JPH03105237A - Diagnosis of damage of structural member - Google Patents

Diagnosis of damage of structural member

Info

Publication number
JPH03105237A
JPH03105237A JP24185889A JP24185889A JPH03105237A JP H03105237 A JPH03105237 A JP H03105237A JP 24185889 A JP24185889 A JP 24185889A JP 24185889 A JP24185889 A JP 24185889A JP H03105237 A JPH03105237 A JP H03105237A
Authority
JP
Japan
Prior art keywords
replica
damage
unit length
voids
grain boundary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24185889A
Other languages
Japanese (ja)
Inventor
Kazunari Kimura
和成 木村
Kazunari Fujiyama
一成 藤山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP24185889A priority Critical patent/JPH03105237A/en
Publication of JPH03105237A publication Critical patent/JPH03105237A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

PURPOSE:To obtain a highly accurate isolation damage evaluation by applying data of physical and chemical changes in metal organization. CONSTITUTION:After a grinding of a structural member, a first replica for transferring a surface layer metal organization of an object to be inspected corroded and a second replica for transferring the surface layer metal organization ground and corroded again of the same object to be inspected are sampled. An equivalent value of the generation frequency of cumulative voids among voids produced with the first replica is determined from a ratio between the total area thereof and the minimum void surface area and the equivalent value of grain boundary unit length is determined from the grain size generated in the second replica. Then, a diagnosis of a degree of damage is accomplished from the equivalent value of generation frequency of cumulative voids per grain boundary unit length determined and a hardness of the object to be inspected.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) この発明は,例えば蒸気タービンのロータ、化学プラン
ト圧力容器のシェル等に使用される構造部材の損傷診断
法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a method for diagnosing damage to structural members used, for example, in rotors of steam turbines, shells of pressure vessels in chemical plants, and the like.

(従来の技術) 従来、長期間使用されている構造部材の損傷度合を診断
する技術には,解析法と非破壊法とがある.前者は、構
造部材に作用する温度・圧力・蒸気等の条件や運転時間
,起動停止回数、材料特性値等の実データを用いて損傷
度合を有限要素法によって求めるもので、例えばA S
 M E  Boi1erand Pressure 
Vessel Codeにその手法が詳しく述べられて
いる。後者は、超音波探傷装置や硬度計等を用いて構造
部材の強度低下等を認識し、この測定データから損傷度
合を推測するものである. ところで長期間使用されている構造部材では、材料特性
の初期値が時々刻々と低下しており、その初期値がどの
ように変化していったかを知ることは事実上不可能であ
る. 最近になって,硬度測定値を用いて部材初期値の変化の
様相を知る技術として例えば特開昭60−67873号
公報が公表されている。
(Conventional technology) Conventional techniques for diagnosing the degree of damage to structural members that have been used for a long time include analytical methods and non-destructive methods. The former method uses the finite element method to determine the degree of damage using actual data such as conditions such as temperature, pressure, and steam that act on structural members, operating time, number of starts and stops, and material property values.
M E Boi 1erand Pressure
The method is described in detail in the Vessel Code. The latter uses ultrasonic flaw detection equipment, hardness meters, etc. to recognize the decrease in strength of structural members, and estimates the degree of damage from this measurement data. By the way, the initial values of material properties of structural members that have been used for a long period of time decrease over time, and it is virtually impossible to know how those initial values have changed. Recently, for example, Japanese Patent Application Laid-Open No. 60-67873 has been published as a technique for determining changes in the initial value of a member using hardness measurements.

また、構造部材の損傷度合を知るには、金属組織の物理
的ならびに化学的変化を知ることも大切なので、この種
の技術には例えば特開昭59−150901号公報があ
る. (発明が解決しようとする課題) ところでこの種技術では、測定データを用いて損傷度合
を解析、推測することも大切であるが,損傷度合を適確
に知るには、本来、構造部材の物理的・化学的要因にも
とすく金属組織変化を知ることの方がもっと大切である
。金属組織変化は損傷度合を知る上で直接的な要因とな
るからである。
In addition, in order to know the degree of damage to structural members, it is important to know the physical and chemical changes in the metal structure, so this type of technology is disclosed in, for example, Japanese Patent Laid-Open No. 150901/1983. (Problem to be solved by the invention) In this type of technology, it is important to analyze and estimate the degree of damage using measurement data, but in order to accurately know the degree of damage, it is essential to understand the physical properties of structural members. It is even more important to know the changes in metal structure due to physical and chemical factors. This is because changes in metal structure are a direct factor in determining the degree of damage.

ところが、この種の要因を論究したものとして金属組織
上にあらわれるヴォイドの生成から損傷度合を知る技術
がわずかに提案されているものの、その解決方法は必ず
しも十分ではない。というのは、損傷度合は、ヴォイド
の生或の測定だけではこと足りず=結晶粒度変化、さら
に炭化物粗大化の要因も考慮しなければならないからで
ある。これらを究明した提案はいまだ見かけていない。
However, although a few techniques have been proposed that investigate this type of factor and determine the degree of damage from the formation of voids that appear on the metal structure, the solutions are not necessarily sufficient. This is because it is not enough to measure the degree of damage simply by measuring the formation of voids; it is also necessary to consider changes in crystal grain size and factors such as coarsening of carbides. I have yet to see any proposals that address these issues.

