一対の不溶性陽極と不溶性陰極及び交流電流を通電するための少なくとも一対の不溶性電極と溶性電極からなる養液栽培用培養液の電解処理方法において、それぞれに直流電流と交流電流を通電し、養液栽培用培養液を電解液として電気分解することにより養液栽培用培養液の調整及び微量要素の供給を行うことを特徴とする養液栽培用培養液の調整方法及び微量要素の供給方法。 In a method for preparing a culture medium for nutrient solution cultivation and supplying a trace element, a nutrient comprising at least a pair of an insoluble anode and an insoluble cathode for supplying a direct current and at least a pair of an insoluble electrode and a soluble electrode for supplying an alternating current In the method for electrolytic treatment of culture medium for liquid culture, direct current and alternating current are applied to each, and the culture liquid for nutrient culture is electrolyzed as an electrolytic solution to adjust the culture medium for nutrient culture and supply of trace elements A method for adjusting a culture solution for hydroponics and a method for supplying a trace element, characterized in that: 養液栽培用培養液の調整及び微量要素の供給方法において、直流電流を通電するための少なくとも一対の不溶性陽極と不溶性陰極及び交流電流を通電するための少なくとも一対の不溶性電極と該不溶性電極を給電電極とし、この間に一種以上且つ1枚以上の溶性電極を配置し、電気的に接続した養液栽培用培養液の電解処理方法において、それぞれに直流電流と交流電流を通電することにより養液栽培用培養液を電解液として電気分解し、養液栽培用培養液の調整及び微量要素の供給を行うことを特徴とする養液栽培用培養液の調整方法及び微量要素の供給方法。 In the method for preparing a culture solution for hydroponics and supplying a trace element, at least a pair of an insoluble anode and an insoluble cathode for supplying a direct current and at least a pair of an insoluble electrode for supplying an alternating current and the insoluble electrode are fed. In the electrolytic treatment method of the culture solution for nutrient solution cultivation in which one or more and one or more soluble electrodes are arranged between the electrodes and electrically connected to each other, the nutrient solution cultivation is performed by supplying direct current and alternating current to each of them. A method for adjusting a culture solution for nutrient solution cultivation and a method for supplying a trace element, characterized in that the culture solution for electrolysis is electrolyzed as an electrolytic solution to adjust the culture solution for nutrient solution cultivation and supply of the trace element. 請求項1、請求項2、請求項3、請求項4、請求項5、請求項6及び請求項7に記載の養液栽培用培養液の調整と微量要素の供給方法において、供給する微量要素の溶解量を調整するための可変抵抗器を備えた微量要素の供給方法であることを特徴とする請求項1、請求項2、請求項3、請求項4、請求項5、請求項6及び請求項7に記載の養液栽培用培養液の調整及び微量要素の供給を行うことを特徴とする養液栽培用培養液の調整方法及び微量要素の供給方法。 A trace element to be supplied in the method for preparing a nutrient solution culture medium and supplying a trace element according to claim 1, claim 2, claim 3, claim 4, claim 5, claim 6 and claim 7. Claim 1, claim 2, claim 4, claim 5, claim 6, and claim 6, characterized in that it is a method of supplying a trace element comprising a variable resistor for adjusting the amount of dissolution of 8. A method for adjusting a culture medium for hydroponics and a method for supplying trace elements, characterized in that the culture medium for hydroponics and the supply of trace elements according to claim 7 are performed. 請求項1、請求項2、請求項3、請求項4、請求項5、請求項6、請求項7及び請求項8に記載の養液栽培用培養液の調整と微量要素の供給方法において、養液栽培用培養液を電解液として電気分解し、養液栽培用培養液の調整と微量要素の供給を同時に若しくは別々に行い、養液栽培用培養液のpH、病原菌数、溶存微量要素濃度、溶存酸素濃度、根域温度、培養液温度、全炭素濃度を測定し、通電電流量、電極間距離、培養液比抵抗を調整することにより養液栽培用培養液のpH、病原菌数、微量要素の溶解量、発生酸素量、根域温度、培養液温度、全炭素濃度を調整することを特徴とする請求項1、請求項2、請求項3、請求項4、請求項5、請求項6、請求項7及び請求項8に記載の養液栽培用培養液の調整及び微量要素の供給を行うことを特徴とする養液栽培用培養液の調整方法及び微量要素の供給方法。 