JPH0310593B2 - - Google Patents

Info

Publication number
JPH0310593B2
JPH0310593B2 JP59052020A JP5202084A JPH0310593B2 JP H0310593 B2 JPH0310593 B2 JP H0310593B2 JP 59052020 A JP59052020 A JP 59052020A JP 5202084 A JP5202084 A JP 5202084A JP H0310593 B2 JPH0310593 B2 JP H0310593B2
Authority
JP
Japan
Prior art keywords
crystal
single crystal
furnace
growth furnace
crystal growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59052020A
Other languages
Japanese (ja)
Other versions
JPS60195087A (en
Inventor
Hideo Suzuki
Takashi Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP5202084A priority Critical patent/JPS60195087A/en
Publication of JPS60195087A publication Critical patent/JPS60195087A/en
Publication of JPH0310593B2 publication Critical patent/JPH0310593B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/14Heating of the melt or the crystallised materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】 (技術分野) 本発明は、強誘電体結晶などの単結晶の製造に
適した結晶取出機構付回転引き上げ単結晶育成炉
に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a rotary pulling single crystal growth furnace with a crystal extraction mechanism suitable for manufacturing single crystals such as ferroelectric crystals.

(発明の背景) 従来、LiNbO3、LiTaO3等の強誘電体単結晶
は、主にチヨコラルスキー法(以下CZ法と略す)
によつて育成されており、高品質で大形のものが
得られている。
(Background of the invention) Conventionally, ferroelectric single crystals such as LiNbO 3 and LiTaO 3 have been mainly produced using the Czyochoralski method (hereinafter abbreviated as CZ method).
It is cultivated by a variety of methods, producing high-quality and large-sized plants.

これらの結晶は、融点が高いことなど、育成上
困難な点もあるが、固相で結晶構造が変化する構
造相移転を有しないために、育成は比較的容易で
ある。
Although these crystals have some difficulties in growing, such as their high melting point, they are relatively easy to grow because they do not have structural phase transition in which the crystal structure changes in the solid phase.

近年、波長変換用の電気光学材料の開発が進み
LiNbO3結晶はこの用途に用いられる。しかしな
がらLiNbO3結晶を強力なレーザー光で照射する
と、光損傷が生じ白濁するために、応用上好まし
くない場合がある。
In recent years, the development of electro-optic materials for wavelength conversion has progressed.
LiNbO 3 crystals are used for this purpose. However, irradiating LiNbO 3 crystals with strong laser light may cause optical damage and become cloudy, which may not be desirable for practical applications.

これに変わるものとして、最近、KNbO3結晶
やKTP(KTiOPO4)結晶が注目されている。こ
れらの結晶は、光損傷に対して高い閾値を持ち他
の光学定数もLiNbO3結晶より優れている。この
ように高い性能を有しながら、これらの結晶の応
用例が少ないのは、この結晶の育成が極めて難し
いからである。
As alternatives to this, KNbO 3 crystals and KTP (KTiOPO 4 ) crystals have recently attracted attention. These crystals have a high threshold for photodamage and other optical constants that are superior to LiNbO 3 crystals. Although these crystals have such high performance, there are few applications for these crystals because it is extremely difficult to grow them.

この両結晶は育成法が類似しているので、ここ
ではKNbO3結晶に限定して説明する。
Since the growth methods for both of these crystals are similar, the explanation will be limited to the KNbO 3 crystal here.

このKNbO3結晶は、カイロポーラス法と呼ば
れる方法で育成される。
This KNbO 3 crystal is grown using a method called the chiroporous method.

カイロポーラス法は、種結晶を回転させ融液に
つけたまま、融液温度を徐々に下げ、液中で結晶
させる方法であり、種結晶を0.2mm/h程度の速
度で引き上げる。
The chiroporous method is a method in which the seed crystal is rotated and placed in the melt, and the temperature of the melt is gradually lowered to cause crystallization in the liquid, and the seed crystal is pulled up at a speed of about 0.2 mm/h.