この発明は、損傷度合を知る上で,金属組織の変化,つ
まりヴォイドの生成、結晶粒度変化および炭化物粗大化
が重要な因子となっていることに着目して従来の測定技
術よりも一歩前進させた構造部材の損傷診断法を公表す
ることを目的とする。
This invention takes a step further than conventional measurement techniques by focusing on the fact that changes in metal structure, that is, the formation of voids, changes in grain size, and coarsening of carbides, are important factors in determining the degree of damage. The purpose of this study is to publish a method for diagnosing damage to structural members.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) この発明にかかる構造部材の損傷診断法は、研磨後、腐
食させた被検体の表層金属組織を転写する第1第1レプ
リカと、同一被検体を再度研磨・腐食させたその表層金
属組織を転写する第2レプリカとを採取し,第1レプリ
カで生成されているヴォイドのうち、その総表面積と最
小ヴォイド表面積との比から累積ヴォイド発生数相当値
を求め、また上記第2レプリカで生成されている結晶粒
度から結晶粒界単位長相当値を求め、上記求めた累積ヴ
ォイド発生数相当値と結晶粒界単位長相当値を求め,求
めた結晶粒界単位長当りの累積ヴォイド発生数相当値と
上記被検体の硬度とから損傷度合を診断する手法である
. (作用) この発明にかかる構或では、被検体の表層金属組織を転
写する第1レプリカ,第2レプリカから累積ヴォイド発
生数相当値、結晶粒界単位長相当値を求め,これら求め
た値の比と被検体の硬度とから損傷度合を診断する手法
を採っているので、従来よりも一段と高く,適格な精度
を得ることができる。
(Means for Solving the Problems) A method for diagnosing damage to a structural member according to the present invention includes a first replica that transfers the surface metal structure of a corroded object after polishing, and a first replica that transfers the surface metal structure of a corroded object after polishing, and polishes and polishes the same object again. A second replica that transfers the corroded surface metal structure is collected, and a value equivalent to the cumulative number of voids generated is determined from the ratio of the total surface area and the minimum void surface area among the voids generated in the first replica. In addition, the value equivalent to the grain boundary unit length is determined from the grain size generated in the second replica, and the value equivalent to the cumulative number of void occurrences and the value equivalent to the grain boundary unit length determined above are determined. This is a method of diagnosing the degree of damage based on the value equivalent to the cumulative number of voids generated per hit and the hardness of the object. (Function) In the structure according to the present invention, a value equivalent to the cumulative number of void occurrences and a value equivalent to grain boundary unit length are determined from the first replica and the second replica that transfer the surface metal structure of the specimen, and these determined values are calculated. Since the method uses a method of diagnosing the degree of damage from the ratio and the hardness of the object, it is possible to obtain a higher level of accuracy than conventional methods.

(実施例) 以下この発明にかかる構造部材の損傷診断法の一例を説
明する。
(Example) An example of the method for diagnosing damage to a structural member according to the present invention will be described below.

図面はこの発明にかかる構造物材の損傷診断法の概略手
順図である. 先ず,被検体、例えば蒸気タービンロータの中心孔の表
面を研磨する.研磨後,硬度計を用いて被検体の硬度を
測定する.測定後、被検体を再度研磨・エッチングした
後,有機溶剤で洗浄・乾燥させ、レプリカ採取工程に入
る。
The drawing is a schematic procedure diagram of the method for diagnosing damage to structural materials according to the present invention. First, the surface of the center hole of a test object, such as a steam turbine rotor, is polished. After polishing, measure the hardness of the specimen using a hardness meter. After measurement, the specimen is polished and etched again, washed with an organic solvent and dried, and the replica collection process begins.

レプリカ採取は、被検体に有機剤を塗布し、塗布した部
位にフィルムを貼付し,被検体の表層金属組織を転写す
る,いわば型に粘土を押し込んで粘土にあらわれる型の
凹凸を写し出すものと酷似する良く知られた技術である
。こうして第1レプリカが採取される. 次に、同一被検体を再度、研磨・エッチングし、さらに
洗浄・乾燥させ上記と同一手法で第2レプリカを採取す
る。
Replica collection involves applying an organic agent to the specimen, pasting a film on the applied area, and transferring the surface metal structure of the specimen.It is very similar to pressing clay into a mold and copying the irregularities of the mold that appear in the clay. This is a well-known technique. In this way, the first replica is collected. Next, the same specimen is polished and etched again, further washed and dried, and a second replica is collected using the same method as above.