In the adjustment method of the culture solution for nutrient cultivation and the supply method of the trace element according to claim 1, claim 2, claim 3, claim 4, claim 5, claim 6, claim 7 and claim 8, Electrolyze the culture medium for hydroponic culture as an electrolyte, adjust the culture medium for hydroponic culture and supply trace elements simultaneously or separately, and the pH, number of pathogens, and dissolved trace element concentration of the culture medium for hydroponic culture Measure the dissolved oxygen concentration, root zone temperature, culture solution temperature, total carbon concentration, and adjust the amount of current flow, distance between electrodes, culture solution resistivity, pH of culture solution for hydroponics, number of pathogenic bacteria, trace amount The amount of dissolved element, the amount of oxygen generated, the root zone temperature, the culture solution temperature, and the total carbon concentration are adjusted, claim 1, claim 2, claim 3, claim 4, claim 5 and claim 6. Hydroponics, characterized in that the nutrient solution culture medium of claim 7 and claim 8 is adjusted and trace elements are supplied. The method of supplying the adjusting method and trace elements in culture medium. 不溶性陽極と交流電流を通電するための不溶性陰極及び不溶性電極の電極基体がチタン、タンタル、ニオブ、ジルコニウムの金属若しくはこれらの合金に電極触媒として白金、イリジウム、ルテニウム、パラジウムから選択される一種以上の金属又は金属酸化物を含む電極触媒とチタン、錫、タンタル、アンチモン、ニオブ、ジルコニウムの金属酸化物から選択される電極触媒の分散材を含有してなる複合酸化物被覆層を有する不溶性陽極、不溶性陰極及び不溶性電極を使用することを特徴とする請求項1、請求項2、請求項3、請求項4、請求項5、請求項6、請求項7、請求項8及び請求項9に記載の養液栽培用培養液の調整方法及び微量要素の供給方法。 The insoluble anode and insoluble electrode electrode base for supplying an alternating current to the insoluble anode are one or more selected from platinum, iridium, ruthenium, and palladium as an electrode catalyst for titanium, tantalum, niobium, zirconium metals or alloys thereof. An insoluble anode having a composite oxide coating layer containing an electrode catalyst containing a metal or metal oxide and a dispersion of an electrode catalyst selected from metal oxides of titanium, tin, tantalum, antimony, niobium and zirconium, insoluble Claim 1, claim 2, claim 3, claim 4, claim 5, claim 7, claim 8, and claim 9, characterized in that a cathode and an insoluble electrode are used. A method for preparing a culture solution for hydroponics and a method for supplying trace elements. 直流電流を通電する不溶性陰極が、チタン、タンタル、ニオブ、ジルコニウムの金属若しくはこれらの合金、又は該金属や合金を電極基体とし、該電極基体に電極触媒として白金、イリジウム、ルテニウム、パラジウムから選択される一種以上からなる金属、合金又は金属酸化物を電極触媒として被覆した不溶性陰極若しくは該電極触媒にチタン、錫、タンタル、アンチモン、ニオブ、ジルコニウムの金属酸化物から選択される電極触媒の分散材を含有してなる複合酸化物被覆層を有する不溶性陰極もしくは酸素を還元し陰極で水素を発生しない酸素ガス拡散陰極を使用することを特徴とする請求項1、請求項2、請求項3、請求項4、請求項5、請求項6、請求項7、請求項8及び請求項9に記載の直流電流を通電するための不溶性陰極もしくは酸素ガス拡散陰極を使用して養液栽培用培養液を電解液として電気分解することにより養液栽培用養液の調整及び微量要素の供給を行うことを特徴とする請求項1、請求項2、請求項3、請求項4、請求項5、請求項6、請求項7、請求項8、請求項9及び請求項10に記載の養液栽培用培養液の調整及び微量要素の供給を行うことを特徴とする養液栽培用培養液の調整方法及び微量要素の供給方法。 The insoluble cathode for passing a direct current is selected from titanium, tantalum, niobium, zirconium metal or alloys thereof, or the metal or alloy as an electrode substrate, and the electrode substrate is selected from platinum, iridium, ruthenium, and palladium as an electrode catalyst. An insoluble cathode coated with one or more metals, alloys, or metal oxides as an electrode catalyst, or an electrode catalyst dispersion selected from metal oxides of titanium, tin, tantalum, antimony, niobium, and zirconium. An insoluble cathode having a composite oxide coating layer formed therein or an oxygen gas diffusion cathode that reduces oxygen and does not generate hydrogen at the cathode is used, claim 1, claim 2, claim 3, characterized in that 4. An insoluble cathode or oxygen gas for supplying a direct current according to