育成用の結晶炉は、CZ法のものと全く同じで
良い。育成された結晶の形状は、高々、30×30×
10mm3のブロツク状のもので、大きな結晶は得ら
れていない。
The crystal growth furnace may be exactly the same as that used in the CZ method. The shape of the grown crystal is at most 30×30×
It was in the form of blocks of 10 mm 3 and no large crystals were obtained.

KNbO3は、435℃と225℃に構造相転移点があ
るために、育成した結晶を融液から切り離した
後、室温まで徐冷する際に、上記の温度で結晶に
欠陥が生じる場合がある。
Since KNbO 3 has structural phase transition points at 435℃ and 225℃, defects may occur in the crystal at the above temperatures when the grown crystal is separated from the melt and then slowly cooled to room temperature. .

そこで、従来の育成方法では、切り離した後炉
内で、500℃付近まで10℃/hで徐冷し、それよ
り低い温度領域では3〜5℃/hで徐冷した。
Therefore, in the conventional growth method, after separation, the material was slowly cooled in a furnace at a rate of 10° C./h to around 500° C., and at a rate of 3 to 5° C./h in a lower temperature range.

これは、LiNbO3結晶の場合50℃/hで徐冷可
能であるのと比べ、格段に遅く、結晶を炉外へ取
り出すのに10日以上も要した。その間、結晶育成
炉が占有されることになり、結晶育成炉の利用効
率が悪かつた。
This was much slower than LiNbO 3 crystals, which can be slowly cooled at 50°C/h, and it took more than 10 days to take the crystals out of the furnace. During this time, the crystal growth furnace was occupied, resulting in poor usage efficiency of the crystal growth furnace.

また、引上炉内で温度は、液面から上方で離れ
るに従つて急激に下がり、温度勾配が大きい。
Moreover, the temperature in the pulling furnace decreases rapidly as it moves away from the liquid level above, and the temperature gradient is large.

このためにKNbO3結晶のように欠陥が生じ易
い結晶を引上炉内で徐冷することは好ましくな
い。
For this reason, it is not preferable to slowly cool crystals that are prone to defects, such as KNbO 3 crystals, in a pulling furnace.

上述の二つの理由から、融液から結晶を切り離
した後は、結晶の温度を急激に変化させることな
く炉外へ取り出し、その結晶を、他の温度均一性
の良い電気炉で徐冷する必要がある。
For the two reasons mentioned above, after separating the crystal from the melt, it is necessary to take it out of the furnace without causing a sudden change in the temperature of the crystal, and then slowly cool the crystal in another electric furnace with good temperature uniformity. There is.

その際、従来から一般的に用いられてきた回転
引上結晶炉の構造を大幅に変更することなく、目
的とする性能を有する結晶を得られることが、実
用上望まれる。
In this case, it is practically desirable to be able to obtain crystals having the desired performance without significantly changing the structure of the rotary pulling crystal furnace that has been commonly used in the past.

まず第1図を参照して従来の回転引き上げ単結
晶炉の構造を簡単に説明する。
First, the structure of a conventional rotary pulling single crystal furnace will be briefly explained with reference to FIG.

第1図は、従来からCZ法に用いられている高
周波加熱方式単結晶炉の例を示す断面図である。
FIG. 1 is a sectional view showing an example of a high-frequency heating type single crystal furnace conventionally used in the CZ method.

セラミツク等の保温用断熱材8の中心部に白金
ルツボ6が配置されており、その上部に白金製ア
フターヒータ7が配置されている。
A platinum crucible 6 is placed in the center of a heat-retaining heat insulating material 8 such as ceramic, and a platinum after-heater 7 is placed above it.

保温用断熱材8外側に石英ガラス管9が配置さ
れ、その外側に図示を省略した加熱用の高周波コ
イルが配置されている。
A quartz glass tube 9 is placed outside the heat-retaining heat insulating material 8, and a high-frequency heating coil (not shown) is placed outside the quartz glass tube 9.

