JPH03106591A - Solder material - Google Patents

Solder material

Info

Publication number
JPH03106591A
JPH03106591A JP23883789A JP23883789A JPH03106591A JP H03106591 A JPH03106591 A JP H03106591A JP 23883789 A JP23883789 A JP 23883789A JP 23883789 A JP23883789 A JP 23883789A JP H03106591 A JPH03106591 A JP H03106591A
Authority
JP
Japan
Prior art keywords
soldering
phase
solder
intermetallic compound
crystal grains
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23883789A
Other languages
Japanese (ja)
Other versions
JP2812367B2 (en
Inventor
Kenichi Kawai
健一 河合
Yoshio Fukuma
福間 宣雄
Akira Matsui
彰 松井
Kenichiro Futamura
憲一朗 二村
Eiji Asada
浅田 栄治
Tatsuhiko Fukuoka
福岡 辰彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiho Kogyo Co Ltd
Toyota Motor Corp
Original Assignee
Taiho Kogyo Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiho Kogyo Co Ltd, Toyota Motor Corp filed Critical Taiho Kogyo Co Ltd
Priority to JP23883789A priority Critical patent/JP2812367B2/en
Publication of JPH03106591A publication Critical patent/JPH03106591A/en
Application granted granted Critical
Publication of JP2812367B2 publication Critical patent/JP2812367B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

PURPOSE:To improve the reliability of a soldered and brazed part by constituting the solder material of specific weight per cent of In, Sb, etc., and Ag, Au, Pb, and Sn and depositing secondary phases at the crystal grain boundaries of Pb and Sn after soldering. CONSTITUTION:The solder material is constituted, by weight per cent, of at least two kinds among the groups (1) to (3) consisting of (1) 0.01 to 10% MA (at least one kind of In and Ga), (2) 0.01 to 8% Ms (at least one kind of Sb and Bi) and (3) 0.01 to 10% at least one kind of Ag and Au, 10 to 95% Pb and the balance Sn. This material is a substantially solid soln. in a soldering state. The secondary phases 3 of the MA and/or Ms deposited after the soldering are made to exist mainly at the grain boundaries of the Pb crystal grains 1 and Sn crystal grains 2. The long-term stable use of the solder material without generating cracks is possible in this way.

Description

【発明の詳細な説明】 (産業上の利用分野〉 本発明は、はんだ材に関するものであり、さらに詳しく
述べるならば、自動車用の電装品のように絶えず振動に
さらされ、疲労が起こり易い環境で使用される部品のは
んだ付、特に電子部品を印刷基板に接合する用途に適す
るように組織を制御したはんだ材に関するものである. (従来の技術) 一般に、はんだ材はSn−Pb二元系を基本成分として
おり、またその性質を改善するため各種成分を添加する
ことが知られている.特公昭40−25885号公報は
、はんだ用電気こて先の銅がはんだに溶け込んで、はん
だが損耗することを防止するために、はんだ材に銅、銀
、ニッケル等を添加することを開示する.その損耗防止
作用は銀、ニッケルにより銅をはんだ中に微細均一に分
布させることにあると説明されている. 特公昭45−2093号公報は、アルミニウム合金との
ろう接部でのはんだの耐食性がAgまたはsbの添加に
より改善され、またはんだ材の流動性および作業性がC
dの添加により改善されることを開示する. 特に集積回路、印刷基板等に使用されるはんだ材の改良
を意図した従来技術には次のものがある. 特公昭52−30377号公報は、ろう接される銅細線
がはんだにより溶解され、溶損し、あるいは、強度低下
をきたすことを防止するために,CuとAgの同時添加
を開示する.Cuにより被ろう接材料がはんだにより食
われることを抑制し、一方Cu添加によりはんだの融点
が上昇して被ろう接材料が溶解され易くなることをAg
のもつ融点低下作用により防止するところにCuとAg
の同時添加の作用があると説明されている.特開昭56
−144893号公報は、セラミックコンデンサーの銀
リード線の銀がはんだに拡散してコンデンサーの特性を
悪くしたりあるいは銀面を剥離させる欠点を解消すると
ともに、高速はんだ付を可能にすることを目的とし、S
n−Sb−Ag−Pb系はんだ材を提案する.特開昭5
9−70490号公報は、半導体メモリにおける部材接
合に使用されているAuろう材に匹敵する特性を有する
安価なろう材としてSblN15%−Sn (In)1
〜65%一Pb系およびSb−Ag−Sn (In)−
Pb系成分を提案する. 特開昭63−313689号公報はPb62〜72%、
Sn28〜38%を基本組成とし、これにCub.05
%〜1.0%、SbO.O’5〜1.0%、In0.0
5〜1.0%、Cd0.05〜1.0%、Fed.05
%〜1.0%の1種以上を添加し、リード端子間のブリ
ッジを防止することを特徴とするはんだ合金組成を提案
する.はんだの組織に言及した従来技術としては次のよ
うなものがある. 特公昭40−25885号では、Sn−Cu系金属間化
合物が作られるとはんだの湯流れを阻害するので問題が
あるが、Ag,Niの微量添加によりCuを微細均一に
拡散させておけば,金属間化合物による欠点は問題ない
と説明されている. 特公昭52−30377号公報では、Agの多量添加は
金属間化合物の晶出などの害を招くとされ、5.0%を
越えて添加されたsbは、溶融はんだ中での金属間化合
物が多量に生戒して、接合面で初晶が発達すると説明さ
れている.このように、従来のはんだ組織に関しては、
湯流れを阻害する金属間化合物を析出させないようにす
るため添加或分の量を抑えることなどが行なわれていた
. (発明が解決しようとする課題) 集積回路、印刷基板に搭載された電子部品のはんだ付に
使用されるはんだ材の特性に関して、近年、リード線を
基板のランド部に接合した印刷基板のはんだ内部にクラ
ックが発生して通電不良による動作ミスを起こす問題が
注目されている.この原因は、使用温度が100℃前後
の温度から−30℃前後の温度までの周期的変化により
基板および実装部品に応力が発生し、それを接合部材で
あるはんだが受け持つことになるため、はんだは常に応
力がかかった状態に置かれ、長期間の使用においては疲
労破壊に至るものと推察される.さらに,通電によるは
んだ付部の温度上昇、電子部品の発熱などの熱影響、さ
らには印刷基板が振動されることなどによる機械的影響
も長期間の使用中での疲労破壊を加速する原因であると
考えられる.基本的組成からなるSn−Pb二元系はん
だ材は上述のような長期間熱的および機械的応力にさら
される環境に使用すると、耐疲労性の点で問題があるこ
とが明らかになった.ところが、従来、Pb−Sn系二
元系合金にCuやN1を添加すると耐疲労性が向上する
と言われているものの、はんだ付け時もしくはそれ以前
の組織検討がなされているのみで、はんだ付け時の以降
のはんだが組織の改良、すなわちはんだ付けがなされた
後のはんだがさらされる環境において、耐疲労性を改良
する観点からなされた研究は見られない. (課題を解決するための手段) 本発明者等は、はんだ材の耐疲労性改善の方法を鋭意研
究した結果、はんだ付直後の状態では、Pb−Sn系合
金への添加元素を固溶状態とし、はんだ付後に、これを
二次相として析出させることにより、耐疲労性が高めら
れることを見出し、以下の4種のはんだ材を発明した.
1.ΦM^ (但し、In1Gaの少なくとも1種)0
、Of〜10%、■Ml  (但し、sb,Biの少な
くとも1種)o.01〜8%、および[3]Agおよび
Auの少なくとも1種0.01〜10%からなる群[1
]〜[3]の少なくとも2種と、Pb10〜95%と、
残部(O%を除()Snとから実質的にからなり、はん
だ付状態では実質的に固溶体であり、はんだ付後に析出
させた前記M1および/またはMAを含むもしくはMA
および/またはM,からなる二次相が主としてPb結晶
粒およびSn結晶粒の粒界に存在しており、耐疲労性が
優れていることを特徴とするはんだ材(以下、第1発明
という). 2.SbO.01〜3%、Al0.01〜2%、Pb1
0〜95%、残部(0%を除く)からSnから実質的に
なり、はんだ付状態では実質的に固溶体であり、はんだ
付後に析出させたAl一sb系金属間化合物の二次相が
主としてPb結晶粒およびSn結晶粒の粒界に存在して
おり、耐疲労性が優れていることを特徴とするはんだ材
.(以下、第2発明という). 3.AlO.Of〜2%、Pb10〜95%、残部(0
%を除く)からSnから実質的になり、はんだ付状態で
は実質的に固溶体であり、はんだ付後に析出させたAl
二次相が主としてPb結晶粒およびSn結晶粒の粒界に
存在しており、耐疲労性が優れていることを特徴とする
はんだ材.(以下、第3発明という). 4.第2および第3発明の組成に、さらに、Agおよび
Auの少なくとも1種を0.01〜10%含有すること
を特徴するはんだ材(以下、第4発明という). (作用) まず、本発明における組成限定理由を説明する. 本発明において、Pb−Sn基本系の組成に関して、P
b10〜95%(百分率は特記しない限り重量百分率で
ある) 、S n残部(0%を除く)組或範囲としたの
は、この組成範囲においてはSn−Pb二元系の共晶組
成から著しく離れず比較的低温でのはんだ付が可能とな
るからである.ただし、はんだ付性の観点からSn2%
以上が好ましく、Pbは10〜90%,特に10〜80
%が好ましく、より好ましくは20〜60%である.な
おPbは、共晶系として、30〜50%、好ましくは3
0〜45%とすると、はんだ付性や使い易さの点でより
優れ、はんだ強度も大とすることができ、一方、Pbを
50%前後45〜60%とすると、コスト面が重視され
、はんだ付け強度がさほど高くなくても良い用途に対し
て有利である.高温にて使用する場合は、Pb量を60
%以上、好ましくは70〜95%としたはんだ材を用い
ることもできる.また、特に高温での耐疲労性が要求さ
れる時は,Sn量を少な<Pbmを多くすることが望ま
しい.例えば、Sn3〜9%、Pbso〜90%である
. 第1発明において、MA,MAおよびAg(Au)を添
加元素としており、これらの含有量(各群において2種
類添加の場合は、合計含有量)の限定理由を以下説明す
る. 添加元素の下限をo.01%としたのは、これ未満では
、詳しくは後述する析出による耐疲労性の向上が図られ
ないからである.また、M&とMeの含有量がそれぞれ
10%以上、8%以上になると、はんだ付け前の状態で
添加元素が多量に析出してしまい、はんだの湯流れ性や
はんだ付性が低下し、あるいははんだ表面が曇る現象を
引き起してクラックが入り易くなる.そして、はんだ付
けした時点の状態で、析出物がマクロ的に偏析し、この
部分で疲労が発生する疲労起点が多くなりすぎるように
なる.このため、はんだ付け後に添加元素を固溶状態か
ら析出させた二次相による耐疲労性の優れた部分による
、偏析部分等の疲労起点保護作用が不充分となるため、
耐疲労性が著しく低下する傾向が現れるため、これらの
含有量を上限とした.このMAの含有量は、好ましくは
5%以下、より好ましくは3%以下である.またMAの
含有量は、好ましくは5%以下、より好ましくは3%以
下である. Agおよび/またはAuの上限も同様の理由により定め
られる.また、特に、Agはその、含有量の上限を越え
るとAg−Snの大きな金属間化合物が生成されるとと
もに、ヒケ巣・ビンホール・ブローホール等が多量に発
生し、はんだの湯流れ性の低下や、耐疲労性の低下を招
くこ.ととなる. このAgとAuは、多量に含有させても添加量の割にさ
ほどの性能向上が期待できないし、高価な元素でもある
.この経済的な観点を含め、総合的にはんだ性能を勘案
すると、AgとAuの合計量は、好ましくは5%以下、
より好ましくは3%以下とすると良い. なお、MAとMAの個別添加元素の成分範囲としては、
Inの含有量およびGaの含有量は、それぞれ好ましく
は0.01〜5%、より好ましくは0.03〜1%、さ
らに好ましくは0.05〜0.9%である.MAの含有
量を多くする場合には、InとGaの一方のみを添加す
るよりも、両方を添加する方が好ましい. Mmのうち、sbの好ましい含有量は0.Ol〜3%、
より好ましくは0.03〜1%、さらに好ましくは0.
05〜0.9%である.Sbは、3%以下とするとはん
だ付性がより良好となるが、2%を越えるとはんだ付け
時にもごく一部が析出することがある.この析出は、こ
の後析出される二次相の作用にあまり影響はないが、よ
り好ましい二次相を得るためにはsbを2%以下とする
とよい. M1のうち%Biの好ましい含有量は0.Ol〜5%、
より好ましくは0.03〜3%、さらに好ましくは0.
05〜1%である.Sbと同様に81も3.5%を越え
るとはんだ付け時にもごく一部が析出することがある. AgとAuの個別添加元素の成分範囲としては、好まし
い含有量はo.01〜5%、より好ましくは0.1〜4
%、さらに好ましくは0.5〜3%である. 第2発明において、添加元素であるsbおよびAlの下
限を0.01%としたのは、これ未満では、詳しくは後
述する二次相としての金属間化合物析出による耐疲労性
の向上が図られないからである.また、sbおよびAl
の含有量がそれぞれ3%および2%以上になると、はん
だ付時点での状態で、添加元素の大半以上を固溶させる
ことが困難となり、固溶されなかった添加元素によって
形成される析出物が多くなり過ぎるなどにより、二次相
の効果を滅殺してしまい耐疲労性が低下する傾向が現わ
れるため、これらの含有量を上限とした. sbのより好ましい含有量は0.03〜1%、さらに好
ましくは0.05〜0.9%である. sbは、2%を越えるとはんだ付け時にもごく一部が析
出することがある.この析出は、この後析出される二次
相の作用にあまり影響はないが、より好ましい二次相を
得る観点からはsbを2%以下とするとよい. 第3発明において、添加元素であるAlの下限を0.0
1%としたのは、これ未満では、詳しくは後述するアル
ミニウム金属相の析出による耐疲労性の向上が図られな
いからである.また、Alの含有量が2%以上になると
、はんだ付時点での状態で、添加元素の大半以上を固溶
させることが困難となり、形成される析出物が多くなり
過ぎるなどにより、二次相の効果を滅殺してしまい耐疲
労性が低下する傾向が現われるため、これらの含有量を
上限とした. 第2発明および第3発明において、Alの含有量は、望
ましくは0.01〜1.5%、好ましくは0.05〜0
65%、より好ましくは0.05〜0.2%である.な
お、Snの添加量が少ない場合にはAlの含有量を少な
くするとよい.すなわち、Sn量が50%以下の場合は
、特に、Alの含有量を1%以下にすることが推奨され
る.第2および第3発明のはんだ材に、任意の添加元素
として加えられるAgおよび/またはAuはさらに耐疲
労性を向上させる効果がある.その含有量(2種添加の
時はその合計量)が0.01%未満では、効果がなく、
一方10%を越えると、二次相の効果を滅殺してしまい
耐疲労性が低下する傾向が現われるため、これらの含有
量・を上限とした.また、特にAgはその含有量の上限
を越えるとAg−Snの大きな金属間化合物が生成され
、耐疲労性を低下させる.経済的な観点を含めて、総合
的にはんだ性能を勘案すると、AgとAuの合計量は、
好ましくは5%以下、より好ましくは3%以下とすると
良い. 上記以外の戒分は実質的に不純物である.ここで、Cu
,Fes Nl,Mn,Mo,TI,Cd,Zn等は、
不純物として少量混入することもあるが、公知の添加目
的で、本発明の作用効果をなくさない範囲で含有させて
もよいことは勿論である. Cuは、3%以下であれば、本発明の二次相の作用を滅
殺しないが、はんだ付時点の状態でCu−Sn系金属間
化合物の晶出物を生威しやすいので、本発明においては
積極的には使用しない方が好ましい. 次に、本発明の組織上の特徴を説明する.第1図(A)
は本発明のはんだ材のはんだ付後の組織、第1図(B)
は使用後の組織を模式的に示す図である.図中、1はP
b結晶、2はSn結晶、3は金属間化合物二次相である
.第2図(A)は従来のはんだ材のはんだ付後の組織、
第2図(B)は使用後の組織を模式的に示す図である.
図中、1はPb結晶、2はSn結晶、3は二次相である
. 本発明のはんだ材の組織ははんだ付の時点で添加元素が
過飽和にSn結晶およびPb結晶に固溶した固溶組織を
有するものである.はんだ付時点で生成される二次相は
、静的強度向上には有効な場合もあるが、針状で鋭い角
をもった粒子状であり、このような尖った部分は切欠と
なって疲労破壊の起点になるので、本発明でははんだ付
の時点での二次相の生成をできるだけ避け、固溶組織を
作ることを一つの特徴とする.そして、はんだ付けの後
にこの固溶組織から二次相を析出させるようにすること
を特徴とする. 従来は、はんだ付けがし終るまでの特性に捕らわれて合
金組成や合金組織を改良していた.そして、特に、はん
だ付けした後の疲労挙動に着目した研究は行われていな
かった.そこで、本発明者等が研究したところ、Pb−
Sn系はんだにおけるこの疲労挙動は、Pb相のグロー
イング現象が支配的であることが判明した. これは、使用環境の温度等により、はんだ付け部分にお
いて、Sn相とPb相が、同一相の結晶粒が集まり、次
第に成長し、結果としてPb相が粗大化すると、相対的
にSn相に比較し疲労に弱いPb相から疲労が進行する
ことである.そこで,この粒子成長を止める手段として
、二次相をはんだ付けした後に形成する構成によって、
はんだ付け部分での疲労の進行を抑制することができる
ことを見出して,本発明を完成した.従来のはんだ材に
おいては、金属間化合物等の晶出物は有害であり、なる
べく存在しないように添加元素量を制限すべきと認識さ
れていた.一般に、はんだは使用中に結晶粒の成長、合
体等を招く可能性がある温度上昇(約100℃まで)に
さらされる.電子装置を搭載した基板のはんだ接合部の
1ケ所のはんだ重量は通常100〜1000mgである
.このような重量では、合金組織としては、はんだ付け
時の冷却速度が支配的であり、かかる速度により決定さ
れる結晶粒の大きさは通常1〜10μ一である.このよ
うな結晶粒が高温にさらされ、特にSn相の成長により
Pb相の連続部分が多くなり、この疲労に弱いPb相に
クラック等が発生する.このようにして疲労強度が低下
する.また、自動車搭載の電子装置はマイナス数十℃か
らプラス約80℃までの温度範囲で使用されるので、は
んだや素子のリード端子などの熱膨張と収縮により応力
がはんだに加えられ、これが疲労破壊の大きな要因であ
る.また、はんだが高温に長時間さらされていると、は
んだは絶えず一定の応力を受けクリープによる破断を起
こすこともあり、これも疲労破壊の大きな要因である.
もちろん,本発明のはんだ材は固溶強化によりはんだの
初期の強度はかなり高くなっているので、急速に疲労破
壊に至ることはないが、固溶強化されていても結晶粒の
成長は起こり、かつ高温・長時間・繰り返し応力の使用
条件の下では大幅な結晶粒の再編成が起こるので、長時
間の使用中には、固溶強化による耐疲労性向上の効果よ
りも結晶粒粗大化により耐疲労性劣化の影響が顕著にな
ってしまう.したがって、本発明のはんだ材では、はん
だ付けした後の長期間使用中にPb結晶粒1およびSn
結晶粒2の粒界に金属間化合物などの二次相3を存在さ
せることにより、結晶粒の成長を阻止するように構成し
た.ここで、結晶粒の成長と二次相の生成は一方だけが
優先して進行することはなく、同時進行的に起こるので
、結晶粒の粗大化により疲労強度が低下する傾向が表れ
る時点では二次相により粒成長抑制効果が現れ、これら
の作用の競合状態となる.なお、長時間使用中に析出す
る金属間化合物などは鋭い角をもたず、どの方向の寸法
もほぼ等しい塊状となる. 二次相の大きさは10μ一以下が望ましく5μ讃以下が
よい.これを越えると二次相自身が疲労起点となること
がある.好ましくは3μ一以下とすると成長抑制効果が
さらに良好である.より好ましくは1μ一以下である. 本発明の代表的態様のはんだ材では、金属顕微鏡で1 
000倍程度に拡大すれば、0.5〜lμm程度め二次
相が実際に容易に観察される.もちろんこれ以下の微細
な二次相も存在するが、観察に別途高価な測定機器が必
要である.二次相の大きさは、微細かつ多量に存在すれ
ばこれ.以下としても良い. 二次相が形成されるに要する時間は温度により大きく影
響される.電子部品の信頼性を試験する加速試験条件で
はその仕様により定められている時間(例えば、−30
℃〜+80℃、1000サイクル)の経過後には二次相
の生成が確認される.実際の機器に組み込まれた電子部
品においては、その性能劣化やはんだ合金内の析出現象
は加速試験よりも緩慢に進行するから、はんだ付後数年
の経過後に二次相の生或が認められるものと考えられる
.そして、このように緩慢に二次相が形或されることは
疲労破壊を防止する上で好ましい. 一方、はんだ付け後に、意図的に低温熱処理を行い二次
相を数時間で形成されたはんだ接合部を構成するように
してもよい. 本発明に対して、従来のPb−Sn−Cu系のはんだ材
等では、はんだ付前の段階でSnCu金属間化合物の殆
ど全部が晶出しており、はんだ付け時点ではこの晶出物
はマトリックス中へは実質的に固溶されず、はんだ付け
の熱で粗大な形態となってしてしまう.そして、はんだ
付け後の組織を観察してみると、この粗大なSnCu金
属間化合物は結晶粒界、校内にランダムに存在し、また
マトリックス内への固溶分は実質的にない.このため、
はんだ付け後に析出させることができないし、使用時の
熱によりPb粒のグローイング現象がPb−Sn共品は
んだと同程度にみられ、粗大なSnCu金属間化合物に
は結晶粒成長抑制効果は認められなかった. 同様に、Pb−Sn−Agはんだでは、Ag−Sn金属
間化合物がみられるが、はんだ付け直後から長時間使用
後までの組織を観察してみると,結晶粒界・粒内にラン
ダムに存在し、使用時の熱によりこの金属間化合物自身
が再固溶するとともにPb相やSn相の粒界に対し殆ど
影響せず粗大な結晶に成長する.またAg−Sn金属間
化合物が移動成長する場合もある.このためこのような
形態での単独で存在したAg−Sn金属間化合物は、P
b粒のグローイング現象に対し結晶粒成長抑制効果は認
められなかった. このように、従来のはんだ付けで見られるSnCu金属
間化合物や、単独のAg−Sn金属間化合物では、結晶
粒成長抑制効果に基づく疲労寿命の延長効果は得られな
かった. これに対し、本発明の二次相は、はんだ付け時点の状態
で、Pb相および/またはSn相の中に実質的に固溶で
き、はんだ付け後に熱でこの固溶組織から析出する形態
であるため、Pb相やSn相の粒界に結果的に大半が存
在でき、これにより、結晶粒成長抑制効果が得られるこ
ととなる.本発明の特徴である二次相に要求される性能
をまとめると以下のとおりである. ■はんだ付直後にはPb相および/またはSn相の中に
、実質的に固溶されている固溶分が存在することと、は
んだ付け後の低温の熱処理または長期間の使用中の熱に
より析出して生成すること. ■高融点を有し、高温において安定であること.あるい
は、少なくとも使用中にかかる熱に対してマトリックス
に完全に再固溶してしまわない程度に安定であること.
金属間化合物は、化学量論的化合物でも、非化学量論的
化合物でも、また固溶元素を含む化合物でも、この要件
を充たす.金属(固溶体)であっても、Pb,Snより
も安定であれば、Alなどのように、この要件を充たす
. ■析出物が微細で分散性があること。はんだ付け後の低
温熱処理での析出により形成された二次相や、はんだ接
合部品の長時間使用中に析出により形成される二次相は
この要件を充たす.析出物の寸法は5μ一以下とするの
がよく、好ましくは3μm以下、特に1μm以下が好ま
しい.そして、はんだ付けした後のはんだ組織中に、分
散して微細に数多く析出すると結晶粒界に配置されやす
くなりよい。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a solder material, and more specifically, it is used in environments where electrical components for automobiles are constantly exposed to vibrations and are prone to fatigue. This invention relates to a solder material whose structure is controlled to be suitable for soldering parts used in electronics, especially for joining electronic parts to printed circuit boards. (Prior technology) Generally, solder materials are Sn-Pb binary system. It is known that various ingredients are added to improve its properties.Japanese Patent Publication No. 40-25885 discloses that the copper of an electric iron tip for soldering melts into the solder, causing the solder to melt. It is disclosed that copper, silver, nickel, etc. are added to the solder material in order to prevent wear and tear.It is explained that the wear prevention effect is caused by finely uniform distribution of copper in the solder with silver and nickel. Japanese Patent Publication No. 45-2093 discloses that the corrosion resistance of solder at the soldered joint with an aluminum alloy is improved by adding Ag or sb, and the fluidity and workability of the solder material are improved by C.
It is disclosed that this can be improved by adding d. In particular, the following conventional techniques are intended to improve solder materials used in integrated circuits, printed circuit boards, etc. Japanese Patent Publication No. 52-30377 discloses the simultaneous addition of Cu and Ag in order to prevent thin copper wires to be soldered from being melted by solder, eroded, or having a decrease in strength. Cu suppresses the overlying soldering material from being eaten by the solder, while the addition of Cu increases the melting point of the solder, making it easier for the overlying soldering material to melt.
Cu and Ag can be prevented by their melting point lowering effect.
It is explained that the simultaneous addition of Japanese Unexamined Patent Publication 1983
The purpose of Publication No. 144893 is to eliminate the drawback that silver in the silver lead wire of a ceramic capacitor diffuses into the solder, worsening the characteristics of the capacitor or causing the silver surface to peel off, and to enable high-speed soldering. , S