claim 5, claim 6, claim 7, claim 8, and claim 9. Claims 1, 2, and 2 characterized by adjusting the nutrient solution for nutrient solution cultivation and supplying trace elements by electrolyzing the nutrient solution culture solution as an electrolytic solution using a diffusion cathode The preparation of the nutrient solution culture medium and the supply of trace elements according to claim 3, claim 4, claim 5, claim 6, claim 7, claim 8, claim 9 and claim 10. A method for preparing a culture solution for nutrient solution cultivation and a method for supplying a trace element. 溶性電極が、チタン、珪素、アルミニウム、鉄、マンガン、亜鉛、銅、モリブデン、ニッケル、リン、カルシウム、マグネシウム、ホウ素、炭素より選択される1種以上からなる金属若しくは合金であることを特徴するとする請求項1、請求項2、請求項3、請求項4、請求項5、請求項6、請求項7、請求項8、請求項9、請求項10及び請求項11に記載の養液栽培用培養液の調整方法及び微量要素の供給方法。 The soluble electrode is characterized by being a metal or alloy composed of one or more selected from titanium, silicon, aluminum, iron, manganese, zinc, copper, molybdenum, nickel, phosphorus, calcium, magnesium, boron, and carbon. For hydroponics according to claim 1, claim 2, claim 3, claim 4, claim 5, claim 6, claim 7, claim 9, claim 10, and claim 11. A method for preparing a culture solution and a method for supplying trace elements. 養液栽培用培養液が、元素として窒素、リン、カリウム、カルシウム、マグネシウム、硫黄、炭素、酸素、水素、鉄、マンガン、ホウ素、銅、亜鉛、モリブデン、塩素、ナトリウム、珪素、アルミニウム、ニッケルからなり硝酸塩、リン酸塩、硫酸塩、アンモニウム塩、有機酸塩、キレート塩、有機肥料成分の水溶液で構成され、該養液栽培用培養液を電解液として電気分解し、pHをpH4.5とpH8の範囲に調整することを特徴とする請求項1、請求項2、請求項3、請求項4、請求項5、請求項6、請求項7、請求項8、請求項9、請求項10、請求項11及び請求項12に記載の養液栽培用培養液の調整方法及び微量要素の供給方法。 Culture medium for hydroponics is elemental from nitrogen, phosphorus, potassium, calcium, magnesium, sulfur, carbon, oxygen, hydrogen, iron, manganese, boron, copper, zinc, molybdenum, chlorine, sodium, silicon, aluminum, nickel Composed of an aqueous solution of nitrate, phosphate, sulfate, ammonium salt, organic acid salt, chelate salt, organic fertilizer component, electrolyzing the culture solution for hydroponics as an electrolytic solution, and adjusting the pH to pH 4.5 Claim 1, Claim 2, Claim 3, Claim 4, Claim 5, Claim 6, Claim 7, Claim 8, Claim 9, wherein the pH is adjusted to a range of 8. 13. A method for preparing a culture solution for hydroponics and a method for supplying a trace element according to claim 11 and claim 12. 請求項1、請求項2、請求項3、請求項4、請求項5、請求項6、請求項7、請求項8、請求項9、請求項10、請求項11、請求項12及び請求項13に記載の養液栽培用培養液の調整方法及び微量要素の供給方法に使用される電源が太陽電池であることを特徴とする請求項1、請求項2、請求項3、請求項4、請求項5、請求項6、請求項7、請求項8、請求項9、請求項10、請求項11、請求項12及び請求項13に記載の養液栽培用培養液の調整方法及び微量要素の供給方法。
Claim 1, Claim 2, Claim 3, Claim 4, Claim 5, Claim 6, Claim 7, Claim 8, Claim 9, Claim 11, Claim 12, and Claim The power source used in the method for preparing a culture solution for hydroponics and the method for supplying a trace element according to claim 13, wherein the power source is a solar cell, claim 2, characterized in that, Claim 5, Claim 6, Claim 7, Claim 8, Claim 9, Claim 10, Claim 11, Claim 12, and Preparation method and trace element of nutrient solution culture medium of claim 13 Supply method.
JP2005235117A 2005-08-15 2005-08-15 Method for adjusting culture medium for hydroponics and method for supplying trace elements Expired - Fee Related JP4552219B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005235117A JP4552219B2 (en) 2005-08-15 2005-08-15 Method for adjusting culture medium for hydroponics and method for supplying trace elements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005235117A JP4552219B2 (en) 2005-08-15 2005-08-15 Method for adjusting culture medium for hydroponics and method for supplying trace elements