白金ルツボ6内には結晶素材融液3が溶融状態
で収容されている。白金ルツボ6の底面には温度
センサ16が配置され常に結晶素材融液3の温度
が検出され、温度制御に利用される。
A crystal material melt 3 is contained in a molten state in a platinum crucible 6. A temperature sensor 16 is arranged on the bottom surface of the platinum crucible 6 to constantly detect the temperature of the crystal material melt 3, and is used for temperature control.

回転および引き上げ用シヤフト5の下端には結
晶支持棒4が固定されており、下端に固定された
種結晶1に連続して結晶2が成長させられ引き上
げられる。
A crystal support rod 4 is fixed to the lower end of the rotating and pulling shaft 5, and a crystal 2 is grown and pulled up continuously from a seed crystal 1 fixed to the lower end.

このような引上炉で重要な点は、炉内の保温性
を良くすることであり、余分な空間を極力少なく
するために断熱材を多用して稠密にする必要があ
る。そのため炉内に加熱用部分等を設置、駆動す
る場合には、なるべく小形のものが好ましい。
An important point in such a pulling furnace is to improve heat retention inside the furnace, and in order to minimize excess space, it is necessary to use a large amount of heat insulating material to make the furnace dense. Therefore, when installing and driving a heating part etc. in the furnace, it is preferable to make it as small as possible.

引き上げられた結晶2は、育成御、融液面から
切り離し、室温まで徐冷する。
The pulled crystal 2 is grown, separated from the melt surface, and slowly cooled to room temperature.

第2図は、融液面から上方の温度勾配の位置例
を示すグラフである。従来の単結晶炉でKNbO3
結晶を育成した場合を例にして示してある。
FIG. 2 is a graph showing an example of the position of the temperature gradient above the melt surface. KNbO 3 in conventional single crystal furnace
An example is shown in which a crystal is grown.

温度勾配は、結晶素材融液の種類、その充填
量、他に依存するため一概には言えないが、融液
面直上で10〜50℃/cmである。
Although the temperature gradient cannot be generalized because it depends on the type of crystal material melt, its filling amount, and other factors, it is 10 to 50° C./cm just above the melt surface.

KNbO3結晶をこのままで徐冷することは、構
造相転移温度領域450〜200℃間で結晶内の温度勾
配により欠陥が生じる可能性が大きい。
If the KNbO 3 crystal is allowed to cool as it is, there is a high possibility that defects will occur due to the temperature gradient within the crystal in the structural phase transition temperature range of 450 to 200°C.

ただし、600℃程度までは温度差があつても欠
陥は生じにくいと考えられる。
However, it is thought that defects are unlikely to occur even if there is a temperature difference up to about 600°C.

(発明の目的) 本発明の目的は必ずしも大形の結晶を必要とは
しないが、欠陥の発生を極力防止するために極め
て遅い徐冷速度が要求される結晶の育成に適した
単結晶育成炉が提供することにある。
(Object of the Invention) The object of the present invention is to provide a single crystal growth furnace suitable for growing crystals that do not necessarily require large crystals, but require an extremely slow slow cooling rate to prevent the occurrence of defects as much as possible. is to provide.

