JP2720542B2 - Rolling mill flatness control method - Google Patents

Rolling mill flatness control method

Info

Publication number
JP2720542B2
JP2720542B2 JP1245742A JP24574289A JP2720542B2 JP 2720542 B2 JP2720542 B2 JP 2720542B2 JP 1245742 A JP1245742 A JP 1245742A JP 24574289 A JP24574289 A JP 24574289A JP 2720542 B2 JP2720542 B2 JP 2720542B2
Authority
JP
Japan
Prior art keywords
order
low
order component
component
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1245742A
Other languages
Japanese (ja)
Other versions
JPH03106507A (en
Inventor
俊哉 大井
勝次 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP1245742A priority Critical patent/JP2720542B2/en
Publication of JPH03106507A publication Critical patent/JPH03106507A/en
Application granted granted Critical
Publication of JP2720542B2 publication Critical patent/JP2720542B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/28Control of flatness or profile during rolling of strip, sheets or plates

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は主にストリップの圧延機等においてストリッ
プの平坦度を制御する方法に関する。
The present invention relates to a method for controlling flatness of a strip mainly in a strip rolling mill or the like.

〔従来の技術〕[Conventional technology]

従来この種の平坦度を制御する方法は、種々提案され
ており、例えば圧延中のストリップの幅方向に設定した
複数のゾーン毎に張力分布Siを測定し、これに重畳係数
Wiを乗じた値の総和に基づいて形状制御に最適の放物線
形状(低次成分,2次曲線)を決定し、これに基づいてロ
ールベンダを制御すると共に残余成分(高次成分等)に
ついては水、或いはその他の冷媒をストリップ表面にス
ポット状に噴射するスポットクーラントを用いて修正す
る方法(特公昭62−27882号公報)、或いは圧延中、ス
トリップの形状を検出し、低次関数成分と高次関数成分
とに分解し、前者についてはロールシフタの操作によっ
て、また後者はワークロールベンダの操作によって夫々
修正を行う方法等がある(特開昭62−230412号公報)。
Method of controlling the flatness of the conventional this type is proposed to measure the tension distribution S i for each of a plurality of zones, for example set in the width direction of the strip during rolling, superimposed coefficient in this
The optimum parabolic shape (lower-order component, quadratic curve) for shape control is determined based on the sum of the values multiplied by W i , and based on this, the roll bender is controlled and the residual component (higher-order component, etc.) is determined. Is a method of correcting by using a spot coolant that injects water or other refrigerant into the strip surface in a spot shape (Japanese Patent Publication No. 62-27882), or detecting the shape of the strip during rolling, and There is a method of decomposing it into higher-order function components, and correcting the former by operating a roll shifter, and the latter by operating a work roll bender (JP-A-62-230412).

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

ところで前者の方法にあっては低次成分についてはこ
れを抽出し、ロールシフタによって積極的な制御が行わ
れるが、高次成分についてはこれを残余成分としてスポ
ットクーラントにより制御を行うこととしている。しか
しスポットクーラントによる高次成分の制御能力には限
界があり、十分な平坦度が得られない。
In the former method, low-order components are extracted and positive control is performed by the roll shifter, but high-order components are controlled by spot coolant using the remaining components as residual components. However, there is a limit to the ability to control higher-order components by the spot coolant, and a sufficient flatness cannot be obtained.

また後者の方法は、ストリップ形状の低次成分,高次
成分を分離して低次成分をロールシフタによって、また
高次成分をワークロールベンダで制御しているが、制御
途中で、例えばワークロールベンダ出力が飽和状態に達
しても、ロールシフタとワークロールベンダとは独立に
動作しているためロールシフタは低次成分のみを対象と
する制御を続行し、高次成分については制御されなくな
るという問題があった。
In the latter method, the lower-order component and the higher-order component in a strip shape are separated and the lower-order component is controlled by a roll shifter, and the higher-order component is controlled by a work roll bender. Even if the output reaches a saturation state, the roll shifter and the work roll vendor operate independently of each other, so that the roll shifter continues to control only the lower-order components, and the higher-order components are not controlled. Was.