Publications (2)

Publication Number Publication Date
JP2006158384A true JP2006158384A (en) 2006-06-22
JP4552219B2 JP4552219B2 (en) 2010-09-29

Family

ID=36661030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005235117A Expired - Fee Related JP4552219B2 (en) 2005-08-15 2005-08-15 Method for adjusting culture medium for hydroponics and method for supplying trace elements

Country Status (1)

Country Link
JP (1) JP4552219B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101478564B1 (en) 2013-05-30 2015-01-06 주식회사 지앤에스바이오 Method of cultivating crops
WO2015045219A1 (en) * 2013-09-26 2015-04-02 パナソニックIpマネジメント株式会社 Hydroponic apparatus
FR3030479A1 (en) * 2014-12-23 2016-06-24 Seb Sa INSTALLATION AND METHOD FOR MINERALIZING AQUEOUS DRINK
WO2017072952A1 (en) * 2015-10-30 2017-05-04 株式会社グリチル Nutriculture system
CN112432982A (en) * 2020-11-14 2021-03-02 南通市通州区东社镇五马路村股份经济合作社 Device and method for adjusting soil trace elements
CN117819702A (en) * 2024-03-06 2024-04-05 上海环保(集团)有限公司 Module combined type nutrient supply control method in sewage treatment process

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53122543A (en) * 1977-03-30 1978-10-26 Hitachi Shomei Kk Hydroponics method
JPH01112926A (en) * 1987-10-26 1989-05-01 Matsushita Electric Ind Co Ltd Hydroponic culture apparatus
JPH07227163A (en) * 1994-02-22 1995-08-29 Toshiba Corp Cultivating unit using nutrient fluid and nutrient fluid prepared solution for it
JPH11147092A (en) * 1997-11-18 1999-06-02 Toto Ltd Sterilizing electrolytic cell
JP2002079251A (en) * 2000-06-26 2002-03-19 Sanyo Electric Co Ltd Water treatment method and apparatus, and hydroponic culture system using the same
JP2002104908A (en) * 2000-09-27 2002-04-10 Asahi Pretec Corp Disinfectant agricultural electrolytic water and production unit therefor
JP2003285062A (en) * 2002-03-27 2003-10-07 Denso Corp Agricultural water reforming apparatus
JP2003305473A (en) * 2002-04-18 2003-10-28 Towa Musen Kk Reduced water producing apparatus for water reforming
JP2004204328A (en) * 2002-12-26 2004-07-22 Takatoshi Nakajima Method of producing hypochlorous acid solution, and utilizing method thereof
JP2005087881A (en) * 2003-09-17 2005-04-07 Denso Corp Water reforming apparatus

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53122543A (en) * 1977-03-30 1978-10-26 Hitachi Shomei Kk Hydroponics method
JPH01112926A (en) * 1987-10-26 1989-05-01 Matsushita Electric Ind Co Ltd Hydroponic culture apparatus
JPH07227163A (en) * 1994-02-22 1995-08-29 Toshiba Corp Cultivating unit using nutrient fluid and nutrient fluid prepared solution for it
JPH11147092A (en) * 1997-11-18 1999-06-02 Toto Ltd Sterilizing electrolytic cell
JP2002079251A (en) * 2000-06-26 2002-03-19 Sanyo Electric Co Ltd Water treatment method and apparatus, and hydroponic culture system using the same
JP2002104908A (en) * 2000-09-27 2002-04-10 Asahi Pretec Corp Disinfectant agricultural electrolytic water and production unit therefor
JP2003285062A (en) * 2002-03-27 2003-10-07 Denso Corp Agricultural water reforming apparatus
JP2003305473A (en) * 2002-04-18 2003-10-28 Towa Musen Kk Reduced water producing apparatus for water reforming
JP2004204328A (en) * 2002-12-26 2004-07-22 Takatoshi Nakajima Method of producing hypochlorous acid solution, and utilizing method thereof
JP2005087881A (en) * 2003-09-17 2005-04-07 Denso Corp Water reforming apparatus