(発明の構成) 前記目的を達成するために、本発明による単結
晶育成炉は、回転および上下動可能な回転および
引上用シヤフト、前記回転および引上用シヤフト
の同心で着脱可能に支持された結晶支持棒を有し
結晶素材融液より単結晶を成長させながら引き上
げる引上機構をもつ単結晶育成炉において、前記
単結晶育成炉の上方向から結晶素材融液表面近く
まで前記結晶支持棒と同心で独立して上下可能で
あり温度検出および制御可能な筒状のヒータと、
前記引上機構に貫通され、2以上に分割された断
熱材よりなり、前記結晶支持棒を支持して中央に
前記筒状のヒータを収容する密閉内部空間を形成
することができ、前記単結晶育成炉の上側に前記
炉から離脱可能に配置される保温部とを含み、前
記筒状のヒータを前記結晶素材融液より分離させ
られた単結晶の外周に下降させ、前記ヒータを前
記結晶とともに前記保温部まで上昇させ、前記保
温部に収容して結晶を前記単結晶育成炉の前記引
上機構の前記回転および引上用シヤフトより分離
し、前記ヒータと前記結晶を収容した前記保温部
を前記炉から分離するように構成されている。
(Structure of the Invention) In order to achieve the above object, a single crystal growth furnace according to the present invention includes a rotating and pulling shaft that can rotate and move up and down, and a rotating and pulling shaft that is removably supported concentrically with the rotating and pulling shaft. In a single crystal growth furnace having a pulling mechanism that pulls up a single crystal from a crystal material melt while growing it, the crystal support rod extends from the top of the single crystal growth furnace to near the surface of the crystal material melt. A cylindrical heater that is concentric with the heater and can be moved up and down independently, and that can detect and control temperature.
The single crystal can be penetrated by the pulling mechanism and made of a heat insulating material divided into two or more parts to support the crystal support rod and form a sealed internal space in which the cylindrical heater is housed in the center. a heat-retaining part disposed above the growth furnace so as to be detachable from the furnace; the cylindrical heater is lowered to the outer periphery of the single crystal separated from the crystal material melt, and the heater is moved together with the crystal; The crystal is raised to the heat-retaining part and housed in the heat-retaining part, and the crystal is separated from the rotating and pulling shaft of the pulling mechanism of the single crystal growth furnace, and the heater and the heat-retaining part containing the crystal are separated. The furnace is configured to be separate from the furnace.

(実施例の説明) 以下、図面等を参照して本発明をさらに詳しく
説明する。
(Description of Examples) Hereinafter, the present invention will be described in more detail with reference to the drawings and the like.

第3図は本発明による単結晶育成炉の実施例を
示す断面図である。第1図で説明した従来の単結
晶育成炉と共通する部分については同一の数字を
付して説明を省略する。
FIG. 3 is a sectional view showing an embodiment of a single crystal growth furnace according to the present invention. Portions common to the conventional single crystal growth furnace described in FIG. 1 are given the same numerals and the description thereof will be omitted.

小形ヒータ10は、内径30mm、厚さ5mm、長さ
60mmの円筒状のセラミツクヒータである。
The small heater 10 has an inner diameter of 30 mm, a thickness of 5 mm, and a length.
This is a 60mm cylindrical ceramic heater.

この小形ヒータ10は、800℃程度まで加熱で
きる能力を持つており、電力供給線11から電力
の供給を受ける。
This small heater 10 has the ability to heat up to about 800° C., and receives power from a power supply line 11.

またこの小形ヒータ10の温度は熱電対12で
常に監視されている。
Further, the temperature of this small heater 10 is constantly monitored by a thermocouple 12.

電力供給線11と熱電対12は、各々はセラミ
ツクで被覆されている。
The power supply line 11 and thermocouple 12 are each coated with ceramic.

炉上部には、焼成用のセラミツク耐火物で作ら
れた保温部13が配置されている。
A heat retaining section 13 made of ceramic refractory for firing is arranged in the upper part of the furnace.

金属性の円板14,15は前記保温部13の空
間を確保し、前記保温部13を取り外し可能に支
持するための構造である。
The metal discs 14 and 15 have a structure for securing a space for the heat retaining section 13 and supporting the heat retaining section 13 in a removable manner.

第3図に示されているように、育成した結晶2
を融液3から引き上げ分離した状態で、小形ヒー
タ10を降下させ、小形ヒータ10内に結晶を収
納する。そして、結晶と小形ヒータ10を一体に
上昇させる。
As shown in Figure 3, the grown crystal 2
With the crystals pulled up and separated from the melt 3, the small heater 10 is lowered and the crystals are housed in the small heater 10. Then, the crystal and the small heater 10 are raised together.