本発明はかかる事情に鑑みなされたものであって、そ
の目的とするところは高次成分制御用アクチュエータの
出力が飽和状態に達すると板形状から低次単独成分を抽
出し、これに基づいて低次成分制御用アクチュエータを
制御する平坦度制御方法を提供するにある。
The present invention has been made in view of such circumstances, and a purpose thereof is to extract a low-order single component from a plate shape when the output of a higher-order component control actuator reaches a saturated state, and to reduce a low-order single component based on the extracted component. An object of the present invention is to provide a flatness control method for controlling a next component control actuator.

〔課題を解決するための手段〕[Means for solving the problem]

本発明に係る平坦度制御方法は、圧延中、圧延材の幅
方向に定めた複数の各ゾーンで形状を検出し、各ゾーン
の形状検出値に予め求めた低次成分抽出因数及び高次成
分抽出因数を夫々乗じ、各その総和を求めて板形状の低
次成分及び高次成分を抽出し、これに基づいて目標とす
る板形状を得べく低次成分制御用アクチュエータ,高次
成分制御用アクチュエータを制御し、また、高次成分制
御用アクチュエータの出力が飽和状態に達したときは前
記各ゾーンの形状検出値に予め求めた低次単独成分抽出
因数を乗じ、その総和を求めて前記低次成分及び高次成
分に代わる板形状の低次単独成分を抽出し、これに基づ
いて低次成分制御用アクチュエータを制御することを特
徴とする。
The flatness control method according to the present invention detects a shape in each of a plurality of zones defined in a width direction of a rolled material during rolling, and detects a low-order component extraction factor and a high-order component obtained in advance in a shape detection value of each zone. Multiply the extraction factors, calculate the sum of each, extract the low-order and high-order components of the plate shape, and based on this extract the low-order component control actuator and high-order component control to obtain the target plate shape The actuator is controlled, and when the output of the higher-order component control actuator reaches a saturated state, the shape detection value of each zone is multiplied by a previously obtained low-order single component extraction factor, and the sum thereof is obtained to obtain the low-order single component extraction factor. It is characterized in that a low-order single component having a plate shape in place of the next-order component and the higher-order component is extracted, and the low-order component control actuator is controlled based on this.

〔作用〕[Action]

本発明にあってはこれによって、高次成分制御用アク
チュエータの出力が飽和状態に達したとき予め求めてあ
る低次単独成分抽出因数を用いて低次成分,高次成分に
代わる低次単独成分を抽出し、これに基づいて低次成分
制御用アクチュエータのみによる平坦度制御が行われる
こととなる。
According to the present invention, when the output of the actuator for controlling a higher-order component reaches a saturated state, the lower-order single component replacing the lower-order component and the higher-order component is obtained by using a previously obtained low-order single component extraction factor. Is extracted, and based on this, flatness control is performed only by the low-order component control actuator.

〔実施例〕〔Example〕

以下、本発明をその実施例を示す図面に基づき具体的
に説明する。
Hereinafter, the present invention will be described in detail with reference to the drawings showing the embodiments.

第1図は本発明に係る圧延機の平坦度制御方法を実施
例する装置のブロック線図であり、図中1は、圧延中の
ストリップSTにおける幅方向に定めた各ゾーンZ-P〜ZP
に配されている形状センサA-P〜APを示している(2P+
1:板幅方向の形状センサ数)。これら形状センサA-P〜A
Pで検出した検出値は、低次成分抽出部11及び高次成分
抽出部21へ出力される。低次成分抽出部11は、前記各ゾ
ーンZ-P〜ZP毎の形状センサA-P〜AP毎の検出値S-P〜SP
を個別に乗算器E-P〜EPに導き、該乗算器E-P〜EPにおい
て各検出値S-P〜SPと複数の各設定器から入力される低
次成分抽出用の重畳因数▲W(1) -P▼,▲W(1) -P+1▼…
▲W(1) P-1▼,▲W(1) +P▼とを乗算してこの各ゾーンZ
-P〜ZP毎の乗算結果を加え合わせ点12で加算して板形状
の低次成分X(1)を求め、これを減算器13へ出力するよう
になっている。前記乗算器E-P〜EPに繋がる各設定器か
らの入力には、前述した▲W(1) -P▼…等の低次成分抽
出用の重畳因数の外に、低次単独成分抽出用の重畳因数
▲W(3) -P▼,▲W(3) -P+1▼…▲W(3) P-1▼,▲W(3) P
▼があり、両者は夫々スイッチSW1,−P〜SW1,Pによっ
て選択的に乗算器E-P〜EPに入力されるようになってい
る。各スイッチSW1,−P〜SW1,Pは圧延機の定常運転時
には、低次成分抽出用の重畳因数が、また高次成分制御
用アクチュエータであるワークロールベンダ等の出力が
飽和状態に達したときは、低次単独成分抽出用の重畳因
数が乗算機E-P〜EPへ出力するように切換制御されるよ
うになっている。減算器13は抽出した低次成分を、予め
求めてある目標形状の低次成分から減算してその偏差、
即ち形状偏差低次成分をゲイン設定器14a,14bへ出力す
る。ゲイン設定器14a,14bにおいては圧延速度Vに応じ
た比例ゲインKP,積分ゲインK1を設定してあり、ゲイン
設定器14aは形状偏差低次成分に比例ゲインKPを乗じて
その値を、またゲイン設定器14bは形状偏差低次成分に
積分ゲインK1を乗じた値に、積分演算を施し、夫々加え
合わせ点15へ出力し、加え合わせ点15で両者を加え合わ
せた値に相当する信号を制御信号としてロールシフター
等の低次成分制御用アクチュエータに出力してこれを駆
動制御するようになっている。
FIG. 1 is a block diagram of an apparatus for implementing a flatness control method for a rolling mill according to the present invention. In the drawing, reference numeral 1 denotes zones Z- P to Z defined in a width direction of a strip ST being rolled. P
Shows the shape sensors A -P to A P arranged in (2P +
1: Number of shape sensors in the plate width direction). These shape sensors A- P to A
The detection value detected in P is output to the low-order component extraction unit 11 and the high-order component extraction unit 21. Low-order component extraction unit 11, the detected value S -P to S P of each profile sensor A -P to A P for each zone Z -P to Z P
Guidance individually to the multiplier E -P to E P, superimposition of a low-order component extraction inputted from the detection value S -P to S P and a plurality of the setting device in this multiplier E -P to E P Factor ▲ W (1) -P ▼, ▲ W (1) -P + 1 ▼…
▲ W (1) P-1 ▼, ▲ W (1) + P
Seeking a low-order component X (1) of the plate-shaped by adding at summing point 12 is added a multiplication result for each -P to Z P, and outputs it to the subtracter 13. The inputs from the setting units connected to the multipliers E -P to E P include the low-order single component extraction in addition to the above-described superposition factors for low-order component extraction such as ▲ W (1) -P ▼. ▲ W (3) -P ▼, ▲ W (3) -P + 1 ▼… ▲ W (3) P-1 ▼, ▲ W (3) P
▼ is there, they are each switch SW 1, are inputted selectively to the multiplier E -P to E P by -P to SW 1, P. Each switch SW 1, -P ~SW 1, P is the steady operation of the mill, superposition factor for extracting low-order component, and the output of the work roll bender such as a high-order component control actuator reaches saturation when is adapted to be switched controlled such superposition factors for extraction low-order single component is output to the multiplier E -P to E P. The subtractor 13 subtracts the extracted low-order component from the low-order component of the target shape obtained in advance, and calculates the deviation thereof,
That is, the low-order component of the shape deviation is output to the gain setting units 14a and 14b. Gain setting device 14a, the proportional gain K P in accordance with the rolling speed V in 14b, have set the integral gain K 1, the gain setter 14a is the value multiplied by the proportional gain K P to the shape deviation low order component and a gain setting unit 14b is a value obtained by multiplying the integral gain K 1 to the shape deviation low-order component is subjected to integral operation, and outputs to the respective summing point 15, corresponding to values appropriate added thereto at summing point 15 added This signal is output as a control signal to a low-order component control actuator such as a roll shifter to drive and control the actuator.

一方高次成分抽出部21は前記各ゾーンZ-P〜ZP毎の形
状センサA-P〜AP毎の検出値S-P〜SPを個別に乗算器F-P
〜FPに導き、該乗算器F-P〜FPにおいて各検出値S-P〜SP
と複数の設定器から入力される高次成分抽出用重畳因数
▲W(2) -P▼,▲W(2) -P+1▼…▲W(2) P-1▼,▲W(2)
+P▼とを乗算して、これら各ゾーンZ-P〜ZP毎の乗算結
果を加え合わせ点22で加算し、板形状の高次成分X(2)
求め、これを減算器23へ出力するようになっている。前
記乗算器F-P〜FPに繋がる各設定器からの入力には同様
の前述した▲W(2) -P▼…等の高次成分抽出用の重畳因
数の外に、“零”があり、両者は夫々スイッチSW2,−P
〜SW2,Pによって選択的に乗算器F-P〜FPに入力されるよ
うになっている。各スイッチSW2,−P〜SW2,Pは圧延機
の定常運転時には高次成分抽出用の重畳因数を、また高
次成分制御用アクチュエータであるワークロールベンダ
等の出力が飽和状態に達したときは“零”を乗算機F-P
〜FPへ出力するよう切替制御されるようになっている。
減算機23は抽出した高次成分X(2)を予め求めてある目標
形状の高次成分から減算してその偏差、即ち形状偏差高
次成分をデッドゾーン設定器26を介し所定領域の形状偏
差高次成分のみをゲイン設定器24a,24bへ出力する。ゲ
イン設定器24a,24bにおいては、圧延速度Vに応じた比
例ゲインKP,積分ゲインK1を設定してあり、ゲイン設定
器24aは形状偏差高次成分に比例ゲインKPを乗じたその
値を、またゲイン設定器24bは形状偏差高次成分に積分
ゲインK1を乗じた値に積分演算を施し、夫々加え合わせ
点25に出力し、加え合わせ点25で両者を加え合わせた値
に相当する信号を制御信号としてワークロールベンダ等
の高次成分制御用アクチュエータに出力し、これを駆動
制御するようになっている。また高次成分制御用アクチ
ュエータの出力が飽和状態に達したときは、加え合わせ
点25の出力は変化させず保持するようになっている。
On the other hand high-order component extractor 21 each zone Z -P to Z P each shape sensor A -P to A detection value of each P S -P to S P individually multiplier F -P
Leads to to F P, the detection value in this multiplier F -P ~F P S -P ~S P
And superposition factors for higher-order component extraction input from a plurality of setting devices ▲ W (2) -P ▼, ▲ W (2) -P + 1 ▼ ... ▲ W (2) P-1 ▼, ▲ W (2 )
+ P ▼ and by multiplying the sum of these in each zone Z -P to Z P each of the multiplication result to summing point 22, obtains a high order components X (2) of the plate-shaped, which to the subtracter 23 Output. Outside the superposition factor of the multiplier F -P to F like the above-described input from the setter leading to P ▲ W (2) -P ▼ ... for higher order component extracting such, is "zero" There are two switches SW2 , -P
To SW 2, are input to the selectively multiplier F -P to F P by P. Each switch SW 2, -P ~SW 2, P is the steady operation of the mill superimposition factor for higher order component extraction, and the output of the work roll bender such as a high-order component control actuator has reached saturation When "zero" is multiplied by F- P
Is adapted to be switched controlled so as to output the to F P.
The subtracter 23 subtracts the extracted higher-order component X (2) from the higher-order component of the target shape obtained in advance, and calculates the deviation, that is, the shape-deviation higher-order component through the dead zone setting unit 26 to obtain the shape deviation of the predetermined area. Only the high-order components are output to the gain setting units 24a and 24b. In the gain setting units 24a and 24b, a proportional gain K P and an integral gain K 1 according to the rolling speed V are set, and the gain setting unit 24a multiplies the higher order component of the shape deviation by a proportional gain K P and also gain setter 24b is subjected to integral operation to a value obtained by multiplying the integral gain K 1 to the shape deviation high-order components, and outputs the respective summing point 25, corresponding to values appropriate added thereto at summing point 25 added This signal is output as a control signal to a higher-order component control actuator such as a work roll bender, and the actuator is driven and controlled. When the output of the higher-order component control actuator reaches a saturated state, the output of the addition point 25 is held unchanged.

上述した低次成分抽出用因数▲W(1) -P▼…▲W(1) P
▼高次成分抽出用因数▲W(2) -P▼…▲W(2) P▼は検出
した各ゾーンZ-P〜ZPで検出した板形状を、例えば2次
関数,8次関数,定数の線形結合によって最も精度よく表
現したときの2次関数,8次関数夫々の係数に相当するも
のである。即ち例えばこの線形結合式を下記(1)式で
表すものとすると、 各センサの位置での2乗誤差の総和である(2)式の
値J1を最小にする2次項の係数α,8次項の係数βが夫々
板形状の低次成分,高次成分の各抽出用重畳因数であ
る。
The above-mentioned low order component extraction factor ▲ W (1) -P ▼… ▲ W (1) P
▼ Higher order component extraction factor ▲ W (2) -P ▼... ▲ W (2) P ▼ indicates the plate shape detected in each of the detected zones Z -P to Z P , for example, a quadratic function, an octal function, These correspond to the coefficients of the quadratic function and the octant function, respectively, when expressed by the linear combination of constants with the highest accuracy. That is, for example, if this linear combination expression is represented by the following expression (1), Square error is the sum of (2) the value J 1 factor of the second order term to minimize alpha, low-order component of the coefficient β is respectively a plate shape of 8-order term at the position of each sensor, each of the high-order component This is a superposition factor for extraction.

この、因数α,βは下記(3),(4)式で表わされ
る。
The factors α and β are represented by the following equations (3) and (4).

(3),(4)式中の▲W(1) i▼,▲W(2) i▼は夫々
下記(5),(6)式で与えられる。
▲ W (1) i ▼ and WW (2) i ▼ in equations (3) and (4) are given by the following equations (5) and (6), respectively.

一方高次用アクチュエータの出力が飽和状態に至った
時に低次成分抽出用重畳因数▲W(1) i▼に代えて用いら
れる低次単独成分用抽出因数▲W(3) i▼はストリップの
幅方向における全ゾーンの検出形状を2次関数表現する
ためのパラメータであり、線形結合式を下記(7)式で
表すものとすると 各センサ位置での2乗誤差の総和(8)式の値を最小
にするγが低次単独成分用抽出因数である。この因数γ
は下記(9)式で表わされる。
On the other hand low-order component extracting superimposed factor ▲ W (1) when the output of the high-order actuator reaches a saturated state i ▼ to place of low-order single-component extraction factor ▲ W used (3) i ▼ is strip This is a parameter for expressing the detection shape of all zones in the width direction as a quadratic function, and a linear combination expression is represented by the following expression (7). Γ that minimizes the value of the sum of square errors (8) at each sensor position is the extraction factor for low-order single component. This factor γ
Is represented by the following equation (9).

(9)式中の▲W(3) i▼は下記(10)式で与えられ
る。
▲ W (3) i ▼ in the equation (9) is given by the following equation (10).

因数▲W(1) i▼,▲W(2) i▼,▲W(3) i▼の値は板幅
によって夫々異なっており、その具体的数値を示すと表
1に示す如くである。表1は板幅が1400mm,1100mm,600m
mの3種類のストリップについて、その幅方向に定めた
各ゾーンZ0〜Z13,Z0〜Z10,Z0〜Z5(なお表1中にはスト
リップの中央から片側の端部迄の各ゾーンについての具
体的数値を示している)夫々の検出値A0〜APに乗じるべ
き係数値を示している。
The values of the factors WW (1) i ▼, WW (2) i ▼, and ▲ W (3) i ▼ vary depending on the plate width, and specific numerical values are as shown in Table 1. Table 1 shows board widths of 1400mm, 1100mm, 600m
For each of the three types of strip m, the zones Z 0 to Z 13 , Z 0 to Z 10 , and Z 0 to Z 5 defined in the width direction (Note that in Table 1, the distance from the center of the strip to one end thereof is shown. It indicates the coefficient value to multiplying the detected value a 0 to a P to have) each shows specific numerical values for each zone.

第2図は本発明方法と従来方法1,2とによる平坦度の
制御の結果を示すグラフであり、横軸にストリップの幅
方向位置を、また縦軸に板形状の凹凸差をとって示して
ある。
FIG. 2 is a graph showing the results of flatness control by the method of the present invention and the conventional methods 1 and 2, wherein the horizontal axis represents the position of the strip in the width direction, and the vertical axis represents the difference in plate-shaped unevenness. It is.

第2図(イ)は本発明方法に依った場合の、また第2
図(ロ),(ハ)は従来方法1,2に依った場合の各結果
を示している。このグラフから明らかなように、低次,
高次成分制御用各アクチュエータの出力がいずれも飽和
状態になっていない定常運転状態下では従来方法1を除
いて本発明方法と従来方法2とでは略同様に全体が平坦
な形状が得られている。一方、高次成分制御用アクチュ
エータの出力が飽和状態となった状況下では従来方法2
に比較して本発明方法ではストリップの両側端部での形
状変形が小さく抑制されていることが解る。
FIG. 2 (a) shows the case where the method according to the present invention is used and FIG.
Figures (b) and (c) show the results when the conventional methods 1 and 2 are used. As is clear from this graph,
Under a steady operation state in which none of the outputs of the respective actuators for controlling the higher order components are in a saturated state, the method of the present invention and the conventional method 2 except for the conventional method 1 have substantially the same overall flat shape except for the conventional method 1. I have. On the other hand, in a situation where the output of the higher order component control actuator is saturated, the conventional method 2
It can be seen that in the method of the present invention, the shape deformation at both end portions of the strip is suppressed to a small extent.

〔発明の効果〕〔The invention's effect〕

以上の如く本発明方法にあっては、定常運転時には勿
論、高次成分制御用アクチュエータの出力が飽和状態と
なったとき板形状の低次単独成分を抽出して低次形状制
御用アクチュエータのみで制御することとしているか
ら、板の全幅にわたって低次成分制御が施されることと
なり、制御不能の状態が回避され、平坦度の制御精度が
大幅に向上する等本発明は優れた効果を奏するものであ
る。
As described above, in the method of the present invention, of course, at the time of steady operation, when the output of the higher-order component control actuator is saturated, the lower-order single component of the plate shape is extracted and only the lower-order shape control actuator is used. Since the control is performed, low-order component control is performed over the entire width of the plate, an uncontrollable state is avoided, and the control accuracy of the flatness is greatly improved. It is.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明方法の実施のための装置のブロック線
図、第2図は本発明方法と従来方法との比較試験結果を
示すグラフである。 11……低次成分抽出部、13……減算器、14a,14b……ゲ
イン設定器、21……高次成分抽出部、23……減算器、24
a,24b……ゲイン設定器、26……デッドゾーン設定器、S
T……ストリップ、SW1,−P〜SW1,P,SW2,−P〜SW2,P
…スイッチ、A-P〜AP……形状センサ、Z-P〜ZP……ゾー
ン、S-P〜SP……検出値
FIG. 1 is a block diagram of an apparatus for carrying out the method of the present invention, and FIG. 2 is a graph showing a comparison test result between the method of the present invention and a conventional method. 11 low-order component extractor, 13 subtractor, 14a, 14b gain setting unit, 21 higher-order component extractor, 23 subtractor, 24
a, 24b: Gain setting device, 26: Dead zone setting device, S
T: Strip, SW1 , -P to SW1 , P , SW2 , -P to SW2 , P ...
... switch, A -P ~A P ...... shape sensor, Z -P ~Z P ...... zone, S -P ~S P ...... detected value

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】圧延中、圧延材の幅方向に定めた複数の各
ゾーンで幅方向の張力分布を検出することにより、圧延
材の形状を検出し、各ゾーンの検出値に予め求めた低次
成分抽出因数及び高次成分抽出因数を夫々乗じ、夫々そ
の総和を求めて板形状の低次成分及び高次成分を抽出
し、これに基づいて目標とする板形状を得べく低次成分
制御用アクチュエータ,高次成分制御用アクチュエータ
を制御し、また高次成分制御用アクチュエータの出力が
飽和状態に達したときは前記各ゾーンの形状検出値に予
め求めた低次単独成分抽出因数を乗じ、その総和を求め
て前記低次成分及び高次成分に代わる板形状の低次単独
成分を抽出し、これに基づいて低次成分制御用アクチュ
エータを制御することを特徴とする圧延機の平坦度制御
方法。
1. During rolling, the shape of a rolled material is detected by detecting the tension distribution in the width direction in each of a plurality of zones defined in the width direction of the rolled material, and a low value previously determined as a detected value of each zone. Multiply the next component extraction factor and the high order component extraction factor, respectively, obtain the sum of them, extract the low order component and the high order component of the plate shape, and control the low order component to obtain the target plate shape based on this. Control the actuator for the higher order component control, and when the output of the higher order component control actuator reaches a saturated state, multiply the shape detection value of each zone by a previously obtained low order single component extraction factor, Flatness control of a rolling mill, wherein a sum of the low-order components and a low-order single component of a plate shape in place of the low-order components and the high-order components are extracted, and a low-order component control actuator is controlled based on the extracted components. Method.
JP1245742A 1989-09-20 1989-09-20 Rolling mill flatness control method Expired - Lifetime JP2720542B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1245742A JP2720542B2 (en) 1989-09-20 1989-09-20 Rolling mill flatness control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1245742A JP2720542B2 (en) 1989-09-20 1989-09-20 Rolling mill flatness control method

Publications (2)

Publication Number Publication Date
JPH03106507A JPH03106507A (en) 1991-05-07
JP2720542B2 true JP2720542B2 (en) 1998-03-04

Family

ID=17138126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1245742A Expired - Lifetime JP2720542B2 (en) 1989-09-20 1989-09-20 Rolling mill flatness control method

Country Status (1)

Country Link
JP (1) JP2720542B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1310880B1 (en) 1999-07-20 2002-02-22 Danieli Off Mecc METHOD FOR STATIC AND DYNAMIC CONTROL OF THE PLANARITY OF LAMINATED FLAT PRODUCTS
IT1310879B1 (en) 1999-07-20 2002-02-22 Danieli Off Mecc LAMINATION CAGE FOR FLAT PRODUCTS AND METHOD FOR THE PLANARITY CONTROL OF THESE PRODUCTS

Also Published As

Publication number Publication date
JPH03106507A (en) 1991-05-07

Similar Documents

Publication Publication Date Title
JP2720542B2 (en) Rolling mill flatness control method
KR100610724B1 (en) Control apparatus for controlling load distribution in continuous rolling mill
JP3085502B2 (en) Rolling mill control device and method
JPH07100516A (en) Method and device for rolling mill control
JP2002282917A (en) Thickness control device for rolling mill
JP3974084B2 (en) Thickness control method and thickness control apparatus for rolling mill
JP2714118B2 (en) Shape control method and device in rolling mill
JP3085527B2 (en) Method for estimating delivery side plate thickness of rolling mill, method and apparatus for controlling rolling mill
JPH044914A (en) Device and method for controlling meandering of strip on cold rolling mill
JPS59218206A (en) Shape controlling method in thin sheet rolling
JPS551957A (en) Method and apparatus for controlling of rolling mills
JP2680252B2 (en) Shape control method for multi-high rolling mill
JPH0416195Y2 (en)
JPH1157829A (en) Control means for hot continuous rolling mill
JPS56102308A (en) Shape controller for rolling mill
JPS57109509A (en) Rolling method
JPS62127112A (en) Meandering preventing method for rolling stock
JPH074608B2 (en) Method of automatic feed thickness control of rolling mill
JPH10175007A (en) Method for controlling roll gap in rolling mill
JPS5848245B2 (en) Itazaiatsu Enkiniokel Keijiyouseigiyosouchi
JPS6448613A (en) Camber control method for cold rolling
JPS5557318A (en) Controlling method for scale grinding of hot rolled steel hoop
JPH04333314A (en) Controlling method for changing running setting of a rolling milling machone
JPH0714528B2 (en) Rolled material shape control device
JPH06269829A (en) Controller for screw down position of mill

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071121

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081121

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091121

Year of fee payment: 12

EXPY Cancellation because of completion of term