JPH0310633Y2 - - Google Patents

Info

Publication number
JPH0310633Y2
JPH0310633Y2 JP1982167395U JP16739582U JPH0310633Y2 JP H0310633 Y2 JPH0310633 Y2 JP H0310633Y2 JP 1982167395 U JP1982167395 U JP 1982167395U JP 16739582 U JP16739582 U JP 16739582U JP H0310633 Y2 JPH0310633 Y2 JP H0310633Y2
Authority
JP
Japan
Prior art keywords
filament
heating
cylinder
heat
cylindrical body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1982167395U
Other languages
Japanese (ja)
Other versions
JPS5971599U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP16739582U priority Critical patent/JPS5971599U/en
Publication of JPS5971599U publication Critical patent/JPS5971599U/en
Application granted granted Critical
Publication of JPH0310633Y2 publication Critical patent/JPH0310633Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】[Detailed explanation of the idea]

[考案の目的] (産業上の利用分野) 本考案は筒体の外周に発熱体を設けてなる発熱
筒体に関する。 (従来の技術) この種の発熱筒体は筒体内を流れる流体を加熱
するために利用され、その各種の具体的構成は、
例えば実開昭55−116499号公報、実開昭55−
119146号公報域いは実開昭56−85352号公報によ
つて公知である。これらの構成は、基本的にはテ
ープ状に形成した導電性樹脂の発熱体を筒体の外
周に螺旋状に巻回したものと、筒体の全周に導電
性樹脂層を被覆したものとに大別される。 (考案が解決しようとする課題) ところが、前者の構成では次のような欠点があ
る。発熱体がある程度の幅を有するテープ状をな
すため、これを筒体の外周に一定の密度で密に巻
回することが困難である。密に巻回しようとすれ
ば、一巻き毎に隣り合う発熱体が部分的に重なる
ようになつてしまい、その重なり部分での発熱量
が過剰になり、結局、全体の温度分布にむらが発
生する。また、逆に、発熱体間に一巻き毎に隙間
を持たせて巻回すれば、隙間部分の加熱が不十分
になるため、やはり全体として温度分布にむらが
発生する。しかも、この種の発熱体は樹脂製であ
るとはいえ、カーボンが混入されてやや柔軟性に
欠ける傾向にあるため、テープ状の発熱体では筒
体に均一に密着させることが困難である。従つ
て、これも筒体の温度分布の不均一性を助長する
原因となる。このようにして筒体の温度分布が不
均一になつてしまうことは、均一な温度分布で加
熱するものに比べて加熱効率が劣つて無駄な電力
を消費することを意味し、また加熱部分に合わせ
て熱対策を施す必要があるため、その面での無駄
も生ずることを意味する。 一方、筒体の全周に導電性樹脂を被覆した後者
の構成では、一見、全体的に均一な加熱が可能な
ように考えられる。しかし、実際には、導電性樹
脂層を均一な厚さに被覆することは極めて困難な
ため、部分的に抵抗値のむらが生ずることを避け
難く、やはり全体の温度分布が不均一になるとい
う問題を残している。しかも、製造工程が複雑で
あつて、量産には全く適さないという問題もあ
る。 そこで、本考案の目的は、加熱部分を均一な温
度分布とすることができ、しかも低コストで製造
できる加熱筒体を提供するにある。 [考案の構成] (課題を解決するための手段) 本考案者は、上述の問題を一挙に解決すべく研
究を重ね、モノフイラメント型の発熱フイラメン
トを筒体の外周に筒状となるように密着巻すると
いう基本構成を着想するに至ると共に、かかる基
本構成を実現可能にする特殊な発熱フイラメント
を初めて開発したのである。 すなわち、本考案の加熱筒体は、筒体と、20〜
40%の導電性カーボンを添加したポリエチレンを
溶融紡糸して所定の電気抵抗を有するモノフイラ
メントとして形成され筒体の外周に所定長さにわ
たつて筒状に密着巻された発熱フイラメントと、
筒体の軸方向に沿つて設けられ筒状に密着巻され
た発熱フイラメントの内周部又は外周部に電気的
に接触する一対の電極体とを具備せる構成に特徴
を有する。 (作用) 上記手段によれば、発熱フイラメントを筒体の
外周に筒状に巻回する構成であるから、一巻き毎
に発熱フイラメントが相互に密着する密着巻きと
することができ、筒体の外周を発熱フイラメント
がびつしりと取り巻く形態にできる。また、たと
えばカーボンの混入により柔軟性に欠ける傾向を
有するとしても、発熱フイラメントは幅方向の寸
法をほとんど無視できるようなモノフイラメント
であるから、幅が広いテープ状の導電性樹脂に比
べて局部的な浮き上がりを生じさせることなく筒
体に巻回することができる。従つて、発熱フイラ
メントと筒体とは常に一定の接触面積をもつて接
触することになり、結局、発熱フイラメントを巻
回した筒状部分の全域にわたつて均一な発熱量と
なり、温度分布も均一化される。しかも、一定の
仕様で製造された発熱フイラメントを所定長さに
わたつて筒状に密着巻きして発熱部を構成するも
のであるから、筒体の全周に導電性樹脂を被覆す
る構成に比べて性能・品質が安定し、量産に好適
する。 また、このように使用される発熱フイラメント
は、20〜40%の導電性カーボンを添加したポリエ
チレンを溶融紡糸してモノフイラメントとして形
成したものであるから、発熱体として適切な太
さ、筒体への巻回作業に耐え得る強度、耐久性、
筒体に十分に密着する柔軟性、製造コストの安さ
等を同時に得ることができる。すなわち、このよ
うな糸状の発熱体として、従来より、絶縁芯線の
外周面に導電性のカーボンを付着させたり、カー
ボンを混入したアクリロ・ニトリル等の紡糸原液
を凝固液中に吐出して紡糸したものが知られてい
るが、前者のものは表面のカーボン層が容易に剥
離するため発熱フイラメントとしての耐久性が不
十分で、また後者のものは極めて微弱な電流しか
流れない静電気放電用の制電繊維として利用はで
きても、それに比べて大電流が流れる発熱フイラ
メントとしては太さ、強度、柔軟性等の面でまつ
たく不十分であり、しかも製造コストが著しく高
くなるという問題があつた。これに対し、上述の
ように導電性カーボンを添加したポリエチレンの
溶融紡糸により形成した本考案の発熱フイラメン
トでは、カーボンがフイラメントの全体に分散し
ているからカーボン層の剥離による劣化という問
題は全くなく耐久性に優れる。また、溶融紡糸で
あるから十分な太さ・強度を確保でき、しかもそ
れでいながらポリエチレン樹脂を基材としている
から、同樹脂特有の柔軟性を発揮させてカーボン
混入の発熱フイラメントとしても柔軟な性質とす
ることができる。 しかも、このように1本の発熱フイラメントを
巻回して筒状の発熱部を形成する点に鑑み、発熱
フイラメントの内周部又は外周部に電気的に接触
する一対の電極体を筒体の軸方向に沿つて設ける
構成としているから、半巻分の多数の発熱フイラ
メントが一対の電極体間に並列に接続された形態
となり、万一、発熱フイラメントの一部が断線し
ても全体の発熱量をほとんど変化させることなく
加熱を続けることができる。 (実施例) 以下、本考案の一実施例について図面を参照し
て説明する。 1は例えば水道用の塩化ビニールパイプにより
構成した筒体で、これの外周部には薄肉の筒状を
なす絶縁体2が巻回されている。この絶縁体2の
外周には、筒体1の中心線aと平行状態を呈して
その中心線aを挟む形態で一対の電極体3,4が
絶縁材2に密着状態に付設されている。そして、
これら絶縁材2及び電極体3,4の外周部には、
筒体1の略全長にわたつて発熱フイラメント5が
筒状に密着巻にされ、その巻回軸芯は筒体1の中
心線aと略一致している。なお、6は巻回状態の
発熱フイラメント5の外周部に密着させて配置し