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101478564B1 (en) 2013-05-30 2015-01-06 주식회사 지앤에스바이오 Method of cultivating crops
WO2015045219A1 (en) * 2013-09-26 2015-04-02 パナソニックIpマネジメント株式会社 Hydroponic apparatus
JP2015065828A (en) * 2013-09-26 2015-04-13 パナソニックIpマネジメント株式会社 Hydroponic device
FR3030479A1 (en) * 2014-12-23 2016-06-24 Seb Sa INSTALLATION AND METHOD FOR MINERALIZING AQUEOUS DRINK
WO2017072952A1 (en) * 2015-10-30 2017-05-04 株式会社グリチル Nutriculture system
CN108347888A (en) * 2015-10-30 2018-07-31 株式会社谷利迪尔 nutrient fluid cultivation system
JPWO2017072952A1 (en) * 2015-10-30 2018-08-30 株式会社グリチル Hydroponic system
CN112432982A (en) * 2020-11-14 2021-03-02 南通市通州区东社镇五马路村股份经济合作社 Device and method for adjusting soil trace elements
CN117819702A (en) * 2024-03-06 2024-04-05 上海环保(集团)有限公司 Module combined type nutrient supply control method in sewage treatment process
CN117819702B (en) * 2024-03-06 2024-05-03 上海环保(集团)有限公司 Module combined type nutrient supply control method in sewage treatment process

Also Published As

Publication number Publication date
JP4552219B2 (en) 2010-09-29

Similar Documents

Publication Publication Date Title
US7309441B2 (en) Electrochemical sterilizing and bacteriostatic method
JP4457404B2 (en) Method for adjusting culture solution for hydroponics
Arends et al. Enhanced disinfection of wastewater by combining wetland treatment with bioelectrochemical H2O2 production
CN102849878B (en) Pretreatment method for industrial wastewater of pyrethroid
JP4552219B2 (en) Method for adjusting culture medium for hydroponics and method for supplying trace elements
KR101220891B1 (en) A porous 3-dimensional bipolar electrode, an electrolyzer having the porous 3-dimensional bipolar electrode, and water treatment method using the electrolyzer having the porous 3-dimensional bipolar electrode
CN101531411A (en) Method for electrochemically disinfecting gas diffusion electrode system
Haaken et al. Limits of UV disinfection: UV/electrolysis hybrid technology as a promising alternative for direct reuse of biologically treated wastewater
Rodziewicz et al. The share of electrochemical reduction, hydrogenotrophic and heterotrophic denitrification in nitrogen removal in rotating electrobiological contactor (REBC) treating wastewater from soilless cultivation systems
JP2011131118A (en) Method and apparatus for preparing spray water for plant
Lang et al. A flow-through UV/electro-chlorine process for cost-effective and multifunctional purification of marine aquaculture wastewater
KR101858096B1 (en) Appratucps for sterilization of ballast water
JP4098617B2 (en) Sterilization method
KR20100064768A (en) Prevention system of adhesion of marine organism
US10820579B2 (en) Water quality purification device, water purifier and aquarium using the same
Shinde et al. A systematic review on advancements in drinking water disinfection technologies: a sustainable development perspective
Jeon et al. Degradation of microcystin and possible phosphorus removal mechanism by electrochemical treatment
Wang et al. Deactivation of cyanobacteria blooms and simultaneous recovery phosphorus through electrolysis method
JP2007234459A (en) Fungistatic treatment method of fuel cell system
RU69075U1 (en) DEVICE FOR CLEANING AND DISINFECTING WATER
JP2005103498A (en) Method and apparatus for electrolytic treatment of waste chemical plating liquid
JP2005118682A (en) Electrochemical treatment method of trihalomethane-containing water
CN213037466U (en) Online sterilizing net for circulating water
JP2004089916A (en) Treatment method for wastewater containing organic matter
Riyanto et al. A novel method for the removal of ammonia in hospital wastewater using flow electrolysis

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100505

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100622

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100703

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees