JPH03106507A - Control method for flatness of rolling mill - Google Patents

Control method for flatness of rolling mill

Info

Publication number
JPH03106507A
JPH03106507A JP1245742A JP24574289A JPH03106507A JP H03106507 A JPH03106507 A JP H03106507A JP 1245742 A JP1245742 A JP 1245742A JP 24574289 A JP24574289 A JP 24574289A JP H03106507 A JPH03106507 A JP H03106507A
Authority
JP
Japan
Prior art keywords
order
actuator
component
low
order component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1245742A
Other languages
Japanese (ja)
Other versions
JP2720542B2 (en
Inventor
Toshiya Oi
大井 俊哉
Katsuji Matsuo
松尾 勝次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP1245742A priority Critical patent/JP2720542B2/en
Publication of JPH03106507A publication Critical patent/JPH03106507A/en
Application granted granted Critical
Publication of JP2720542B2 publication Critical patent/JP2720542B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/28Control of flatness or profile during rolling of strip, sheets or plates

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)

Abstract

PURPOSE:To improve the control accuracy of flatness by extracting a single component in lower order with the use of a lower order single component extraction factor in the case of the output of an actuator for controlling a high order component reaching a saturated state and performing the control of a plate by only an actuator for control ling a lower order component. CONSTITUTION:The shape of a rolling stock is detected by detecting the tension distri bution in the width direction by each zone Z-P - ZP found in the width direction of the rolling stock. The detected values of each zone are respectively multiplied by prefound lower order component extraction factor and higher order component extrac tion factor, the respective total sums are found, and the lower order component extrac tion factor and higher order component extraction factor in plate shapes are extracted. In order to obtain the aiming plate shape based thereon, an actuator for controlling the lower order component of a roll shifter, etc., and actuator for controlling the high order component of a work roll bender, etc., are controlled. Also in the case of the output of the high order component controlling actuator being saturated, the lower order single component in place of the lower order and higher order components is extracted by using the lower order single component extraction factor to control the actuator for controlling the lower order component. The control accuracy of flatness can thus be improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は主にストリップの圧延機等においてストリップ
の平坦度を制御する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention mainly relates to a method for controlling the flatness of a strip in a strip rolling mill or the like.

(従来の技術〕 従来この種の平坦度を制御する方法は、種々提案されて
おり、例えば圧延中のストリップの幅方向に設定した複
数のゾーン毎に張力分布S,を測定し、これに重畳係数
W1を乗じた値の総和に基づいて形状制御に最適の放物
線形状(低次成分2次曲線)を決定し、これに基づいて
ロールベンダを制御すると共に残余成分(高次成分等)
については水、或いはその他の冷媒をストリップ表面に
スポット状に噴射するスポットクーラントを用いて修正
する方法(特公昭62−27882号公報)、或いは圧
延中、ストリップの形状を検出し、低次関数成分と高次
関数成分とに分解し、前者についてはロールシフタの操
作によって、また後者はワークロールベンダの操作によ
って夫々修正を行う方法等がある(特開昭62−230
412号公報)。
(Prior Art) Various methods have been proposed to control this type of flatness. For example, the tension distribution S, is measured for each of a plurality of zones set in the width direction of the strip being rolled, and the tension distribution S is superimposed on this. The optimal parabolic shape (low-order component quadratic curve) for shape control is determined based on the sum of the values multiplied by the coefficient W1, and the roll bender is controlled based on this, as well as residual components (high-order components, etc.)
This can be corrected by using a spot coolant that sprays water or other coolant onto the strip surface in spots (Japanese Patent Publication No. 62-27882), or by detecting the shape of the strip during rolling and detecting low-order function components. There is a method in which the former is corrected by operating a roll shifter, and the latter is corrected by operating a work roll bender (JP-A-62-230).
Publication No. 412).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで前者の方法にあっては低次成分についてはこれ
を抽出し、ロールシフタによって積極的な制御が行われ
るが、高次成分についてはこれを残余成分としてスポッ
トクーラントにより制御を行うこととしている。しかし
スポットクーラントによる高次成分の制御能力には限界
があり、十分な平坦度が得られない。
In the former method, low-order components are extracted and actively controlled by a roll shifter, but high-order components are treated as residual components and controlled by spot coolant. However, there is a limit to the ability of spot coolant to control higher-order components, and sufficient flatness cannot be obtained.

また後者の方法は、ストリップ形状の低次成分.高次成
分を分離して低次成分をロールシフタによって、また高
次成分をワークロールベンダで制御しているが、制御途
中で、例えばワークロールベンダ出力が飽和状態に達し
ても、ロールシフタとワークロールベンダとは独立に動
作しているためロールシフタは低次成分のみを対象とす
る制御を続行し、高次成分については制御されなくなる
という問題があった。
The latter method also uses low-order components of the strip shape. The high-order components are separated and the low-order components are controlled by a roll shifter, and the high-order components are controlled by a work roll bender. However, even if the work roll bender output reaches saturation during control, the roll shifter and work roll Since the roll shifter operates independently of the vendor, there is a problem in that the roll shifter continues to control only low-order components, and high-order components are no longer controlled.

本発明はかかる事情に鑑みなされたものであって、その
目的とするところは高次成分制御用アクチュエータの出
力が飽和状態に達すると板形状から低次単独成分を抽出
し、これに基づいて低次成分制御用アクチュエータを制
御する平坦度制御方法を提供するにある。
The present invention has been made in view of the above circumstances, and its purpose is to extract a low-order single component from the plate shape when the output of the actuator for high-order component control reaches a saturated state, and to reduce the An object of the present invention is to provide a flatness control method for controlling an actuator for controlling a next component.

〔課題を解決するための手段〕[Means to solve the problem]

本発明に係る平坦度制御方法は、圧延中、圧延材の幅方
向に定めた複数の各ゾーンで形状を検出し、各ゾーンの
形状検出値に予め求めた低次成分抽出因数及び高次成分
抽出因数を夫々乗じ、各その総和を求めて板形状の低次
成分及び高次成分を抽出し、これに基づいて目標とする
板形状を得べく低次成分制御用アクチュエータ.高次成
分制御用アクチュエータを制御し、また、高次成分制御
用アクチュエータの出力が飽和状態に達したときは前記
各ゾーンの形状検出値に予め求めた低次単独成分抽出因
数を乗じ、その総和を求めて前記低次成分及び高次成分
に代わる板形状の低次単独成分を抽出し、これに基づい
て低次成分制御用アクチュエータを制御することを特徴
とする。
The flatness control method according to the present invention detects the shape in each of a plurality of zones defined in the width direction of the rolled material during rolling, and adds predetermined low-order component extraction factors and high-order components to the shape detection value of each zone. The low-order components and high-order components of the plate shape are extracted by multiplying each extraction factor and calculating the sum of each, and based on this, the actuator for controlling the low-order components is used to obtain the target plate shape. The actuator for high-order component control is controlled, and when the output of the actuator for high-order component control reaches a saturated state, the shape detection value of each zone is multiplied by a predetermined low-order single component extraction factor, and the sum of the The present invention is characterized in that a plate-shaped low-order single component is extracted to replace the low-order component and high-order component, and the low-order component control actuator is controlled based on this.

〔作用〕[Effect]

本発明にあってはこれによって、高次成分制御用アクチ
ュエータの出力が飽和状態に達したとき予め求めてある
低次単独成分抽出因数を用いて低次成分,高次成分に代
わる低次単独成分を抽出し、これに基づいて低次成分制
御用アクチュエータのみによる平坦度制御が行われるこ
ととなる.〔実施例〕 以下、本発明をその実施例を示す図面に基づき具体的に
説明する。
According to the present invention, when the output of the high-order component control actuator reaches a saturated state, the low-order single component is replaced with the low-order component and the high-order component by using the predetermined low-order single component extraction factor. Based on this, flatness control is performed using only the low-order component control actuator. [Examples] Hereinafter, the present invention will be specifically explained based on drawings showing examples thereof.

第1図は本発明に係る圧延機の平坦度制御方法を実施す
る装置のブロック線図であり、図中1は、圧延中のスト
リップSTにおける幅方向に定めた各ゾーンZイ〜zp
に配されている形状センサA−,〜A,を示している(
2p+ t :板幅方向の形状センサ数)。これら形状
センサA − P − A pで検出した検出値は、低
次成分抽出部1l及び高次成分抽出部21へ出力される
。低次成分抽出部11は、前記各ゾーンZ−,〜ZP毎
の形状センサA1〜A,毎の検出植S,〜S,を個別に
乗算器E1〜E,に導き、該乗算器E−,〜E,におい
て各検出値31〜S,と複数の各設定器から人力される
低次成分抽出用の重畳囚数W−’l!),W古ミ1・・
w,′!2 ,W.り皆を乗算してこの各ゾーン2−,
−2,毎の乗算結果を加え合わせ点12で加算して板形
状の低次成分X(″1を求め、これを減算器13へ出力
するようになっている。前記乗算器E−p〜Epに繋が
る各設定器からの人力には、前述したW91  ・・・
等の低次成分抽出用の重畳因数の外に、低次単独成分抽
出用の重畳囚数w−’,” ,w−”H,・・・Wt’
!! + WVゝがあり、両者は夫々スイッチst+,
,,〜SW+,pによって選択的に乗li器E−,−E
Pに人力されるようになっている。各スイッチSW.,
一,〜sti.,,は圧延機の定常運転時には、低次成
分抽出用の重畳因数が、また高次成分制御用アクチュエ
ータであるワークロールベンダ等の出力が飽和状態に達
したときは、低次単独成分抽出用の重畳因数が乗算器E
 − P − E Pへ出力するように切替制御される
ようになっている。
FIG. 1 is a block diagram of an apparatus for carrying out the flatness control method for a rolling mill according to the present invention, and 1 in the figure indicates each zone Zi to Zp defined in the width direction of the strip ST during rolling.
It shows shape sensors A-, ~A, arranged in (
2p+t: Number of shape sensors in the board width direction). The detection values detected by these shape sensors A-P-Ap are output to the low-order component extraction section 1l and the high-order component extraction section 21. The low-order component extracting unit 11 individually guides the detected shapes S, ~S, for each shape sensor A1-A, for each zone Z-, ~ZP, to the multipliers E1-E, and the multiplier E- , ~E, each detected value 31~S, and the number of superimposed prisoners W-'l! for low-order component extraction manually input from each of a plurality of setters. ), W old model 1...
w,′! 2, W. Multiply all of these to give each zone 2−,
-2, multiplication results are added at an addition point 12 to obtain a plate-shaped low-order component X ("1", which is output to the subtracter 13. The above-mentioned W91...
In addition to the convolution factors for low-order component extraction such as
! ! +WVゝ, and both have switches st+, respectively.
,,~SW+,p selectively multipliers E-,-E
The work is now being done manually by P. Each switch SW. ,
1,~sti. ,, is the superposition factor for low-order component extraction during steady operation of the rolling mill, and the superposition factor for low-order single component extraction when the output of the work roll bender, etc., which is an actuator for controlling high-order components, reaches a saturated state. The convolution factor of multiplier E
Switching control is performed so that the output is output to -P-EP.

減算器l3は抽出した低次成分を、予め求めてある目標
形状の低次成分から減算してその偏差、即ち形状偏差低
次成分をゲイン設定器14a, 14bへ出力する。ゲ
イン設定器14a. 14bにおいては圧延速度■に応
じた比例ゲインKpt積分ゲインK1を設?してあり、
ゲイン設定器14aは形状偏差低次成分に比例ゲインK
pを乗してその値を、またゲイン設定器14bは形状偏
差低次成分に積分ゲインK,を乗した値に、積分演算を
施し、夫夕加え合わせ点15へ出力し、加え合わせ点1
5で両者を加え合わせた値に相当する信号を制御信号と
してロールシフター等の低次成分制御用アクチュエータ
に出力してこれを駆動制御するようになっている。
The subtractor 13 subtracts the extracted low-order component from the low-order component of the target shape obtained in advance and outputs the deviation, that is, the shape deviation low-order component to the gain setters 14a and 14b. Gain setter 14a. In 14b, a proportional gain Kpt and an integral gain K1 are set according to the rolling speed ■? It has been done,
The gain setter 14a sets a proportional gain K to the shape deviation low-order component.
The gain setter 14b performs an integral operation on the value obtained by multiplying the shape deviation low-order component by the integral gain K, and outputs it to the summation point 15, and outputs it to the summation point 1.
In step 5, a signal corresponding to the sum of both values is output as a control signal to a low-order component control actuator such as a roll shifter to drive and control the actuator.

一方高次成分抽出部21は前記各ゾーンZ−2〜Z2毎
の形状センサA − P〜AP毎の検出{if!S−p
〜SPを個別に乗算器F−P〜F,−に導き、該乗算器
F−2〜F,において各検出値S■F ””” S F
と複数の設定器から入力される高次成分抽出用重畳因数
w−(i”,w−’,?ミ1・・・w,’yH , W
+<,” とを乗算して、これら各ゾーンZイ〜Z,毎
の乗算結果を加え合わせ点22で加算し、板形状の高次
成分x(2)を求め、これを減算器23へ出力するよう
になっている。前記乗算器Fイ〜FFに繋がる各設定器
からの入力には同様の前述したW−(,Z)・・・等の
高次成分抽出用の重畳因数の外に、“零′゜があり、両
者は夫々スイッチswz,−r〜SW2, Pによって
選択的に乗算器F−P〜Fpに入力されるようになって
いる。各スイッチSWz.−r〜SW2, Pは圧延機
の定常運転時には高次成分抽出用の重畳因数を、また高
次成分制御用アクチュエータであるワークロールベンダ
等の出力が飽和状態に達したときは“零′゛を乗算器F
−,〜F,へ出力するよう切替制御されるようになって
いる。
On the other hand, the higher-order component extraction unit 21 detects each of the shape sensors A-P to AP in each of the zones Z-2 to Z2 {if! S-p
~SP is individually guided to multipliers F-P~F,-, and each detected value S F """ S F
and the superposition factors for high-order component extraction input from multiple setting devices w-(i'', w-', ?mi1...w,'yH, W
+<,'', and add the multiplication results for each zone Zi to Z at the addition point 22 to obtain the higher-order component x(2) of the plate shape, which is sent to the subtracter 23. The inputs from each setter connected to the multipliers Fi to FF include the above-mentioned superposition factors for extracting higher-order components such as W-(,Z), etc. and "0'°," and both are selectively input to the multipliers F-P to Fp by switches swz, -r to SW2, P, respectively. Each switch SWz. -r~SW2, P is the superimposition factor for extracting higher-order components during steady operation of the rolling mill, and is "0'" when the output of the work roll bender, etc., which is an actuator for controlling higher-order components, reaches a saturated state. Multiplier F
Switching control is performed to output to -, ~F, and so on.

減算器23は抽出した高次成分X《2)を予め求めてあ
る目標形状の高次成分から減算してその偏差、即ち形状
偏差高次成分をデッドゾーン設定器26を介し所定領域
の形状偏差高次成分のみをゲイン設定器24a. 24
bへ出力する。ゲイン設定器24a. 24bにおいて
は、圧延速度■に応じた比例ゲインKP.積分ゲインK
.を設定してあり、ゲイン設定器24aは形状偏差高次
成分に比例ゲインK,を乗じたその値を、またゲイン設
定器24bは形状偏差高次成分に積分ゲインK,を乗じ
た値に積分演算を施し、夫々加え合わせ点25に出力し
、加え合わせ点25で両者を加え合わせた値に相当する
信号を制御信号としてワークロールベンダ等の高次成分
制御用アクチュエータに出力し、これを駆動制御するよ
うになっている。また高次成分制御用アクチュエータの
出力が飽和状態に達したときは、加え合わせ点25の出
力は変化させず保持するようになっている。
The subtracter 23 subtracts the extracted high-order component Only the high-order components are set by the gain setter 24a. 24
Output to b. Gain setter 24a. 24b, the proportional gain KP. according to the rolling speed ■. integral gain K
.. The gain setter 24a integrates the value obtained by multiplying the shape deviation high-order component by the proportional gain K, and the gain setter 24b integrates the value obtained by multiplying the shape deviation high-order component by the integral gain K. The calculations are performed and outputted to the summing point 25, and at the summing point 25, a signal corresponding to the sum of both values is outputted as a control signal to an actuator for high-order component control such as a work roll bender, and this is driven. It is meant to be controlled. Further, when the output of the high-order component control actuator reaches a saturated state, the output of the summing point 25 is held unchanged.

上述した低次成分抽出用因数W3 + 1・・・W ,
j l l 高次成分抽出用囚数W(jl ・・・WJ
2)  は検出した各ゾーン2−,〜ZPで検出した板
形状を、例えば2次関数,8次関数,定数の線形結合に
よって最も精度よく表現したときの2次関数,8次関数
夫々の係数に相当するものである。即ち例えばこの線形
結合式を下記(11式で表すものとすると、各センサの
位置での2乗誤差の総和である(2)式の値J,を最小
にする2次項の係数α,8次項の係数βが夫々板形状の
低次成分,高次成分の各抽出用重畳因数である。
The above-mentioned low-order component extraction factor W3 + 1...W,
j l l Number of prisoners for higher-order component extraction W (jl ・・・WJ
2) is the coefficient of each quadratic function and octadic function when the plate shape detected in each detected zone 2-, ~ZP is expressed most accurately by, for example, a quadratic function, an octadic function, and a linear combination of constants. This corresponds to That is, for example, if this linear combination equation is expressed as the following (Equation 11), the coefficient α of the quadratic term that minimizes the value J of Equation (2), which is the sum of the squared errors at the position of each sensor, and the 8th-order term The coefficient β is a convolution factor for extraction of the low-order component and high-order component of the plate shape, respectively.

この、囚数α,βは下記(3). (4)式で表わされ
る。
The numbers of prisoners α and β are shown below (3). It is expressed by equation (4).

(3), (4)式中のW,+11  . W,(Zl
  は夫々下記(5),(6)式で与えられる。
(3), W in formulas (4), +11. W, (Zl
are given by the following equations (5) and (6), respectively.

(以 下 余 白) pp 但し i=−P, ・・・5P 但し 2P+1:板幅方向の形状センサ数i:形状検出
センサ番号 SA :形状センサ検出値 δ,:定数 但し δt :定数 各センサ位置での2乗誤差の総和(8)式の値を最小に
するγが低次単独成分用抽出因数である.この囚数Tは
下記(9)式で表わされる. (9)式中のW,+3)は下記(1(11式で与えられ
る.i=−P〜P 一方高次用アクチュエータの出力が飽和状態に至った時
に低次成分抽出用重畳因敗Wlnに代えて用いられる低
次単独成分用抽出因数W1》 はストリフブの幅方向に
おける全ゾーンの検出形状を2次関数表現するためのパ
ラメータであり、線形結合式を下記(7)式で表すもの
とするとP 但し i=−P−P i = − P z P 因数W!’) , Wilt , Wp) ノ値は板幅
によって夫々異なっており、その具体的数値を示すと表
lに示す如くである.表1は板幅が1400mm. 1
100m,600mの3種類のストリップについて、そ
の幅方向に定めた各ゾーンZ.〜Z l:I+  ZO
〜Z1。,Z0〜ZS  (なお表1中にはストリップ
の中央から片側の端部迄の各ゾーンについての具体的数
値を示している)夫々の検出値A.〜A,に乗じるべき
係数値を示している. P 第2図は本発明方法と従来方法1.2とによる平坦度の
制御の結果を示すグラフであり、横軸にストリップの幅
方向位置を、また縦軸に板形状の凹凸差をとって示して
ある。
(Margins below) pp However, i=-P, ...5P However, 2P+1: Number of shape sensors in the board width direction i: Shape detection sensor number SA: Shape sensor detection value δ,: Constant However, δt: Constant Each sensor position γ that minimizes the value of the sum of squared errors in equation (8) is the extraction factor for low-order single components. This number of prisoners T is expressed by the following equation (9). W, +3) in equation (9) is as follows (1 (given by equation 11. The low-order single component extraction factor W1, which is used in place of Then, P i = - P - Pi = - P z P factor W!'), Wilt, Wp) The values differ depending on the plate width, and the specific values are shown in Table 1. .. Table 1 shows that the board width is 1400mm. 1
For three types of strips of 100 m and 600 m, each zone Z. ~Zl:I+ZO
~Z1. , Z0 to ZS (Table 1 shows specific values for each zone from the center of the strip to one end). It shows the coefficient value to be multiplied by ~A. P Figure 2 is a graph showing the results of flatness control using the method of the present invention and conventional method 1.2, where the horizontal axis represents the position in the width direction of the strip, and the vertical axis represents the difference in unevenness of the plate shape. It is shown.

第2図(イ)は本発明方法に依った場合の、また第2図
(口),(ハ)は従来方法1.  2に依った場合の各
結果を示している。このグラフから明らかなように、低
次,高次成分制御用各アクチュエータの出力がいずれも
飽和状態になっていない定常運転状態下では従来方法l
を除いて本発明方法と従来方法2とでは略同様に全体が
平坦な形状が得られている。一方、高次成分制御用アク
チュエータの出力が飽和状態となった状況下では従来方
法2に比較して本発明方法ではストリ・冫プの両側端部
での形状変形が小さく抑制されていることが解る。
FIG. 2(a) shows the case of the method of the present invention, and FIG. 2(b) and (c) show the case of the conventional method 1. 2 shows the results obtained based on 2. As is clear from this graph, the conventional method l
Except for the above, the method of the present invention and conventional method 2 provide substantially the same overall flat shape. On the other hand, in a situation where the output of the actuator for controlling higher-order components is saturated, the method of the present invention suppresses the shape deformation at both ends of the strip/drop to a smaller extent than in conventional method 2. I understand.

〔発明の効果〕〔Effect of the invention〕

以上の如く本発明方法にあっては、定状運転時には勿論
、高次成分制御用アクチュエータの出力が飽和状態とな
ったとき板形状の低次単独成分を抽出して低次形状制御
用アクチュエータのみで制御することとしているから、
板の全幅にわたって低次成分制御が施されることとなり
、制御不能の状態が回避され、平坦度の制御精度が大幅
に向上する等本発明は優れた効果を奏するものである。
As described above, in the method of the present invention, not only during steady-state operation but also when the output of the actuator for controlling the high-order component reaches a saturated state, the low-order individual component of the plate shape is extracted and the actuator for controlling the low-order shape is used only. Since it is planned to be controlled by
The present invention has excellent effects such as low-order component control being performed over the entire width of the plate, avoiding an uncontrollable state, and greatly improving flatness control accuracy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の実施のための装置のブロック線図
、第2図は本発明方法と従来方法との比較試験結果を示
すグラフである。
FIG. 1 is a block diagram of an apparatus for carrying out the method of the present invention, and FIG. 2 is a graph showing the results of a comparative test between the method of the present invention and a conventional method.

Claims (1)

【特許請求の範囲】[Claims] 1、圧延中、圧延材の幅方向に定めた複数の各ゾーンで
幅方向の張力分布を検出することにより、圧延材の形状
を検出し、各ゾーンの検出値に予め求めた低次成分抽出
因数及び高次成分抽出因数を夫々乗じ、夫々その総和を
求めて板形状の低次成分及び高次成分を抽出し、これに
基づいて目標とする板形状を得べく低次成分制御用アク
チュエータ、高次成分制御用アクチュエータを制御し、
また高次成分制御用アクチュエータの出力が飽和状態に
達したときは前記各ゾーンの形状検出値に予め求めた低
次単独成分抽出因数を乗じ、その総和を求めて前記低次
成分及び高次成分に代わる板形状の低次単独成分を抽出
し、これに基づいて低次成分制御用アクチュエータを制
御することを特徴とする圧延機の平坦度制御方法。
1. During rolling, the shape of the rolled material is detected by detecting the tension distribution in the width direction in each of multiple zones defined in the width direction of the rolled material, and lower-order components determined in advance are extracted from the detected values in each zone. an actuator for controlling low-order components to obtain a target plate shape based on the multiplication of the factors and the high-order component extraction factors, the respective sums thereof, and the extraction of low-order components and high-order components of the plate shape; Controls the actuator for controlling higher-order components,
In addition, when the output of the actuator for high-order component control reaches a saturated state, the shape detection value of each zone is multiplied by a predetermined low-order single component extraction factor, the sum is calculated, and the low-order component and high-order component are extracted. 1. A flatness control method for a rolling mill, characterized by extracting a low-order single component of a plate shape in place of the flatness of the plate, and controlling an actuator for controlling the low-order component based on the extracted low-order single component.
JP1245742A 1989-09-20 1989-09-20 Rolling mill flatness control method Expired - Lifetime JP2720542B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1245742A JP2720542B2 (en) 1989-09-20 1989-09-20 Rolling mill flatness control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1245742A JP2720542B2 (en) 1989-09-20 1989-09-20 Rolling mill flatness control method