た筒状の絶縁断熱材である。 しかして、上述の発熱フイラメント5は、次に
述べるように略1200デニール、太さ約0.7mmに形
成されたものである。これは耐熱性を有するモノ
フイラメント用ポリエチレン樹脂(例えば製品
名:三井化学株式会社製5000S)を基材とし、こ
れに28〜30%(重量比)の導電性を有する連鎖状
カーボン(例えば製品名:旭カーボン株式会社製
HS−500)を含有させたものである。これを製造
するには、予め上述のモノフイラメント用ポリエ
チレン樹脂に約40%(重量比)の上述した連鎖状
カーボンを混練して含有せしめた第1のポリエチ
レン樹脂チツプを製造すると共に、上述のモノフ
イラメント用ポリエチレン樹脂のみからなる第2
のポリエチレン樹脂チツプを製造しておく。そし
て、これら第1及び第2の両ポリエチレン樹脂チ
ツプを一定の割合で混合して溶融紡糸機に投入
し、溶融ポリマーを口金からモノフイラメントと
して押し出したあと延伸及び熱処理などの後処理
を行えばよい。これらの後処理は、通常のポリエ
チレン繊維の製法に準じた処理条件にて行われ
る。 なお、上記した連鎖状カーボン(旭カーボン株
式会社製HS−500)の物理化学的な特性は下記表
1に示す通りであり、また、発熱フイラメント5
の特性は下記表2に示す通りである。また、発熱
フイラメント5の長さ1mの当りの抵抗値は
2.5MΩであつた。
[Purpose of the invention] (Industrial application field) The present invention relates to a heat generating cylinder having a heating element provided on the outer periphery of the cylinder. (Prior Art) This type of heating cylinder is used to heat the fluid flowing inside the cylinder, and its various specific configurations are as follows:
For example, Utility Model Application Publication No. 116499/1983, Utility Model Application Publication No. 55-
This method is known from Japanese Utility Model Publication No. 119146 and Japanese Utility Model Application No. 85352/1983. These configurations are basically one in which a heating element made of conductive resin formed into a tape shape is wound spirally around the outer circumference of a cylinder, and the other in which a conductive resin layer is coated around the entire circumference of the cylinder. It is broadly divided into (The problem that the invention aims to solve) However, the former configuration has the following drawbacks. Since the heating element is tape-shaped with a certain width, it is difficult to tightly wrap the heating element around the outer periphery of the cylindrical body at a constant density. If you try to wind it tightly, the adjacent heating elements will partially overlap with each turn, and the amount of heat generated in the overlap will become excessive, resulting in uneven temperature distribution as a whole. do. Conversely, if the heating element is wound with a gap between each turn, heating of the gap will be insufficient, resulting in uneven temperature distribution as a whole. Moreover, although this type of heating element is made of resin, it tends to be somewhat inflexible due to the inclusion of carbon, so it is difficult to make it adhere uniformly to the cylindrical body with a tape-shaped heating element. Therefore, this also becomes a cause of promoting non-uniformity in the temperature distribution of the cylinder. If the temperature distribution of the cylinder becomes uneven in this way, it means that the heating efficiency is lower than that of one that heats with a uniform temperature distribution, resulting in wasted power consumption. At the same time, it is necessary to take measures against heat, which means that there is also waste in that respect. On the other hand, in the latter configuration in which the entire circumference of the cylindrical body is coated with a conductive resin, it appears that uniform heating is possible over the entire body. However, in reality, it is extremely difficult to coat a conductive resin layer with a uniform thickness, so it is difficult to avoid unevenness in the resistance value in some areas, resulting in an uneven temperature distribution as a whole. is left behind. Moreover, the manufacturing process is complicated, making it completely unsuitable for mass production. Therefore, an object of the present invention is to provide a heating cylinder that can provide a uniform temperature distribution in the heated portion and can be manufactured at low cost. [Structure of the invention] (Means for solving the problem) The inventor of the present invention has conducted extensive research in order to solve the above-mentioned problems all at once, and has created a monofilament-type heating filament in a cylindrical shape around the outer periphery of the cylindrical body. He came up with the idea of a basic configuration of tightly wound winding, and was the first to develop a special heat-generating filament that made such a basic configuration possible. That is, the heating cylindrical body of the present invention has a cylindrical body and a