小形ヒータは、PID型温度制御装置により、熱
電対があらかじめ設定した起電力を維持するよう
に、供給電力を制御している。これによつて、
600℃で±5℃程度の制御ができる。
The small heater uses a PID temperature control device to control the power supplied so that the thermocouple maintains the preset electromotive force. By this,
It can be controlled within ±5℃ at 600℃.

第4図は保温部等を取り出して示した斜視図で
ある。
FIG. 4 is a perspective view showing the heat retaining part etc. taken out.

保温部13は厚みを持つ円板を2分割した形状
で分割線を含む中心部に前記小形ヒータ10を受
け入れる円筒状の空間が設けられている。
The heat retaining section 13 has the shape of a thick disk divided into two parts, and a cylindrical space for receiving the small heater 10 is provided in the center including the dividing line.

保温部13の各部は前記小形ヒータ10を受け
入れる前は第4図に示すように開いた状態にあ
り、ヒータ10と結晶2が保温部13の高さ位置
に引き上げられたとき密封する。
Each part of the heat retaining part 13 is in an open state as shown in FIG. 4 before receiving the small heater 10, and is sealed when the heater 10 and the crystal 2 are raised to the height of the heat retaining part 13.

そして結晶支持棒4と回転引上棒5を分離す
る。保温部13は結晶支持棒4の腹部を上側の孔
で挟みつけ内部に小形ヒータ10と結晶2を収容
した状態で結晶育成炉から取り外される。
Then, the crystal support rod 4 and the rotary pulling rod 5 are separated. The heat retaining part 13 is removed from the crystal growth furnace with the abdomen of the crystal support rod 4 sandwiched between the upper holes and the small heater 10 and the crystal 2 accommodated therein.

取り外された保温部13は、徐冷専用炉等に移
される。
The removed heat retaining section 13 is transferred to a slow cooling furnace or the like.

(発明の効果) 本発明による単結晶育成炉は、以上のように構
成され、結晶を保温部に収容して、単結晶育成炉
から取り外して除冷することができるから、単結
晶育成炉の利用効率を高めることができる。
(Effects of the Invention) The single crystal growth furnace according to the present invention is configured as described above, and since the crystal can be stored in the heat insulating part and removed from the single crystal growth furnace to be slowly cooled, the single crystal growth furnace can be easily cooled. Utilization efficiency can be increased.

従来の単結晶育成炉を用いたときは、20×20×
10mm3程度の大きさのKNbO3単結晶を育成し、室
温まで徐冷するのに約10日を要した。本発明によ
る単結晶育成炉では結晶を引上げ切り離した後
600℃程度まで徐冷するのに2日、結晶とヒータ
を保温部に収納するのに1日、計3日で引上炉か
ら結晶を取り出すことができる。
When using a conventional single crystal growth furnace, 20×20×
It took about 10 days to grow a KNbO 3 single crystal with a size of about 10 mm 3 and slowly cool it to room temperature. In the single crystal growth furnace according to the present invention, after the crystal is pulled up and separated,
It takes two days to gradually cool the crystals to about 600°C, and one day to store the crystals and the heater in the heat insulating section, making it possible to take out the crystals from the pulling furnace in three days in total.

さらに、保温部13から取り出された結晶は、
そのまま徐冷専用炉で熱処理できるために、構造
相転移温度領域で生じる欠陥をなくし、良質の
KNbO3結晶を得ることができた。
Furthermore, the crystals taken out from the heat retention part 13 are
Since it can be heat-treated directly in a dedicated slow cooling furnace, defects that occur in the structural phase transition temperature region are eliminated, resulting in high-quality products.
We were able to obtain KNbO 3 crystals.