We propose n-Sb-Ag-Pb based solder material. Japanese Patent Publication No. 5
Publication No. 9-70490 discloses SblN15%-Sn(In)1 as an inexpensive brazing filler metal with properties comparable to Au brazing filler metal used for joining components in semiconductor memories.
~65%-Pb and Sb-Ag-Sn(In)-
We propose a Pb-based component. JP-A-63-313689 discloses Pb62-72%,
The basic composition is Sn28-38%, and Cub. 05
% to 1.0%, SbO. O'5~1.0%, In0.0
5-1.0%, Cd0.05-1.0%, Fed. 05
We propose a solder alloy composition characterized by adding at least one type of solder in an amount of 1.0% to 1.0% to prevent bridging between lead terminals. The following are conventional technologies that refer to the structure of solder. In Japanese Patent Publication No. 40-25885, there is a problem when a Sn-Cu intermetallic compound is created because it obstructs the flow of solder, but if Cu is dispersed finely and uniformly by adding small amounts of Ag and Ni, It is explained that the defects caused by intermetallic compounds are not a problem. According to Japanese Patent Publication No. 52-30377, adding a large amount of Ag causes harm such as crystallization of intermetallic compounds, and adding more than 5.0% of sb causes intermetallic compounds to form in the molten solder. It is explained that primary crystals develop at the joint surface when exposed to large amounts. In this way, regarding the conventional solder structure,
In order to prevent the precipitation of intermetallic compounds that inhibit the flow of molten metal, efforts were made to reduce the amount added to some extent. (Problem to be Solved by the Invention) Regarding the characteristics of solder materials used for soldering integrated circuits and electronic components mounted on printed circuit boards, in recent years, it has been found that A problem that is attracting attention is that cracks occur in the battery, causing malfunctions due to poor electrical conduction. The reason for this is that stress is generated in the board and mounted components due to periodic changes in the operating temperature from around 100°C to around -30°C, and the solder, which is the joining material, takes on the stress. is constantly placed under stress, and it is presumed that fatigue failure will occur if used for a long period of time. Furthermore, thermal effects such as the rise in temperature of the soldered joint due to energization, heat generation of electronic components, and even mechanical effects such as vibration of the printed circuit board can accelerate fatigue failure during long-term use. it is conceivable that. It has become clear that the Sn-Pb binary solder material, which has a basic composition, has problems in terms of fatigue resistance when used in environments where it is exposed to long-term thermal and mechanical stress as described above. However, although it has been said that adding Cu or N1 to Pb-Sn binary alloys improves fatigue resistance, the structure has only been studied at or before soldering, and There has been no research conducted from the perspective of improving the structure of the solder after soldering, that is, improving the fatigue resistance in the environment in which the solder is exposed after soldering. (Means for Solving the Problems) As a result of intensive research into methods for improving the fatigue resistance of solder materials, the present inventors have found that, immediately after soldering, additive elements to Pb-Sn alloys are added to the Pb-Sn alloy in a solid solution state. We discovered that fatigue resistance could be improved by precipitating this as a secondary phase after soldering, and invented the following four types of solder materials.
1. ΦM^ (However, at least one type of In1Ga) 0
, Of~10%, ■Ml (However, at least one of sb and Bi) o. 01 to 8%, and [3] a group consisting of 0.01 to 10% of at least one of Ag and Au [1
] to [3], Pb10 to 95%,
The remainder (excluding O%) consists essentially of Sn, is substantially a solid solution in the soldered state, and contains the M1 and/or MA precipitated after soldering.
A solder material characterized in that a secondary phase consisting of and/or M exists mainly at the grain boundaries of Pb crystal grains and Sn crystal grains, and has excellent fatigue resistance (hereinafter referred to as the first invention) .. 2. SbO. 01-3%, Al0.01-2%, Pb1
0 to 95%, and the remainder (excluding 0%) consists essentially of Sn, and is substantially a solid solution in the soldered state, and is mainly composed of a secondary phase of Al-sb intermetallic compounds precipitated after soldering. A solder material that exists at the grain boundaries of Pb crystal grains and Sn crystal grains and has excellent fatigue resistance. (Hereinafter referred to as the second invention). 3. AlO. Of~2%, Pb10~95%, balance (0
%) to Sn, is substantially a solid solution in the soldered state, and is precipitated after soldering.
A solder material characterized in that a secondary phase mainly exists at the grain boundaries of Pb crystal grains and Sn crystal grains, and has excellent fatigue resistance. (Hereinafter referred to as the third invention). 4. A solder material characterized in that the composition of the second and third inventions further contains 0.01 to 10% of at least one of Ag and Au (hereinafter referred to as the fourth invention). (Function) First, the reason for limiting the composition in the present invention will be explained. In the present invention, regarding the composition of the Pb-Sn basic system, P
b10 to 95% (percentages are weight percentages unless otherwise specified), Sn balance (excluding 0%) was selected as a certain range because in this composition range, it is significantly different from the eutectic composition of the Sn-Pb binary system. This is because soldering can be done at a relatively low temperature without causing any separation. However, from the viewpoint of solderability, Sn2%
The above is preferable, and Pb is 10 to 90%, especially 10 to 80%.
%, more preferably 20 to 60%. In addition, Pb is 30 to 50% as a eutectic system, preferably 3
When Pb is set at 0 to 45%, it is better in terms of solderability and ease of use, and the solder strength can be increased. On the other hand, when Pb is set at around 50% and 45 to 60%, cost is emphasized, This is advantageous for applications where soldering strength does not need to be very high. When using at high temperatures, increase the amount of Pb to 60
% or more, preferably 70 to 95%, can also be used. In addition, especially when fatigue resistance at high temperatures is required, it is desirable to have a small amount of Sn and a large amount of Pbm. For example, Sn is 3-9% and Pbso is ~90%. In the first invention, MA, MA, and Ag (Au) are used as additive elements, and the reasons for limiting their content (or total content if two types are added in each group) will be explained below. The lower limit of added elements is set to o. The reason why it is set at 0.01% is that if it is less than this, the fatigue resistance cannot be improved due to precipitation, which will be described in detail later. Furthermore, if the content of M& and Me is 10% or more and 8% or more, respectively, a large amount of additive elements will precipitate before soldering, resulting in a decrease in the flowability and solderability of the solder, or This causes the solder surface to become cloudy, making it easier for cracks to form. Then, in the state at the time of soldering, the precipitates become macroscopically segregated, and there are too many fatigue starting points where fatigue occurs in this part. For this reason, the secondary phase in which the additive elements are precipitated from the solid solution state after soldering becomes insufficient to protect fatigue starting points such as segregated areas by the areas with excellent fatigue resistance.
Since there is a tendency for fatigue resistance to decrease significantly, these contents were set as upper limits. The content of MA is preferably 5% or less, more preferably 3% or less. Further, the content of MA is preferably 5% or less, more preferably 3% or less. The upper limit of Ag and/or Au is also determined for the same reason. In particular, when the Ag content exceeds the upper limit, a large Ag-Sn intermetallic compound is generated, and a large amount of sinkholes, bottle holes, blowholes, etc. are generated, and the flowability of the solder is reduced. This may lead to a decrease in fatigue resistance. It becomes. Even if a large amount of Ag and Au is added, no significant improvement in performance can be expected for the added amount, and they are also expensive elements. Considering the overall solder performance including this economical point of view, the total amount of Ag and Au is preferably 5% or less,
More preferably, it is 3% or less. In addition, the component ranges of MA and individual additive elements of MA are as follows:
The content of In and the content of Ga are each preferably 0.01 to 5%, more preferably 0.03 to 1%, and even more preferably 0.05 to 0.9%. When increasing the MA content, it is better to add both In and Ga than to add only one. Among Mm, the preferable content of sb is 0. Ol~3%,
More preferably 0.03 to 1%, still more preferably 0.03% to 1%.
05-0.9%. When Sb is 3% or less, solderability becomes better, but when it exceeds 2%, a small portion may precipitate during soldering. Although this precipitation does not have much influence on the action of the secondary phase that is subsequently precipitated, in order to obtain a more preferable secondary phase, it is recommended that sb be 2% or less. The preferred content of %Bi in M1 is 0. Ol~5%,
More preferably 0.03 to 3%, still more preferably 0.03%.
05-1%. Similar to Sb, if 81 exceeds 3.5%, a small portion may precipitate during soldering. As for the component range of the individual additive elements of Ag and Au, the preferred content is o. 01-5%, more preferably 0.1-4
%, more preferably 0.5 to 3%. In the second invention, the lower limit of the additive elements sb and Al is set to 0.01% because if it is less than this, the fatigue resistance will be improved due to the precipitation of intermetallic compounds as a secondary phase, which will be described in detail later. That's because there isn't. Also, sb and Al
When the content of these elements exceeds 3% and 2%, respectively, it becomes difficult to dissolve most of the additive elements in the state at the time of soldering, and the precipitates formed by the additive elements that are not dissolved in the solid solution form. If the content is too high, the effect of the secondary phase tends to be destroyed and fatigue resistance decreases, so these contents were set as upper limits. A more preferable content of sb is 0.03 to 1%, more preferably 0.05 to 0.9%. If sb exceeds 2%, a small portion may precipitate during soldering. Although this precipitation does not have much effect on the action of the secondary phase that is subsequently precipitated, from the viewpoint of obtaining a more preferable secondary phase, it is recommended that sb be 2% or less. In the third invention, the lower limit of the additive element Al is 0.0
The reason why it is set at 1% is because if it is less than this, fatigue resistance cannot be improved due to the precipitation of an aluminum metal phase, which will be described in detail later. Furthermore, when the Al content exceeds 2%, it becomes difficult to form a solid solution for most of the added elements in the state at the time of soldering, and too many precipitates are formed, resulting in secondary phase formation. These contents were set as upper limits because they tended to destroy the effects of carbon dioxide and reduce fatigue resistance. In the second invention and the third invention, the Al content is desirably 0.01 to 1.5%, preferably 0.05 to 0.
65%, more preferably 0.05-0.2%. Note that when the amount of Sn added is small, the content of Al may be reduced. That is, when the Sn content is 50% or less, it is particularly recommended that the Al content be 1% or less. Ag and/or Au added as optional additive elements to the solder materials of the second and third inventions has the effect of further improving fatigue resistance. If the content (total amount when two types are added) is less than 0.01%, there is no effect;
On the other hand, if the content exceeds 10%, the effect of the secondary phase is destroyed and fatigue resistance tends to decrease, so these contents were set as upper limits. Moreover, especially when the upper limit of the Ag content is exceeded, a large Ag-Sn intermetallic compound is generated, which reduces fatigue resistance. Considering the solder performance comprehensively including the economical point of view, the total amount of Ag and Au is:
It is preferably 5% or less, more preferably 3% or less. Precepts other than those listed above are essentially impurities. Here, Cu
, Fes Nl, Mn, Mo, TI, Cd, Zn, etc.
Although a small amount may be mixed in as an impurity, it is of course possible to include it for a known purpose as long as it does not eliminate the effects of the present invention. If Cu is 3% or less, it does not destroy the effect of the secondary phase of the present invention, but it tends to produce crystallized Cu-Sn intermetallic compounds in the state at the time of soldering. It is preferable not to use it actively. Next, the organizational features of the present invention will be explained. Figure 1 (A)
Figure 1 (B) shows the structure of the solder material of the present invention after soldering.
is a diagram schematically showing the tissue after use. In the figure, 1 is P
b crystal, 2 is Sn crystal, and 3 is intermetallic compound secondary phase. Figure 2 (A) shows the structure of the conventional solder material after soldering.
Figure 2 (B) is a diagram schematically showing the structure after use.
In the figure, 1 is a Pb crystal, 2 is a Sn crystal, and 3 is a secondary phase. The structure of the solder material of the present invention has a solid solution structure in which the additive elements are supersaturated and dissolved in the Sn crystal and Pb crystal at the time of soldering. The secondary phase generated during soldering may be effective in improving static strength, but it is in the form of needle-like particles with sharp corners, and these sharp parts become notches and cause fatigue. Since this becomes the starting point of fracture, one of the features of the present invention is to avoid the generation of secondary phases at the time of soldering as much as possible and create a solid solution structure. The feature is that a secondary phase is precipitated from this solid solution structure after soldering. In the past, the alloy composition and structure were improved by focusing on the characteristics until soldering was completed. In particular, no research has been conducted that focuses on fatigue behavior after soldering. Therefore, the present inventors conducted research and found that Pb-
It was found that this fatigue behavior in Sn-based solder is dominated by the glowing phenomenon of the Pb phase. This is because, due to the temperature of the usage environment, the Sn phase and the Pb phase in the soldering part gather crystal grains of the same phase and gradually grow, and as a result, the Pb phase becomes coarser than the Sn phase. However, fatigue progresses from the Pb phase, which is weak against fatigue. Therefore, as a means to stop this particle growth, by forming the secondary phase after soldering,
The present invention was completed after discovering that it is possible to suppress the progress of fatigue in the soldered parts. In conventional solder materials, it has been recognized that crystallized substances such as intermetallic compounds are harmful and the amount of added elements should be limited to avoid their presence as much as possible. Generally, during use, solder is exposed to elevated temperatures (up to about 100°C) that can lead to grain growth, coalescence, etc. The weight of solder in one solder joint of a board on which electronic equipment is mounted is usually 100 to 1000 mg. At such a weight, the alloy structure is dominated by the cooling rate during soldering, and the grain size determined by this rate is usually 1 to 10 microns. When such crystal grains are exposed to high temperatures, the continuous portion of the Pb phase increases, especially due to the growth of the Sn phase, and cracks occur in the Pb phase, which is susceptible to fatigue. In this way, fatigue strength decreases. In addition, since electronic devices installed in automobiles are used in temperatures ranging from minus several tens of degrees Celsius to plus approximately 80 degrees Celsius, stress is applied to the solder due to the thermal expansion and contraction of the solder and element lead terminals, which can lead to fatigue failure. This is a major factor. Additionally, when solder is exposed to high temperatures for long periods of time, the solder is constantly exposed to constant stress and may break due to creep, which is also a major factor in fatigue failure.
Of course, in the solder material of the present invention, the initial strength of the solder is quite high due to solid solution strengthening, so fatigue failure does not occur rapidly, but even with solid solution strengthening, crystal grain growth occurs. In addition, significant reorganization of crystal grains occurs under the conditions of use at high temperatures, long periods of time, and repeated stress. The effect of fatigue resistance deterioration becomes noticeable. Therefore, in the solder material of the present invention, during long-term use after soldering, Pb crystal grains 1 and Sn
The secondary phase 3, such as an intermetallic compound, is present at the grain boundaries of the crystal grains 2, thereby preventing the growth of the crystal grains. Here, the growth of crystal grains and the generation of secondary phases do not proceed preferentially, but rather occur simultaneously, so at the point when fatigue strength tends to decrease due to coarsening of crystal grains, two The grain growth suppressing effect appears due to the secondary phase, and these effects compete with each other. Note that intermetallic compounds that precipitate during long-term use do not have sharp edges and form a block with approximately equal dimensions in all directions. The size of the secondary phase is preferably 10μ or less, preferably 5μ or less. If this is exceeded, the secondary phase itself may become the origin of fatigue. Preferably, if it is 3 μm or less, the growth suppressing effect will be even better. More preferably, it is 1μ or less. In the solder material of the representative embodiment of the present invention, 1
If the image is magnified approximately 0.000 times, a secondary phase of approximately 0.5 to 1 μm in size can actually be easily observed. Of course, there are secondary phases smaller than this, but they require expensive measuring equipment to observe them. The size of the secondary phase is this if it is fine and present in large quantities. The following may be used. The time required for secondary phase formation is greatly influenced by temperature. Under accelerated test conditions for testing the reliability of electronic components, the time specified by the specifications (for example, -30
The formation of a secondary phase was confirmed after 1000 cycles at ℃ to +80℃. In electronic components built into actual equipment, performance deterioration and precipitation within the solder alloy progress more slowly than in accelerated tests, so the formation of secondary phases can be observed several years after soldering. It is considered a thing. It is preferable for the secondary phase to form slowly in this way in order to prevent fatigue failure. On the other hand, after soldering, a low-temperature heat treatment may be intentionally performed so that a secondary phase is formed in a few hours to form a solder joint. In contrast to the present invention, in conventional Pb-Sn-Cu solder materials, almost all of the SnCu intermetallic compound is crystallized before soldering, and at the time of soldering, this crystallized material is in the matrix. There is virtually no solid solution in the soldering process, and the heat of soldering turns it into a coarse form. When the structure after soldering is observed, this coarse SnCu intermetallic compound exists randomly at grain boundaries and within the grain, and there is virtually no solid solution in the matrix. For this reason,
It cannot be precipitated after soldering, and the glow phenomenon of Pb grains due to the heat during use is seen to the same extent as Pb-Sn solder, and the coarse SnCu intermetallic compound has no grain growth suppressing effect. There wasn't. Similarly, in Pb-Sn-Ag solder, Ag-Sn intermetallic compounds are observed, but when observing the structure from immediately after soldering to after long-term use, it is found that they exist randomly at grain boundaries and within grains. However, due to the heat during use, this intermetallic compound itself becomes solid solution again and grows into coarse crystals with almost no effect on the grain boundaries of the Pb phase and Sn phase. In addition, there are cases where Ag-Sn intermetallic compounds migrate and grow. Therefore, the Ag-Sn intermetallic compound that existed alone in this form is P
No grain growth inhibitory effect was observed on the b-grain growing phenomenon. As described above, the SnCu intermetallic compound found in conventional soldering or the Ag-Sn intermetallic compound alone did not have the effect of extending fatigue life based on the effect of suppressing crystal grain growth. In contrast, the secondary phase of the present invention has a form that can be substantially solid-dissolved in the Pb phase and/or Sn phase at the time of soldering, and precipitated from this solid-solution structure by heat after soldering. As a result, most of it can exist at the grain boundaries of the Pb phase and Sn phase, and as a result, the effect of suppressing grain growth can be obtained. The performance required for the secondary phase, which is a feature of the present invention, is summarized as follows. ■Immediately after soldering, there is a substantial solid solution in the Pb phase and/or Sn phase, and due to low-temperature heat treatment after soldering or heat during long-term use, To produce by precipitation. ■Have a high melting point and be stable at high temperatures. Or, it must be at least stable enough to avoid being completely re-dissolved in the matrix against the heat applied during use.
Intermetallic compounds meet this requirement whether they are stoichiometric, non-stoichiometric, or contain solid solution elements. Even metals (solid solutions), such as Al, satisfy this requirement if they are more stable than Pb and Sn. ■Precipitates must be fine and dispersed. Secondary phases formed by precipitation during low-temperature heat treatment after soldering and secondary phases formed by precipitation during long-term use of soldered parts meet this requirement. The size of the precipitate is preferably 5 μm or less, preferably 3 μm or less, and particularly preferably 1 μm or less. If a large number of fine particles are dispersed and precipitated in the solder structure after soldering, they are likely to be arranged at grain boundaries.

なお、分散した二次相は大半がマトリックス相の結晶粒
界に存在することが高い粒子成長抑制効果を得るのに必
要であるが、最初から結晶粒界に析出することは必要で
はなく、ビン止め効果の結果、結晶粒界に存在しておれ
ばよい.これらの性能を充たす相を本発明では二次相と
称する. 上記二次相の具体例を以下説明する. (1)Ma Ms型金属間化合物; Sb−In,Sb−Ga,Bi−In,Bi−Ga系金
属間化合物. この金属間化合物は、MA−MA−Pb−Sn系組成の
第1発明のはんだ材に生成される二元化合物である.ま
た、この金属間化合物は、MA一Me 一Pb−Sn−
AM (Au)系組成の場合にも、Ag (Au)を含
有しない二元化合物として生成さ,れることが多い.い
ずれの場合にも、はんだ付け後に熱で析出させることに
より、疲労強度を著しく高める.(1)の金属間化合物
の大きさは,3μ履以下のものが好ましい.通常0. 
 1〜luaのものが観察される.このとき0.1μ鵬
以下のものも存在するが、判別するのは難しくなる.こ
のように、はんだ付け後に熱で析出させた金属間化合物
は微細である.なお、マトリックスの粒子成長抑制をす
る際に、問題とならない程度ではあるが、金属間化合物
がごくわずかながら成長することがある.(1)の金属
間化合物は、二次相としてより好ましい.これは、本発
明の二次相の機能のほかにも、二次相自体の疲労強度が
高い、二次相とSn相・Pb相の接触面での強度が高い
、二次相の成長速度がそれ程大きくないと; 思われる
、固溶分からの析出速度または生成速度がそれほど大き
くなく、極微細な二次相から・順次適当な大きさの二次
相が形成されて粒子成長抑制機能を高めている、Sn相
・Pb相が若干成長してしまった場合にこの二次相もわ
ずかに成長して、Pb相の移動を抑止する効果を高める
などの付加的機能があるのではないかと推測される.(
 2 ) M @ − A g ( A u )型金属
間化合物;Sb−Ag.Bi−Ag,Sb−Au,Bl
−AU系金属間化合物. この金属間化合物は、第1発明のMA一Pb−Sn−A
g (Au)系組戒において、そのAg(Au)の一部
がMAと結合して生戒する二元系化合物である. この(2)の金属間化合物の大きさは、3μ一以下とす
ると好ましい、通常0.1〜1μ一の大きさのものが観
察される. またMa −Me 一Pb−Sn−Ag (Au)系組
成においては、(1)の化合物も存在し、(2)の化合
物も存在することが多い.したがって、この組成におい
てはAg (Au)は《1》の金属間化合物の一部に取
り込まれるよりもMAと結合する傾向が大である.この
(1)と(2)の金属間化合物が併存により疲労強度は
,(l)の金属間化合物のみが生成する場合よりも高め
られる傾向にある. (3)Ma −Ag (Au)型金属間化合物:In−
Ag1Ga−Ag,In−Au1Ga−AU系金属間化
合物. この金属間化合物は、M a − P b − S n
 − Ag系組成において、そのAgの一部がM&と結
合して生成する二元系化合物である.しかしながら、こ
の化合物の生成傾向は《2》の金属間化合物よりも弱く
、《2)の金属間化合物は生成されても(3)は生成さ
れないこともある.ここで、金属間化合物の生成傾向と
は、本発明組成の上限と下限の近傍を除いた成分含有量
において、優先的にはんだ中に生成する金属間化合物の
傾向の意味で説明している.したがって、組或が上限や
下限近傍の場合は、ここで説明している生成傾向とは異
なった優先順位で金属間化合物が生成される.(3)の
金属間化合物はAg (Au)の含有量および/または
Snの含有量が高い時に生成されやすい.(3)の金属
間化合物の大きさは通常0.1〜lμ■で観察される. ( 4 ) M m − S n − A g ( A
 u )型金属間化合物: Sb−Sn−Ag (Au),Bi−Sn−Ag (A
u)系金属間化合物. この金属間化合物は、第1発明のMA−Pb−Sn系組
或にAg (Au)を添加した組成において、Agと、
MAと、マトリックスのSnの一部が結合して生成する
化合物、およびAuと、MAと、マトリックスのSnの
一部が結合して生戒する化合物である.この化合物は三
元化合物であるかあるいはSn−Ag (Au)二元化
合物゜にMAが固溶したものの何れかである. ゜この金属間化合物の生成傾向は(3)よりは強く(2
)とほぼ同等である. (5)Ma −Sn−Ag (Au)型金属間化合物: In−Sn−Ag  (Au)*  Ga−Sn−Ag
 (Au)系金属間化合物に該当する.この金属間化合
物は(4)のM−がM1に置き換わったものに該当する
.上記(4)の説明のMAをMAに読み替えると理解し
やすい.(6)MAMl −Ag (Au)型金属間化
合物: Sb−In−Ag  (Au),Sb−Ga −Ag 
 (Au),Bi−In−Ag  (Au),  Bi
−Ga−Ag (Au)系金属間化合物.この金属間化
合物は、第1発明の全添加元素を含む化合物である. (1)のMA MB型、(2)のMA  Ag型金属間
化合物よりも生成傾向が弱く、Ag含有量が極めて多い
時にのみ生成される場合がある.この化合物が生成傾向
が弱い理由は、マトリックス成分に比べて、濃度が希薄
な添加元素相互の反応は起こり難いことと、化合物の組
成が複雑であるために本来生成し難いことによると推察
される. なお、同様に希薄濃度元素より構成される化合物であっ
ても、(1)のように組成が単純な化合物は生成傾向は
高い. 上記(1)〜{6)は,単独の形態で二次相として存在
することもあるが、添加元素の種類が多くなると併存す
ることもある.全体として、併存させた場合のほうが耐
疲労性能は高くなる傾向にある.また、これらの析出し
た二次相は,はんだ付け後の熱により、Sn相やPb相
の結晶粒界に結果として大半が存在する形態となってい
る.析出した二次相のうち、結晶粒界に存在する割合は
60%以上とするとよい.好ましくは、70%以上、よ
り好ましくは80%以上、さらに好ましくは90%以上
である.使用環境で80〜100℃になることがあり、
その環境に長期にさらされる場合には、存在する割合を
60数%程度以上にすることができる.低温熱処理を行
なえば、80〜95%程度まで容易に゛制御することも
できる.そのような温度にさらされない場合においては
、この低温熱処理を組合せて改善することもできる. (7)Ag−Sn型金属間化合物 この金属間化合物は単独の存在では前述のように疲労強
度を高めないが,生成傾向はかなり強く、Pb−Sn−
Ag系はんだ材でも生成している. 前述のように従来のPb−Sn−Agはんだでは、はん
だ付け直後から長時間使用後までの組織を観察してみる
と、Ag−Sn金属間化合物が結晶粒界・粒内にランダ
ムに存在し、使用時の熱によりこの金属間化合物自身が
再固溶するとともにPb相やSn相の粒界に対し殆ど影
響せず粗大な結晶に成長する.またAg−Sn金属間化
合物が移動或長ずる場合もある.このためこのような形
態での単独で存在したAg−Sn金属間化合物は、Pb
粒のグローイング現象に対し結晶粒成長抑制効果は認め
られない. ところが、上記(1)〜(6)の金属間化合物と併存さ
せると、はんだの耐疲労性がさらに向上する. これは、上記(1) 〜(6)がSn相−Pb相の粒子
成長抑制効果をベースに、Ag−Sn金属間化合物その
ものの粒子の移動成長がある場合にその移動をビン止め
効果により抑制する,移動成長時に上記(1)〜(6)
がAgを吸収して新たな二次相として構成されるか析出
して一種の緩衝物的効果により移動・成長を抑制する,
この緩衝物的効果により、Sn相・Pb相の移動・成長
を抑える二次相のピン止め効果のミクロ的作用範囲を実
質的に拡げる.移動抑制されたAg−Sn金属間化合物
の析出物がマトリックス中に熱で再固溶されてしまうま
でのわずかな時間のみではあるが、Sn相・Pb相の粒
子成長に対して補助的なビン止め効果をするなどの作用
機構が考えられる。
Although it is necessary for the dispersed secondary phase to exist mostly at the grain boundaries of the matrix phase in order to obtain a high grain growth suppressing effect, it is not necessary for the dispersed secondary phase to precipitate at the grain boundaries from the beginning; As a result of the stopping effect, it only needs to exist at grain boundaries. In the present invention, a phase that satisfies these properties is referred to as a secondary phase. A specific example of the above secondary phase will be explained below. (1) Ma Ms type intermetallic compound; Sb-In, Sb-Ga, Bi-In, Bi-Ga type intermetallic compound. This intermetallic compound is a binary compound generated in the solder material of the first invention having an MA-MA-Pb-Sn composition. Moreover, this intermetallic compound is MA-Me-Pb-Sn-
Even in the case of an AM (Au) based composition, it is often produced as a binary compound that does not contain Ag (Au). In either case, thermal precipitation after soldering significantly increases fatigue strength. The size of the intermetallic compound (1) is preferably 3 μm or less. Usually 0.
1 to lua are observed. At this time, there are also cases of less than 0.1μ, but it is difficult to distinguish. In this way, the intermetallic compounds precipitated by heat after soldering are fine. Furthermore, when suppressing matrix particle growth, intermetallic compounds may grow to a very small extent, although this is not a problem. The intermetallic compound (1) is more preferable as a secondary phase. This is because, in addition to the functions of the secondary phase of the present invention, the fatigue strength of the secondary phase itself is high, the strength at the interface between the secondary phase and the Sn phase/Pb phase is high, and the growth rate of the secondary phase is high. It seems that the precipitation rate or formation rate from the solid solution is not so large, and secondary phases of appropriate size are formed sequentially from extremely fine secondary phases to enhance the particle growth suppressing function. It is speculated that when the Sn and Pb phases grow slightly, this secondary phase also grows slightly and has an additional function, such as increasing the effect of inhibiting the movement of the Pb phase. It will be done. (
2) M@-Ag (Au) type intermetallic compound; Sb-Ag. Bi-Ag, Sb-Au, Bl
-AU-based intermetallic compound. This intermetallic compound is MA-Pb-Sn-A of the first invention.
In the g(Au)-based compound, a part of the Ag(Au) is a binary compound that combines with MA and becomes active. The size of the intermetallic compound (2) is preferably 3 μm or less, and a size of 0.1 to 1 μm is usually observed. Furthermore, in the Ma-Me-Pb-Sn-Ag (Au) system composition, the compound (1) also exists, and the compound (2) often also exists. Therefore, in this composition, Ag (Au) has a greater tendency to combine with MA than to be incorporated into a part of the intermetallic compound of <<1>>. Due to the coexistence of these intermetallic compounds (1) and (2), the fatigue strength tends to be higher than when only the intermetallic compound (l) is formed. (3) Ma-Ag (Au) type intermetallic compound: In-
Ag1Ga-Ag, In-Au1Ga-AU intermetallic compound. This intermetallic compound is M a - P b - S n
- In an Ag-based composition, a part of Ag is a binary compound formed by combining with M&. However, the tendency of this compound to form is weaker than that of the intermetallic compound <<2>>, and even if the intermetallic compound <<2>> is formed, the intermetallic compound (3) may not be formed. The tendency of intermetallic compounds to form here is defined as the tendency of intermetallic compounds to form preferentially in the solder at component contents excluding those near the upper and lower limits of the composition of the present invention. Therefore, when the composition is near the upper or lower limit, intermetallic compounds are generated with a different priority order from the generation tendency described here. The intermetallic compound (3) is likely to be formed when the content of Ag (Au) and/or the content of Sn is high. The size of the intermetallic compound (3) is usually observed to be 0.1 to lμ■. (4) Mm-Sn-Ag(A
u ) type intermetallic compounds: Sb-Sn-Ag (Au), Bi-Sn-Ag (A
u) Intermetallic compounds. This intermetallic compound has a composition in which Ag (Au) is added to the MA-Pb-Sn system composition of the first invention, and
A compound is produced by the combination of MA and a portion of Sn in the matrix, and a compound is produced by the combination of Au, MA, and a portion of the Sn in the matrix. This compound is either a ternary compound or a solid solution of MA in a Sn-Ag (Au) binary compound.゜This tendency to form intermetallic compounds is stronger than (3) (2).
) is almost equivalent to (5) Ma-Sn-Ag (Au) type intermetallic compound: In-Sn-Ag (Au)* Ga-Sn-Ag
It corresponds to (Au)-based intermetallic compounds. This intermetallic compound corresponds to (4) in which M- is replaced with M1. It is easier to understand if you read MA in the explanation in (4) above as MA. (6) MAMl -Ag (Au) type intermetallic compound: Sb-In-Ag (Au), Sb-Ga -Ag
(Au), Bi-In-Ag (Au), Bi
-Ga-Ag (Au) based intermetallic compound. This intermetallic compound is a compound containing all the additive elements of the first invention. It has a weaker tendency to form than the MA MB type (1) and the MA Ag type intermetallic compounds (2), and may be formed only when the Ag content is extremely high. The reason why this compound has a weak tendency to form is thought to be because it is difficult for additive elements to react with each other because they are diluted in concentration compared to matrix components, and because the composition of the compound is complex, it is inherently difficult to form. .. Similarly, even if the compound is composed of diluted elements, a compound with a simple composition like (1) has a high tendency to form. The above (1) to {6) may exist in a single form as a secondary phase, but they may coexist if there are many types of added elements. Overall, fatigue resistance performance tends to be higher when they coexist. Moreover, most of these precipitated secondary phases exist at the grain boundaries of the Sn phase and Pb phase due to the heat generated after soldering. The proportion of the precipitated secondary phase existing at grain boundaries is preferably 60% or more. Preferably, it is 70% or more, more preferably 80% or more, and still more preferably 90% or more. The operating environment may reach temperatures of 80 to 100 degrees Celsius.
If exposed to that environment for a long period of time, the proportion can increase to about 60% or more. If low-temperature heat treatment is performed, it can be easily controlled to about 80-95%. In cases where exposure to such temperatures is not possible, improvements can be made by combining this low-temperature heat treatment. (7) Ag-Sn type intermetallic compound Although this intermetallic compound does not increase fatigue strength when present alone, it has a fairly strong tendency to form, and Pb-Sn-
It also occurs with Ag-based solder materials. As mentioned above, when observing the structure of conventional Pb-Sn-Ag solder from immediately after soldering to after long-term use, it is found that Ag-Sn intermetallic compounds exist randomly at grain boundaries and inside grains. The intermetallic compound itself re-dissolves into solid solution due to the heat during use, and grows into coarse crystals with almost no effect on the grain boundaries of the Pb phase and Sn phase. In addition, the Ag-Sn intermetallic compound may move or lengthen. Therefore, the Ag-Sn intermetallic compound that existed alone in this form is Pb
No grain growth inhibitory effect was observed on the grain glowing phenomenon. However, when it coexists with the intermetallic compounds (1) to (6) above, the fatigue resistance of the solder is further improved. This is because (1) to (6) above are based on the particle growth suppressing effect of the Sn phase-Pb phase, and when there is movement and growth of the particles of the Ag-Sn intermetallic compound itself, the movement is suppressed by the bottling effect. (1) to (6) above during mobile growth.
absorbs Ag and forms or precipitates as a new secondary phase, suppressing migration and growth by a kind of buffering effect.
This buffering effect substantially expands the microscopic range of action of the secondary phase pinning effect that suppresses the movement and growth of the Sn and Pb phases. Although it is only for a short time until the precipitates of the Ag-Sn intermetallic compound whose movement is suppressed are re-dissolved into the matrix by heat, it becomes an auxiliary bottle for the grain growth of the Sn phase and Pb phase. Possible mechanisms of action include a stopping effect.

なお、この金属間化合物もはんだ付時点に多量に生成す
ると、Agが(7)の生成に消費され、二次相の生或を
阻害したり,上記(1)〜(6)の二次相が析出しても
補完しきれなくなったりするので特に留意が必要である
. また、この(7)については、低温熱処理でもSn相や
Pb相の結晶粒界に選択的に存在させることは困難であ
った. (8)Al−Sb金属間化合物 この金属間化合物は第2発明および第4発明のはんだ材
で生成される.この金属間化合物の寸法は通常1〜5μ
mである. この二次相も、はんだ付け後の熱により、Sn相やPb
相の結晶粒界に結果として大半が存在する形態とできる
. (9)Al単相 第3発明では、金属間化合物が析出せず、Al相が生成
される.また第4発明でもAl相が生成される場合があ
る. 上記(8)のようにsbが存在しているとAlはこれと
金属間化合物を作るが、AlはSn,Pbとは金属間化
合物を作らず、過飽和に固溶していたAlがSnマトリ
ックス相から金属結晶として分離する.このように分離
されたAt相は形態的には(3)のような金属間化合物
の析出物の二次相と類似しており、相の形態的分類から
マトリックス相ではなく、二次相に属する.また、Al
単層(9)がマトリックス相の結晶粒成長を抑制するの
は性質が金属間化合物と類似しているからである.すな
わち、(9)はマトリックス相より微細に析出しかつ結
晶成長し難く、この点で金属間化合物と同じような効果
をもつ.また、(9)はマトリックス相から析出したも
のであり、再固溶されない点でも金属間化合物と同じよ
うな効果をもつ.よって、(9)はマトリックス相の粒
界に存在してその移動を妨げる.単独かつAlが比較的
安価であり、析出物の大きさの制御もある面でし易い場
合もあるが、効果の点およびはんだ付けのし易さやマト
リックスへの固溶量等の観点から上記(1)〜(6)の
タイプを選択する方が好ましい. 続いて、第1発明の組成につき、金属間化合物のどの種
類が実際に生成されるかを、まず、S n − P b
 − S b − I n四元素組或に例をとって説明
する.この組成では、マトリックス相は、Sn相とPb
相であり、二次相は(1)の金属間化合物相となった.
そして、この二次相の多くはSn相・Pb相の結晶粒界
に存在している.次に, S n−P b−S b −
 r n−A g五元素組成では、マトリックス相は、
Sn相とPb相であり、二次相として存在する可能性が
ある金属間化合物は(1)〜(7)の7種類である.A
gの含有量が少ない時は、(1)の金属間化合物のみが
二次相として分散する3相組織になるが、Agの含有量
が多くなると、AgはMA,MAの一方または両方と反
応し、かつ一部がSnとも反応する.そして、配合され
る組成により、(1)〜(6)から選ばれた1つまたは
複数の金属間化合物が存在することとなる.もちろんA
gの含有量を多くすると(7)も相対的に多くなる傾向
となる. (1)はMaとMAを所定量以上添加すればよい.一方
、(2),(4)を特に生成させたい場合はMAを多<
MAを少なくするか配合しないようにすればよい,(3
).(5)を特に生或させたい場合はM1を多くMAを
少なくするか配合しないようにすればよい.(4).(
5)を特に生成させたい場合はPb量を少なくし残部の
Sn量を相対的に多くするように配合すると生戒されや
すい傾向にある. なお、はんだはもともと鋳造したままの、均質化等の熱
処理を経ていない偏析が多い合金であり、はんだ接合部
品は、使用濃度の最高100℃前後の温度で各或分が局
部的に反応している準安定状態であるから、実際には平
衡状態図の理論で予測できるものとは異なる二次相が併
存して作られることもある. 最後に熱処理について述べるが、熱処理は静的機械的性
質を向上するので、基礎的な耐疲労性を改善し得る.電
子部品を実装した印刷基板のはんだ付け部品で、はんだ
のみを高温熱処理の温度にさらすことは実際上は困難で
あり、また、電子部品の熱影響が懸念される.このため
、低温熱処理により印刷基板のはんだの耐疲労性を改善
するようにすればよい.例えば、80〜120℃といっ
た低温で5〜6時間という比較的長い時間で低温熱処理
を行なう.このようにすると、二次相の一部が製品出荷
時にある程度形成されることとなり、基礎的な総合特性
が良好となる一方、未析出の固溶分も残存することとな
り好ましい.なお、高温で急冷してしまうと二次相とし
ては実質的に固溶したままとなり、はんだ付け時点の状
態にもどるだけであり、電子部品等へ熱影響を与えるだ
けとなって、実質的に熱処理をする意味がなくなってし
まう. さらに、あまり長時間の熱処理を行なうと単に生産性が
低下するのみならず、実際に使用する前にはんだ中のS
n相やPb相が粗大化してしまうこともあり、疲労寿命
を短くすることに継がるため好ましくない. (実施例) 以下、実施例により本発明をさらに詳しく説明する. 疲労試験は、第3図に示すフェノール樹脂基板5と、そ
の一面に形成されたIRW3よりなるランド部6を貫通
するリードII7とを,はんだ付した試験片を用いて行
なった.試験方法は、リード線に疲労試験機で、繰返周
波数20Hz (片振り)、温度(80℃、一定)の条
件で引張荷重をかけ、クラックが発生したときの繰返し
数を疲労寿命として求める方法で行なった.なお,クラ
ックは第4図に9で示すようにはんだ内に発生していた
. ここで、耐疲労値は、この測定条件で得られた37%P
b−Snはんだの疲労寿命(1x106)を耐疲労値l
としたときの相対値である. 次表に、供試材の組成、耐疲労値、および二次相(金属
間化合物等)の型を示す. 第5図は供試材2のはんだ付ヌ後の電子顕微鏡写真(倍
率5000倍)である.白い部分がPb結晶粒、灰色の
部分がSn結晶粒である.この供試材のEPMA分析結
果では、Pb,Sn,Sb,In,Agのいずれも均一
に分布しており、したがって、第5図に見られる組織は
固溶体組織であることを確認できた. 第6図は供試材2の試験後の電子顕微鏡写真(倍率50
00倍)である.暗色のSn結晶粒の粒界や灰色のPb
結晶粒の粒界に析出物が認められる.第7図および第8
図は、それぞれ試験後の、sbとInのEPMA分析に
よる原子の反射像を示す.これらの元素が高濃度で存在
する位置が相互に一致していることが分かる.したがっ
て、これらの元素は金属間化合物として存在しているこ
とがわかった.同様のEPMA分析をSn,Agについ
ても行い高濃度存在位置を調べた.局部的存在位置が一
致する元素は次のようであった.:Sb−InHSb−
AgHSb−Sn−Ag;In−Sn−Ag. 同様に、供試材2のはんだ材をはんだ付けした後に、8
0℃(5時間)の低温熱処理をし、大気中に取りだし徐
冷を行なった.同様のEPMA分析をしたところ、結果
は同様のものが得られた.この低温熱処理品に耐疲労性
も、従来のはんだ材より優れていた. (発明の効果) 本発明によれば、はんだ材が例えば自動車に搭載される
印刷基板のようにマイナス数十℃からプラス百数十℃の
低温から高温までの過酷な条件で使用される場合におい
ても、従来のはんだ材のようにクラックが発生すること
なく、長期間安定して使用可能であり,はんだろう接部
の信頼性が向上する.
If this intermetallic compound is also generated in large quantities during soldering, Ag will be consumed in the formation of (7), inhibiting the formation of the secondary phase, or inhibiting the formation of the secondary phases of (1) to (6) above. Particular attention must be paid to the fact that even if the Moreover, regarding this (7), it was difficult to make it exist selectively at the grain boundaries of the Sn phase and Pb phase even with low-temperature heat treatment. (8) Al-Sb intermetallic compound This intermetallic compound is produced in the solder materials of the second and fourth inventions. The size of this intermetallic compound is usually 1-5μ
It is m. This secondary phase also becomes Sn phase and Pb phase due to the heat after soldering.
As a result, most of the phase exists at the grain boundaries of the phase. (9) In the third invention with a single Al phase, intermetallic compounds do not precipitate and an Al phase is generated. Also, in the fourth invention, an Al phase may be generated. As mentioned in (8) above, when sb exists, Al forms an intermetallic compound with it, but Al does not form an intermetallic compound with Sn and Pb, and the supersaturated solid solution of Al forms an intermetallic compound with Sn and Pb. Separates from the phase as metal crystals. The At phase separated in this way is morphologically similar to the secondary phase of intermetallic compound precipitates as shown in (3), and the morphological classification of the phases indicates that it is not a matrix phase but a secondary phase. Belong. Also, Al
The reason why the single layer (9) suppresses the grain growth of the matrix phase is because its properties are similar to those of intermetallic compounds. In other words, (9) precipitates finer than the matrix phase and is less likely to grow as a crystal, and in this respect has the same effect as an intermetallic compound. In addition, (9) is precipitated from the matrix phase and has the same effect as an intermetallic compound in that it is not re-dissolved. Therefore, (9) exists at the grain boundaries of the matrix phase and prevents its movement. Although Al alone is relatively inexpensive and the size of precipitates can be easily controlled in some respects, from the viewpoint of effectiveness, ease of soldering, amount of solid solution in the matrix, etc. It is preferable to select types 1) to (6). Next, with respect to the composition of the first invention, which type of intermetallic compound is actually produced is first determined by S n - P b
- S b - In The four-element set will be explained using an example. In this composition, the matrix phase is Sn phase and Pb
The secondary phase was the intermetallic compound phase (1).
Most of these secondary phases exist at the grain boundaries of the Sn phase and Pb phase. Next, S n-P b- S b -
In the r n-A g five-element composition, the matrix phase is
There are seven types of intermetallic compounds (1) to (7), which are the Sn phase and the Pb phase, and may exist as secondary phases. A
When the content of Ag is low, a three-phase structure exists in which only the intermetallic compound (1) is dispersed as a secondary phase, but when the content of Ag is high, Ag reacts with MA, one or both of MA. And a part of it also reacts with Sn. Depending on the blended composition, one or more intermetallic compounds selected from (1) to (6) will be present. Of course A
As the g content increases, (7) also tends to increase relatively. For (1), Ma and MA should be added in a predetermined amount or more. On the other hand, if you particularly want to generate (2) and (4), increase the MA
All you have to do is reduce MA or not mix it (3
). If (5) is particularly desired to be produced, it is sufficient to increase M1 and decrease MA or omit it. (4). (
If you particularly want to generate 5), you tend to be careful if you reduce the amount of Pb and relatively increase the amount of remaining Sn. Note that solder is an alloy with a lot of segregation and has not undergone heat treatment such as homogenization as it was originally cast.In solder joint parts, each component may react locally at a maximum temperature of around 100°C, which is the maximum concentration used. Because it is a metastable state, in reality, secondary phases different from those predicted by the theory of equilibrium phase diagrams may coexist and be created. Finally, we will talk about heat treatment. Heat treatment improves static mechanical properties, so it can improve basic fatigue resistance. It is practically difficult to expose only the solder to high-temperature heat treatment for soldered parts of printed circuit boards with electronic components mounted, and there is also concern about the effects of heat on the electronic components. Therefore, the fatigue resistance of printed circuit board solder can be improved by low-temperature heat treatment. For example, low-temperature heat treatment is performed at a low temperature of 80 to 120°C for a relatively long time of 5 to 6 hours. In this case, a part of the secondary phase will be formed to some extent at the time of product shipment, and the basic overall properties will be good, while unprecipitated solid solution will also remain, which is preferable. Note that if the secondary phase is rapidly cooled at a high temperature, it will essentially remain in solid solution and will only return to its state at the time of soldering, which will only have a thermal effect on electronic components, etc. There is no point in heat treatment. Furthermore, if heat treatment is carried out for an excessively long time, not only will productivity be reduced, but also the S content in the solder will be
This is undesirable because the n-phase and Pb phase may become coarse, which leads to a shortened fatigue life. (Examples) The present invention will now be explained in more detail with reference to Examples. The fatigue test was conducted using a test piece in which a phenolic resin substrate 5 shown in FIG. 3 and a lead II 7 that penetrates a land portion 6 made of IRW 3 formed on one surface of the substrate were soldered. The test method is to apply a tensile load to the lead wire using a fatigue testing machine at a repetition rate of 20 Hz (one-sided swing) and a constant temperature of 80°C, and calculate the number of repetitions until a crack occurs as the fatigue life. I did it with Note that cracks had occurred within the solder as shown by 9 in Figure 4. Here, the fatigue resistance value is 37%P obtained under these measurement conditions.
The fatigue life (1x106) of b-Sn solder is the fatigue resistance value l
This is the relative value when . The following table shows the composition, fatigue resistance value, and type of secondary phases (intermetallic compounds, etc.) of the test materials. Figure 5 is an electron micrograph (5000x magnification) of sample material 2 after soldering. The white parts are Pb crystal grains, and the gray parts are Sn crystal grains. The EPMA analysis results of this sample material showed that Pb, Sn, Sb, In, and Ag were all uniformly distributed, and it was therefore confirmed that the structure shown in Figure 5 was a solid solution structure. Figure 6 is an electron micrograph of sample material 2 after the test (magnification: 50
00 times). Grain boundaries of dark Sn crystal grains and gray Pb
Precipitates are observed at grain boundaries. Figures 7 and 8
The figure shows the atomic reflection images of sb and In obtained by EPMA analysis after each test. It can be seen that the locations where these elements are present in high concentrations are consistent with each other. Therefore, these elements were found to exist as intermetallic compounds. Similar EPMA analysis was also performed for Sn and Ag to investigate the locations where high concentrations were present. The elements whose local locations coincided were as follows. :Sb-InHSb-
AgHSb-Sn-Ag; In-Sn-Ag. Similarly, after soldering the solder material of sample material 2,
It was subjected to low-temperature heat treatment at 0°C (5 hours), then taken out into the atmosphere and slowly cooled. When similar EPMA analysis was performed, similar results were obtained. The fatigue resistance of this low-temperature heat-treated product was also superior to that of conventional solder materials. (Effects of the Invention) According to the present invention, when solder materials are used under harsh conditions ranging from low temperatures of minus several tens of degrees Celsius to plus hundreds of degrees Celsius, such as printed circuit boards mounted on automobiles, for example, It can also be used stably for a long time without cracking like conventional solder materials, improving the reliability of solder joints.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(A)は本発明のはんだ材のはんだ付後の組織を
模式的に示す図、 第1図(B)は使用後の組織を模式的に示す図、 第2図(A)は従来のはんだ材のはんだ付後の組織を模
式的に示す図、 第2図(B)は使用後の組織を模式的に示す図、 第3図は耐疲労性試験に供した試験片の図面、 第4図は耐疲労性試験におけるクラツク発生部を示す試
験片の図面である. 第5図は供試材2のはんだ付直後の金属組織を示す電子
顕微鏡写真(倍率5000倍)、第6図は供試材2の試
験後の金属組織を示す電子顕微鏡写真(倍率3500倍
)、 第7図、および第8図は、それぞれ試験後の、sbとI
nのEPMA分析による原子の反射像を示し、sbとI
nの局在組織を示す金属組織写真である. 1−Pb結晶、2−Sn結晶、3−二次相、5一基板、
6−ランド部、7−リード線、8−はんだ、9−クラッ
ク 第1図(A) 第1図(B) 第2図(A) 2 第2図(B)
FIG. 1(A) is a diagram schematically showing the structure of the solder material of the present invention after soldering, FIG. 1(B) is a diagram schematically showing the structure after use, and FIG. 2(A) is a diagram schematically showing the structure after soldering of the solder material of the present invention. A diagram schematically showing the structure of a conventional solder material after soldering. Figure 2 (B) is a diagram schematically showing the structure after use. Figure 3 is a diagram of a test piece subjected to a fatigue resistance test. , Figure 4 is a drawing of a test piece showing the crack occurrence area in the fatigue resistance test. Figure 5 is an electron micrograph (5000x magnification) showing the metallographic structure of sample material 2 immediately after soldering, and Figure 6 is an electron micrograph (3500x magnification) showing the metallographic structure of sample material 2 after testing. , Fig. 7, and Fig. 8 show the sb and I after the test, respectively.
The atomic reflection image obtained by EPMA analysis of n is shown, and sb and I
This is a metallographic photograph showing the localized structure of n. 1-Pb crystal, 2-Sn crystal, 3-secondary phase, 5-substrate,
6-Land, 7-Lead wire, 8-Solder, 9-Crack Figure 1 (A) Figure 1 (B) Figure 2 (A) 2 Figure 2 (B)