A heat-generating filament formed by melt-spinning polyethylene to which 40% conductive carbon is added to form a monofilament having a predetermined electrical resistance, and tightly wound in a cylindrical shape over a predetermined length around the outer periphery of a cylinder;
It is characterized by a configuration including a pair of electrode bodies that are provided along the axial direction of the cylindrical body and electrically contact the inner circumferential part or the outer circumferential part of the heat-generating filament tightly wound in a cylindrical shape. (Function) According to the above means, since the heating filament is wound in a cylindrical shape around the outer periphery of the cylinder, the heating filament can be tightly wound in close contact with each other in each turn, and the heating filament can be wound tightly around the cylinder. The outer periphery can be tightly surrounded by heat generating filaments. Furthermore, even if it tends to lack flexibility due to the inclusion of carbon, for example, the heat-generating filament is a monofilament whose width dimension can be almost ignored, so it is less flexible than a wide conductive resin tape. It can be wound around a cylindrical body without causing any lifting. Therefore, the heating filament and the cylindrical body always come into contact with each other with a constant contact area, and as a result, the amount of heat generated is uniform over the entire cylindrical part around which the heating filament is wound, and the temperature distribution is also uniform. be converted into Moreover, since the heat-generating part is constructed by closely winding a heat-generating filament manufactured to a certain specification into a cylinder over a predetermined length, compared to a structure in which the entire circumference of the cylinder is coated with conductive resin. The performance and quality are stable, making it suitable for mass production. In addition, the heating filament used in this way is formed into a monofilament by melt-spinning polyethylene to which 20 to 40% conductive carbon is added, so it has to be made into a cylinder with an appropriate thickness as a heating element. strength and durability that can withstand the winding work of
At the same time, it is possible to obtain flexibility that allows sufficient adhesion to the cylindrical body, low manufacturing cost, etc. In other words, such thread-like heating elements have conventionally been spun by attaching conductive carbon to the outer peripheral surface of an insulated core wire or by discharging a spinning stock solution of acrylonitrile or the like mixed with carbon into a coagulation solution. However, the former type has insufficient durability as a heat generating filament because the carbon layer on the surface easily peels off, and the latter type is used as a control for electrostatic discharge where only an extremely weak current flows. Although it could be used as an electric fiber, it was insufficient in terms of thickness, strength, flexibility, etc. as a heat-generating filament through which a large current could flow, and the manufacturing cost was extremely high. . On the other hand, with the heat generating filament of the present invention, which is formed by melt spinning polyethylene added with conductive carbon as described above, there is no problem of deterioration due to peeling of the carbon layer because the carbon is dispersed throughout the filament. Excellent durability. In addition, since it is melt-spun, it has sufficient thickness and strength, and since it is based on polyethylene resin, it exhibits the flexibility unique to that resin, making it flexible enough to be used as a carbon-containing heat-generating filament. It can be done. Moreover, in view of the fact that a cylindrical heat generating part is formed by winding one heat generating filament in this way, a pair of electrode bodies that electrically contact the inner circumference or outer circumference of the heat generating filament are arranged around the axis of the cylinder. Since it is configured to be installed along the direction, a large number of half turns of heat generating filaments are connected in parallel between a pair of electrode bodies, and even if some of the heat generating filaments are disconnected, the overall heat generation amount will be reduced. Heating can be continued with almost no change in temperature. (Example) Hereinafter, an example of the present invention will be described with reference to the drawings. Reference numeral 1 denotes a cylindrical body made of, for example, a vinyl chloride pipe for water supply, and a thin cylindrical insulator 2 is wound around the outer periphery of the cylindrical body. A pair of electrode bodies 3 and 4 are attached to the outer periphery of the insulator 2 in close contact with the insulator 2 so as to be parallel to the center line a of the cylindrical body 1 and sandwiching the center line a. and,
At the outer periphery of these insulating materials 2 and electrode bodies 3 and 4,
A heat generating filament 5 is tightly wound in a cylindrical shape over substantially the entire length of the cylinder 1, and its winding axis substantially coincides with the center line a of the cylinder 1. Note that 6 is a cylindrical insulating and heat-insulating material disposed in close contact with the outer circumference of the heat-generating filament 5 in a wound state. The heat generating filament 5 described above is formed to have approximately 1200 denier and a thickness of approximately 0.7 mm, as described below. The base material is a heat-resistant polyethylene resin for monofilament (e.g., product name: 5000S manufactured by Mitsui Chemicals, Inc.), which is coated with chain carbon having an electrical conductivity of 28 to 30% (weight ratio) (e.g., product name: 5000S manufactured by Mitsui Chemicals, Inc.). : Manufactured by Asahi Carbon Co., Ltd.
HS-500). To manufacture this, first polyethylene resin chips are prepared by kneading and containing about 40% (weight ratio) of the above-mentioned chain carbon in the above-mentioned monofilament polyethylene resin, and The second part is made of only polyethylene resin for filament.
Polyethylene resin chips are manufactured. Then, both the first and second polyethylene resin chips are mixed at a certain ratio and fed into a melt spinning machine, and after extruding the molten polymer as a monofilament from a spinneret, post-treatments such as stretching and heat treatment can be performed. . These post-treatments are carried out under treatment conditions similar to those of ordinary polyethylene fiber manufacturing methods. The physicochemical properties of the above-mentioned chain carbon (HS-500 manufactured by Asahi Carbon Co., Ltd.) are as shown in Table 1 below, and the heat-generating filament 5
The characteristics are shown in Table 2 below. Also, the resistance value per 1 m length of the heating filament 5 is
It was 2.5MΩ.

【表】【table】

【表】【table】

【表】 次に上記構成の作用について説明する。電極体
3,4は筒体1を挟むような形で軸方向に延びて
いるから、発熱フイラメント5のうち1/2巻分毎
が電極体3,4間に並列に接続された状態にあ
る。そこで、電極体3,4間に電圧を印加する
と、発熱フイラメント5の各部が同様に発熱して
筒体1を加熱する。従つて、例えばこの筒体1を
水道配管の一部を用いて内部に水道水が流通する
ようにすれば、寒冷地における水道管の凍結防止
ができる。 本実施例では、発熱フイラメント5はモノフイ
ラメント形であり、しかも基材はポリエチレン樹
脂であつて柔軟であるから、幅が広いテープ状の
発熱体を巻回した構成とは異なり、発熱フイラメ
ント5と筒体1とは常に全域で一定の接触面積を
もつて接触する。さらに、発熱フイラメント5は
筒体1の外周を筒状に密着巻されていて、筒体1
を発熱フイラメント5がびつしりと取り巻く形態
となつているから、発熱フイラメント5を密着巻
した筒状部分の全域にわたつて均一な発熱量とな
る。この結果、筒体1の温度分布は全域にわたり
均一化され、加熱効率が優れたものとなつて低消
費電力で十分な加熱が可能になる。このため、特
に水道管の凍結防止等のために長時間通電される
用途に適用される場合には、その電力節約効果は
大きい。 また、本考案の発熱フイラメント5は、上述し
たように導電性カーボンを添加したポリエチレン
樹脂を溶融紡糸してモノフイラメントとして形成
したものであるから、発熱体として適切な太さ、
筒体1への巻回作業に耐え得る強度、耐久性、筒
体1に十分に密着する柔軟性、製造コストの安さ
等を同等に得ることができ、筒体1に筒状に密着
巻きする構成に好適する。 しかも、発熱フイラメント5内周部に一対の電
極体3,4を筒体1の軸方向に沿つて設ける構成
としているから、半巻分の多数の発熱フイラメン
ト5が電極体3,4間に並列に接続された形態と
なり、万一、発熱フイラメント5の一部が断線し
ても全体の発熱量をほとんど変化させることなく
加熱を続けることができる。 なお、本実施例では、筒体1を水道用の塩化ビ
ニールパイプにより構成したが、これに代えてス
テンレスパイプ等の金属パイプを使用し、内部に
血液を流しつつ加熱するような医療用機器等にも
適用できる。このような場合には、発熱フイラメ
ント5を密着巻した筒状部分は均一な温度分布に
なつて局部的な高温部分が出現しないから、加熱
効率に優れるだけでなく、血液を変質させること
なくこれを穏やかに加熱でき、人工透析装置等の
医療用機器に好適する。また、電極体を複数対設
けて各対に夫々電圧を印加するようにしてもよ
く、また電極体を筒状に巻回された発熱フイラメ
ントの外周側に接触させてもよい。 [考案の効果] 以上述べたように、本考案の発熱筒体は、発熱
フイラメントとして20〜40%の導電性カーボンを
添加したポリエチレンを溶融紡糸として所定の電
気抵抗を有するモノフイラメントとして形成した
ものを初めて使用し、これを筒体の外周に所定長
さにわたつて筒状に密着巻きした構成に特徴を有
する。この構成の結果、筒体に対して一定の接触
面積で接触する発熱フイラメントが筒体の外周を
びつしりと取り巻く形態になるから、筒体を均一
に加熱でき、筒体の温度分布を均一化して加熱効
率を向上させることができると共に、低コストで
製造でき、しかも万一、発熱フイラメントの一部
が断線しても全体の発熱量をほとんど変化させる
ことなく加熱を続けることができるという優れた
効果を奏する。
[Table] Next, the operation of the above configuration will be explained. Since the electrode bodies 3 and 4 extend in the axial direction so as to sandwich the cylindrical body 1, every 1/2 turn of the heating filament 5 is connected in parallel between the electrode bodies 3 and 4. . Therefore, when a voltage is applied between the electrode bodies 3 and 4, each part of the heating filament 5 generates heat in the same way, thereby heating the cylindrical body 1. Therefore, for example, if tap water is allowed to flow inside the cylinder 1 by using a part of the water pipe, it is possible to prevent the water pipe from freezing in a cold region. In this embodiment, the heat generating filament 5 is a monofilament type, and the base material is made of polyethylene resin and is flexible. It always contacts the cylinder 1 with a constant contact area over the entire area. Further, the heat generating filament 5 is tightly wound around the outer periphery of the cylinder 1 in a cylindrical shape.
Since the heating filament 5 tightly surrounds the heating filament 5, the amount of heat generated is uniform over the entire area of the cylindrical portion around which the heating filament 5 is tightly wound. As a result, the temperature distribution of the cylindrical body 1 is made uniform over the entire area, and the heating efficiency becomes excellent, allowing sufficient heating with low power consumption. Therefore, especially when applied to applications where electricity is applied for a long time to prevent freezing of water pipes, etc., the power saving effect is large. In addition, since the heating filament 5 of the present invention is formed as a monofilament by melt-spinning polyethylene resin to which conductive carbon is added as described above, it has a thickness suitable for a heating element.
It is possible to obtain the same strength and durability that can withstand the work of winding around the cylinder 1, flexibility to sufficiently adhere to the cylinder 1, low manufacturing cost, etc., and it can be tightly wound around the cylinder 1 in a cylindrical shape. Suitable for configuration. Moreover, since the pair of electrode bodies 3 and 4 are provided along the axial direction of the cylindrical body 1 on the inner periphery of the heat generating filament 5, a large number of half turns of the heat generating filament 5 are arranged in parallel between the electrode bodies 3 and 4. Even if a part of the heating filament 5 were to be disconnected, heating could be continued without substantially changing the overall heat generation amount. In this embodiment, the cylindrical body 1 is made of a vinyl chloride pipe for water supply, but a metal pipe such as a stainless steel pipe may be used instead, and it can be used for medical equipment that heats blood while flowing inside it. It can also be applied to In such a case, the cylindrical part in which the heating filament 5 is tightly wound has a uniform temperature distribution and no local high temperature areas appear, so it not only has excellent heating efficiency but also can heat the blood without changing its quality. can be heated gently, making it suitable for medical equipment such as artificial dialysis machines. Further, a plurality of pairs of electrode bodies may be provided and a voltage may be applied to each pair, respectively, or the electrode bodies may be brought into contact with the outer circumferential side of the heat generating filament wound into a cylindrical shape. [Effects of the invention] As described above, the heating cylinder of the invention is formed by melt-spinning polyethylene to which 20 to 40% conductive carbon is added as a heating filament into a monofilament having a predetermined electrical resistance. is used for the first time, and is characterized by a structure in which it is tightly wound in a cylindrical shape over a predetermined length around the outer periphery of a cylindrical body. As a result of this configuration, the heat generating filament that contacts the cylinder with a constant contact area tightly surrounds the outer circumference of the cylinder, so the cylinder can be heated uniformly and the temperature distribution of the cylinder can be made uniform. It is an excellent product that can improve heating efficiency, can be manufactured at low cost, and can continue heating with almost no change in the overall calorific value even if a part of the heating filament breaks. be effective.

【実用新案登録請求の範囲】 筒体と、20〜40%の導電性カーボンを添加した
ポリエチレンを溶融紡糸して所定の電気抵抗を有
するモノフイラメントとして形成され前記筒体の
外周に所定長さにわたつて筒状に密着巻された発
熱フイラメントと、前記筒体の軸方向に沿つて設
けられ筒状に密着巻された前記発熱フイラメント
の内周部又は外周部に電気的に接触する一対の電
極体とを具備してなる発熱筒体。
[Claims for Utility Model Registration] A cylindrical body, and a monofilament formed by melt-spinning polyethylene to which 20 to 40% conductive carbon has been added and having a predetermined electrical resistance, and a monofilament having a predetermined length attached to the outer periphery of the cylindrical body. A heat generating filament tightly wound in a cylindrical shape, and a pair of electrodes provided along the axial direction of the cylindrical body and electrically contacting an inner circumferential portion or an outer circumferential portion of the heat generating filament tightly wound in a cylindrical shape. A heat generating cylinder body comprising a body and a body.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本考案の一実施例を示し、第1図は縦断
面図、第2図は一部を破断して示す拡大縦断面
図、第3図は第2図のIII方向から見た拡大側面図
である。 図面中、1は筒体、2は絶縁材、3,4は電極
体、5は発熱フイラメントである。
The drawings show an embodiment of the present invention, in which Fig. 1 is a longitudinal sectional view, Fig. 2 is an enlarged longitudinal sectional view partially cut away, and Fig. 3 is an enlarged side view seen from direction III in Fig. 2. It is a diagram. In the drawings, 1 is a cylinder, 2 is an insulating material, 3 and 4 are electrode bodies, and 5 is a heat generating filament.

JP16739582U 1982-11-04 1982-11-04 heating cylinder Granted JPS5971599U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16739582U JPS5971599U (en) 1982-11-04 1982-11-04 heating cylinder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16739582U JPS5971599U (en) 1982-11-04 1982-11-04 heating cylinder

Publications (2)

Publication Number Publication Date
JPS5971599U JPS5971599U (en) 1984-05-15
JPH0310633Y2 true JPH0310633Y2 (en) 1991-03-15

Family

ID=30366231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16739582U Granted JPS5971599U (en) 1982-11-04 1982-11-04 heating cylinder

Country Status (1)

Country Link
JP (1) JPS5971599U (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007263348A (en) * 2006-03-30 2007-10-11 Nitta Moore Co Fluid heating tube and its heating method
JP2007263193A (en) * 2006-03-28 2007-10-11 Nitta Moore Co Fluid heating tube and its heating method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4972729A (en) * 1972-10-05 1974-07-13
JPS5211946B2 (en) * 1974-05-31 1977-04-04

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5420294Y2 (en) * 1975-07-15 1979-07-23
JPH0141187Y2 (en) * 1979-02-13 1989-12-06

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4972729A (en) * 1972-10-05 1974-07-13
JPS5211946B2 (en) * 1974-05-31 1977-04-04

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007263193A (en) * 2006-03-28 2007-10-11 Nitta Moore Co Fluid heating tube and its heating method
JP2007263348A (en) * 2006-03-30 2007-10-11 Nitta Moore Co Fluid heating tube and its heating method
JP4711132B2 (en) * 2006-03-30 2011-06-29 ニッタ株式会社 Fluid heating tube and heating method thereof

Also Published As

Publication number Publication date
JPS5971599U (en) 1984-05-15

Similar Documents

Publication Publication Date Title
FI75464C (en) Elongated heating devices.
CA1103202A (en) Ozone generator
US4271350A (en) Blanket wire utilizing positive temperature coefficient resistance heater
JP2704430B2 (en) Electric heating cable and method of assembling the same
US7120354B2 (en) Gases delivery conduit
US4309597A (en) Blanket wire utilizing positive temperature coefficient resistance heater
CA1274570A (en) Flexible heating assembly
CN100569028C (en) Positive temp coefficient high polymer semiconductor temp control heatingcable and manufacture method thereof
CN100423350C (en) Microcell electrochemical devices and assemblies with corrosion-resistant current collectors, and method of making the same
JPH0310633Y2 (en)
DE3243061A1 (en) Flexible, electrical extendable heating element
JP2955953B2 (en) Heating tube
KR100701263B1 (en) A heater line
CN212851073U (en) Heating wire
CN212463544U (en) Ceramic silicon rubber constant-power electric tracing band
CN209199621U (en) A kind of water tree resistant power cable
JPH0896942A (en) Self temperature control type heating wire
KR102533595B1 (en) Bundled heating wire
JP2541215B2 (en) Filiform heating element and manufacturing method thereof
CN110164591A (en) High-power cooling type charging pile cable and its manufacturing method
JPH044590A (en) Self temp controlling heat emitting element
JPH0371811A (en) Heating device
JPS63270865A (en) Production of yarn like far infrared ray emitting heat generator
JPH076104B2 (en) Method of manufacturing heating element
JPH105849A (en) Lead encasing press