さらに、本発明は、従来の回転引上炉の構造を
大幅に変更する必要がないので従来の炉にも適用
可能である。
Furthermore, the present invention is applicable to conventional rotary pulling furnaces since it is not necessary to significantly change the structure of the furnaces.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の高周波加熱方式回転引上単結晶
炉の概略縦断面図である。第2図は前記溶融炉に
おける融液面から上方向の温度勾配を示すグラフ
である。第3図は本発明の単結晶育成炉の概略縦
断面図である。第4図は小形ヒータと結晶を収納
し炉外へ取り出すことができる保温部の斜視図で
ある。 1……種結晶、2……引き上げられた単結晶、
3……結晶素材融液、4……結晶支持棒、5……
回転およびび引上用シヤフト、6……白金ルツ
ボ、7……白金製アフターヒータ、8……保温用
断熱材、9……コルツ管、10……小形ヒータ、
11……ヒータへの電力供給線、12……熱電
対、13……保温部。
FIG. 1 is a schematic longitudinal sectional view of a conventional high-frequency heating rotary pulling single crystal furnace. FIG. 2 is a graph showing the temperature gradient upward from the melt surface in the melting furnace. FIG. 3 is a schematic longitudinal sectional view of the single crystal growth furnace of the present invention. FIG. 4 is a perspective view of a heat insulating section that accommodates a small heater and crystals and can be taken out of the furnace. 1... Seed crystal, 2... Pulled single crystal,
3...Crystal material melt, 4...Crystal support rod, 5...
Shaft for rotation and lifting, 6...Platinum crucible, 7...Platinum after heater, 8...Insulating material for heat retention, 9...Corts tube, 10...Small heater,
11... Power supply line to the heater, 12... Thermocouple, 13... Heat retention unit.

Claims (1)

【特許請求の範囲】 1 回転および上下動可能な回転および引上用シ
ヤフト、前記回転および引上用シヤフトに同心で
着脱可能に支持された結晶支持棒を有し結晶素材
融液より単結晶を成長させながら引き上げる引上
機構をもつ単結晶育成炉において、前記単結晶育
成炉の上方向から結晶素材融液表面近くまで前記
結晶支持棒と同心で独立して上下可能であり温度
検出および制御可能な筒状のヒータと、前記引上
機構に貫通され、2以上に分割された断熱材より
なり、前記結晶支持棒を支持して中央に前記筒状
のヒータを収容する密閉内部空間を形成すること
ができ、前記単結晶育成炉の上側に前記炉から離
脱可能に配置される保温部とを含み、前記筒状の
ヒータを前記結晶素材融液より分離させられた単
結晶の外周に下降させ、前記ヒータを前記結晶と
ともに前記保温部まで上昇させ、前記保温部に収
容して結晶を前記単結晶育成炉の前記引上機構の
前記回転および引上用シヤフトより分離し、前記
ヒータと前記結晶を収容した前記保温部を前記炉
から分離するように構成したことを特徴とする単
結晶育成炉。 2 前記単結晶育成炉は、KNbO3単結晶育成炉
である特許請求の範囲第1項記載の単結晶育成
炉。
[Claims] 1. A rotating and lifting shaft that can rotate and move up and down, and a crystal support rod that is removably supported concentrically with the rotating and lifting shaft, and which collects single crystals from a crystal material melt. In a single crystal growth furnace that has a pulling mechanism that pulls up while growing, the single crystal growth furnace can be moved up and down independently from the top of the single crystal growth furnace to near the surface of the crystal material melt concentrically with the crystal support rod, and temperature can be detected and controlled. a cylindrical heater, and a heat insulating material penetrated by the pulling mechanism and divided into two or more parts, forming a sealed internal space that supports the crystal support rod and accommodates the cylindrical heater in the center. and a heat insulating part disposed on the upper side of the single crystal growth furnace so as to be removable from the furnace, and the cylindrical heater is lowered to the outer periphery of the single crystal separated from the crystal material melt. , the heater is raised together with the crystal to the heat retaining section, the crystal is housed in the heat retaining section, and the crystal is separated from the rotating and pulling shaft of the pulling mechanism of the single crystal growth furnace; A single-crystal growth furnace characterized in that the heat-retaining section containing the above is separated from the furnace. 2. The single crystal growth furnace according to claim 1, wherein the single crystal growth furnace is a KNbO 3 single crystal growth furnace.
JP5202084A 1984-03-16 1984-03-16 Furnace for growing single crystal Granted JPS60195087A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5202084A JPS60195087A (en) 1984-03-16 1984-03-16 Furnace for growing single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5202084A JPS60195087A (en) 1984-03-16 1984-03-16 Furnace for growing single crystal