Claims (1)

【特許請求の範囲】 1、重量百分率で、[1]M_A(但し、In_1Ga
の少なくとも1種)0.01〜10%、[2]M_B(
但し、Sb、Biの少なくとも1種)0.01〜8%、
および[3]AgおよびAuの少なくとも1種0.01
〜10%からなる群[1]〜[3]の少なくとも2種と
、Pb10〜95%と、残部(0%を除く)Snとから
実質的にからなり、はんだ付状態では実質的に固溶体で
あり、はんだ付後に析出させた前記M_Aおよび/また
はM_Bを含むもしくはM_Aおよび/またはM_Bか
らなる二次相が主としてPb結晶粒およびSn結晶粒の
粒界に存在しており、耐疲労性が優れていることを特徴
とするはんだ材。 2、重量百分率でSb0.01〜3%、Al0.01〜
2%、Pb10〜95%、残部(0%を除く)からSn
から実質的になり、はんだ付状態では実質的に固溶体で
あり、はんだ付後に析出させたAl−Sb系金属間化合
物の二次相が主としてPb結晶粒およびSn結晶粒の粒
界に存在しており、耐疲労性が優れていることを特徴と
するはんだ材。 3、重量百分率でAl0.01〜2%、Pb10〜95
%、残部(0%を除く)からSnから実質的になり、は
んだ付状態では実質的に固溶体であり、はんだ付後に析
出させたAl二次相が主としてPb結晶粒およびSn結
晶粒の粒界に存在しており、耐疲労性が優れていること
を特徴とするはんだ材。 4、重量百分率でAgおよびAuの少なくとも1種を0
.01〜10%さらに含有することを特徴する請求項2
または3記載のはんだ材。
[Claims] 1. In weight percentage, [1]M_A (However, In_1Ga
at least one kind of) 0.01 to 10%, [2]M_B(
However, at least one of Sb and Bi) 0.01 to 8%,
and [3] At least one of Ag and Au 0.01
It consists essentially of at least two of the groups [1] to [3] consisting of ~10%, Pb10~95%, and the balance (excluding 0%) Sn, and is substantially in a solid solution in the soldered state. The secondary phase containing M_A and/or M_B or consisting of M_A and/or M_B precipitated after soldering exists mainly at the grain boundaries of Pb crystal grains and Sn crystal grains, and has excellent fatigue resistance. A solder material characterized by: 2. Sb0.01-3%, Al0.01-3% by weight
2%, Pb10-95%, balance (excluding 0%) to Sn
It is essentially a solid solution in the soldered state, and the secondary phase of the Al-Sb intermetallic compound precipitated after soldering is mainly present at the grain boundaries of Pb crystal grains and Sn crystal grains. A solder material characterized by excellent fatigue resistance. 3. Al0.01-2%, Pb10-95 in weight percentage
%, the remainder (excluding 0%) is essentially Sn, and is substantially a solid solution in the soldered state, and the Al secondary phase precipitated after soldering mainly forms the grain boundaries of Pb crystal grains and Sn crystal grains. A solder material characterized by excellent fatigue resistance. 4. At least one of Ag and Au in weight percentage is 0
.. Claim 2 characterized in that it further contains 01 to 10%.
Or the solder material described in 3.
JP23883789A 1989-09-14 1989-09-14 Solder that forms the joint with soldered parts Expired - Lifetime JP2812367B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23883789A JP2812367B2 (en) 1989-09-14 1989-09-14 Solder that forms the joint with soldered parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23883789A JP2812367B2 (en) 1989-09-14 1989-09-14 Solder that forms the joint with soldered parts