Publications (2)

Publication Number Publication Date
JPH03106507A true JPH03106507A (en) 1991-05-07
JP2720542B2 JP2720542B2 (en) 1998-03-04

Family

ID=17138126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1245742A Expired - Lifetime JP2720542B2 (en) 1989-09-20 1989-09-20 Rolling mill flatness control method

Country Status (1)

Country Link
JP (1) JP2720542B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001005528A1 (en) * 1999-07-20 2001-01-25 Danieli & C. Officine Meccaniche S.P.A. Method for the static and dynamic control of the planarity of flat rolled products
US6374656B1 (en) 1999-07-20 2002-04-23 Danieli & C. Officine Meccaniche S.P.A. Rolling stand for plane products and method to control the planarity of said products

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001005528A1 (en) * 1999-07-20 2001-01-25 Danieli & C. Officine Meccaniche S.P.A. Method for the static and dynamic control of the planarity of flat rolled products
US6338262B1 (en) 1999-07-20 2002-01-15 Danieli & C. Officine Meccaniche Spa Method for the static and dynamic control of the planarity of flat rolled products
US6374656B1 (en) 1999-07-20 2002-04-23 Danieli & C. Officine Meccaniche S.P.A. Rolling stand for plane products and method to control the planarity of said products

Also Published As

Publication number Publication date
JP2720542B2 (en) 1998-03-04

Similar Documents

Publication Publication Date Title
KR19980070668A (en) Control method and control device of rolling mill
CN107175260A (en) Wedge-shaped base width control method based on fixed-width side press
JPH03106507A (en) Control method for flatness of rolling mill
JP2714118B2 (en) Shape control method and device in rolling mill
JP4402570B2 (en) Plate profile control device
JPH067819A (en) Camber and meandering control method in rolling mill
JPS5645204A (en) Controlling method for sheet crown
JP3506098B2 (en) Shape control method and apparatus in sheet rolling
JP3304796B2 (en) Shape control method in sheet rolling
JPS59218206A (en) Shape controlling method in thin sheet rolling
JPS5592216A (en) Method and apparatus for controlling plate crown
JPH0615085B2 (en) Strip width control method for hot continuous rough rolling mill
JP2538785B2 (en) Work crown control method
JP3085527B2 (en) Method for estimating delivery side plate thickness of rolling mill, method and apparatus for controlling rolling mill
JPH06297012A (en) Roll bending force setting device for hot mill
JPH05237527A (en) Hot-rolled plate profile control method
JPS61189810A (en) Shape-controlling method in finish rolling
JP2680252B2 (en) Shape control method for multi-high rolling mill
JPS61189808A (en) Setting method of roll gap in finish rolling
JPH06292916A (en) Method for controlling thickness in thick steel plate rolling
JPS6015010A (en) Control method suitable for rolling
JPS6352707A (en) Thickness and width control method for continuous rolling mill
JPH09201610A (en) Method for controlling plate thickness in continuous rolling mill
JPS62130707A (en) Plate thickness control method for rolled steel plate
JP3438871B2 (en) Rolling mill shape control method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071121

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081121

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091121

Year of fee payment: 12

EXPY Cancellation because of completion of term