Publications (2)

Publication Number Publication Date
JPS60195087A JPS60195087A (en) 1985-10-03
JPH0310593B2 true JPH0310593B2 (en) 1991-02-14

Family

ID=12903126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5202084A Granted JPS60195087A (en) 1984-03-16 1984-03-16 Furnace for growing single crystal

Country Status (1)

Country Link
JP (1) JPS60195087A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2614404B1 (en) * 1987-04-23 1989-06-09 Snecma CASTING OVEN FOR PARTS WITH ORIENTED STRUCTURE, WITH MOVABLE THERMAL SCREEN
KR100293095B1 (en) * 1996-02-29 2001-10-25 고지마 마타오 Single Crystal Enhancement Method and Single Crystal Enhancement Device
CN103643292B (en) * 2013-12-27 2016-07-06 中国工程物理研究院化工材料研究所 A kind of method growing lithium niobate crysal with near stoichiometric ratio

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5263877A (en) * 1975-11-22 1977-05-26 Sumitomo Electric Ind Ltd Pulling up apparatus of single crystal
JPS58167491A (en) * 1982-03-25 1983-10-03 フセソユ−ズヌイ・ナウチノ−・イスレドワ−チエルスキ−・インスチツ−ト・モノクリスタルロフ Device for growing single crystal from melt and method of taking out same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5263877A (en) * 1975-11-22 1977-05-26 Sumitomo Electric Ind Ltd Pulling up apparatus of single crystal
JPS58167491A (en) * 1982-03-25 1983-10-03 フセソユ−ズヌイ・ナウチノ−・イスレドワ−チエルスキ−・インスチツ−ト・モノクリスタルロフ Device for growing single crystal from melt and method of taking out same

Also Published As

Publication number Publication date
JPS60195087A (en) 1985-10-03

Similar Documents

Publication Publication Date Title
EP0252537B1 (en) Process for crystal growth of ktiopo4 from solution
US5116456A (en) Apparatus and method for growth of large single crystals in plate/slab form
WO2008086705A1 (en) Crystal producing system used in temperature gradient method by rotating multiple crucibles
US5343827A (en) Method for crystal growth of beta barium boratean
CN108411366A (en) A kind of grower and method of mercurous chloride monocrystal
JPH0357072B2 (en)
JP3907727B2 (en) Single crystal pulling device
JPH0310593B2 (en)
Aggarwal et al. Czochralski and modified Bridgman-Stockbarger growth of pure, Cd2+ and Nd3+ doped benzil single crystals
CN208545514U (en) A kind of grower of mercurous chloride monocrystal
JPS5930795A (en) Apparatus for pulling up single crystal
JPH0315550Y2 (en)
JPH02221184A (en) Method and apparatus for producing single crystal
CN116607215B (en) Growth method and device of lithium niobate crystal
JPS5912632B2 (en) Tanketshuyounohikiagesouchi
KR100276969B1 (en) Mixing apparatus for Potassium niobate melt and method of fabricating Potassium niobate single crystal using the same
JPH0312385A (en) Method for pulling up single crystal of silicone
JPH01290583A (en) Method for growing germanium single crystal
JPS6369791A (en) Duplex crucible
SU147576A1 (en) The method of obtaining single-crystal disks of large diameter
JPH02124792A (en) Method for growing single crystal
JPS63319286A (en) Method for growing single crystal
Bordui et al. Process for crystal growth of KTiOPO 4 from solution
JPH058157B2 (en)
JPH0798717B2 (en) Liquid surface temperature control type single crystal growth method and apparatus