Publications (2)

Publication Number Publication Date
JPH03106591A true JPH03106591A (en) 1991-05-07
JP2812367B2 JP2812367B2 (en) 1998-10-22

Family

ID=17036014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23883789A Expired - Lifetime JP2812367B2 (en) 1989-09-14 1989-09-14 Solder that forms the joint with soldered parts

Country Status (1)

Country Link
JP (1) JP2812367B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05237687A (en) * 1991-10-28 1993-09-17 Hughes Aircraft Co Eutectic solder improved in resistance to fatigue
JPH08132278A (en) * 1994-11-01 1996-05-28 Ishikawa Kinzoku Kk Solder alloy
JPH09115957A (en) * 1995-10-18 1997-05-02 Sanken Electric Co Ltd Electronic component and manufacture of electronic circuit device using electronic component
US5690890A (en) * 1993-11-09 1997-11-25 Matsushita Electric Industrial Co., Ltd. Solder
CN104511699A (en) * 2013-09-29 2015-04-15 温兴乐 Low-lead solder
JP2020136331A (en) * 2019-02-14 2020-08-31 株式会社日産アーク Semiconductor device and manufacturing method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05237687A (en) * 1991-10-28 1993-09-17 Hughes Aircraft Co Eutectic solder improved in resistance to fatigue
US5308578A (en) * 1991-10-28 1994-05-03 Hughes Aircraft Company Fatigue resistant lead-tin eutectic solder
US5690890A (en) * 1993-11-09 1997-11-25 Matsushita Electric Industrial Co., Ltd. Solder
JPH08132278A (en) * 1994-11-01 1996-05-28 Ishikawa Kinzoku Kk Solder alloy
JPH09115957A (en) * 1995-10-18 1997-05-02 Sanken Electric Co Ltd Electronic component and manufacture of electronic circuit device using electronic component
CN104511699A (en) * 2013-09-29 2015-04-15 温兴乐 Low-lead solder
JP2020136331A (en) * 2019-02-14 2020-08-31 株式会社日産アーク Semiconductor device and manufacturing method thereof

Also Published As

Publication number Publication date
JP2812367B2 (en) 1998-10-22

Similar Documents

Publication Publication Date Title
US20100084050A1 (en) Lead-Free Solder with Improved Properties at Temperatures &gt;150°C
EP0985486B1 (en) Leadless solder
JP6624322B1 (en) Solder alloy, solder ball, solder preform, solder paste and solder joint
JP4770733B2 (en) Solder and mounted products using it
JP4613823B2 (en) Solder paste and printed circuit board
JP3761678B2 (en) Tin-containing lead-free solder alloy, cream solder thereof, and manufacturing method thereof
US20170225277A1 (en) Lead-free solder alloy composition and method for preparing lead-free solder alloy
JP6751250B1 (en) Solder alloy, solder paste, solder preform and solder joint
WO2016059744A1 (en) Lead-free soldering method and soldered article
KR102672970B1 (en) Solder alloy, solder ball, solder paste and solder joint
JPH03106591A (en) Solder material
JP2543941B2 (en) Solder material
US10307868B2 (en) Solder alloy
US20180105899A1 (en) Solder alloy
US5487868A (en) Tin based solder alloy containing lead, antimony, and tellurium
JP2910527B2 (en) High temperature solder
JP2019155466A (en) Solder alloy and on-vehicle electronic circuit
JPH0332487A (en) Soldering material
JP2017217693A (en) Lead-free solder alloy
JPH115189A (en) Soldering material for package of high density semiconductor
JP2002346788A (en) Tin-silver based solder alloy

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080807

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080807

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090807

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100807

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100807

Year of fee payment: 12