採取された第1レプリカ、第2レプリカ共に、蒸着装置
を用いて転写像を鮮明化し、電子顕微鏡でI[l!察さ
れる.*察結果は、データとして画像処理装置に入力さ
れる。画像処理装置に入力されたデータは第1および第
2金属組織パラメータとして活用する.ここで第1金属
組織パラメータとは金属組織に生威されるヴォイド表面
積の大小をもとにして求める累積ヴォイド発生数相当値
であり、また第2金属組織パラメータとは金属組織に生
戊される結晶粒度をもとにして求める結晶粒界単位長相
当値の意である. 上記第1金属パラメータを求めるに当り、第1レプリカ
の転写像からヴォイド総表面積Svと最小ヴォイド表面
積Svllinを計量する。そして第1金属パラメータ
、つまり累積ヴォイド発生数相当値nyは第1式から求
める。
For both the collected first and second replicas, the transferred images were made clear using a vapor deposition device, and the I[l! It can be seen. *The detection results are input to the image processing device as data. The data input to the image processing device is used as the first and second metallographic parameters. Here, the first metallographic parameter is a value equivalent to the cumulative number of voids generated based on the size of the surface area of voids generated in the metallographic structure, and the second metallographic parameter is the value equivalent to the cumulative number of voids generated in the metallographic structure. It refers to the value equivalent to the grain boundary unit length determined based on the grain size. In determining the first metal parameter, the total void surface area Sv and the minimum void surface area Svllin are measured from the transferred image of the first replica. Then, the first metal parameter, that is, the value ny corresponding to the cumulative number of voids generated, is determined from the first equation.

n v= S v/ S vain         
Q)次に、第2金属パラメータである結晶粒界単位長相
当値Igは、第2レプリカの転写像から結晶粒度Nを計
測し、その計測結果を用いて第2式から求める。
nv=Sv/Svain
Q) Next, the grain boundary unit length equivalent value Ig, which is the second metal parameter, is obtained by measuring the grain size N from the transferred image of the second replica, and using the measurement result from the second equation.

I g=2 ( N + 5 ) / 2      
     ■続いて、上述の通りして求めた累積ヴォイ
ド発生数相当値n9.結晶粒界単位長相当値Igを用い
て第3の金属組織パラメータ(これは結晶粒界単位長当
りの累積ヴォイド発生数相当値の意味)nV&は第3式
から求める. n vg= n v/ I g          (
’)こうして、結晶粒界単位長当りの累積ヴォイド発生
数相当値nagが第3式から求められると,その値と被
検体の硬度値とから構造部材の損傷蓄積度φ。は第4式
で求めることができる。
I g=2 (N + 5) / 2
■Subsequently, the value n9 corresponding to the cumulative number of void occurrences obtained as described above. Using the grain boundary unit length equivalent value Ig, the third metallographic parameter (this means the value equivalent to the cumulative number of voids generated per grain boundary unit length) nV& is determined from the third equation. n vg= n v/I g (
') In this way, when the value nag corresponding to the cumulative number of voids generated per grain boundary unit length is obtained from the third equation, the damage accumulation degree φ of the structural member can be determined from that value and the hardness value of the test object. can be determined using the fourth equation.

φ。= f ( n vg) + g (Hv)   
   ■ここで、f(nvg)は結晶粒界単位長当りの
累積ヴォイド発生数相当値nVg, g(Hv)は被検
体の硬度値Hvをそれぞれ関数としてあらわしたもので
ある. 以上のように構造部材の損傷度合を診断するに当り、重
要な因子であり従来は十分に考慮されていなかったヴォ
イドと結晶粒度の影響は第l,第2レプリカから得られ
る第1、および第2の金属組織パラメータである累積ヴ
ォイド発生数相当値nvと結晶粒界単位長相当値I.を
介して第3の金属組織パラメータである累積ヴォイド発
生数の相当値nV&で考慮され,また、炭化物粗大化の
効果は硬度計測値Hvに反映されている。
φ. = f (n vg) + g (Hv)
■Here, f(nvg) is a value corresponding to the cumulative number of voids generated per unit length of grain boundary nVg, and g(Hv) is a function of the hardness value Hv of the specimen. As mentioned above, when diagnosing the degree of damage to structural members, the effects of voids and grain size, which are important factors but have not been sufficiently considered in the past, are The cumulative void occurrence number equivalent value nv and the grain boundary unit length equivalent value I.2 are metal structure parameters of No. 2. The equivalent value nV& of the cumulative number of void occurrences, which is the third metallographic parameter, is taken into consideration via the above equation, and the effect of carbide coarsening is reflected in the hardness measurement value Hv.

したがって,かかる手法を採れば、今以上に精度の高い
診断結果が得られる。
Therefore, if such a method is adopted, more accurate diagnostic results can be obtained than now.

なお、第1.2、3金属組織パラメータを求めるに当っ
て電子計算機で処理できるようにプログラム化しておけ
ば処理手順が高速化されて非常に好都合である。
In addition, when determining the first, second, and third metallographic parameters, it is very convenient to program the process so that it can be processed by an electronic computer, since the processing procedure can be speeded up.

〔発明の効果〕〔Effect of the invention〕

以上の説明のとおり、この発明にかかる構造部材の診断
法では,金属組織の物理的・化学的変化のデータを加え
た新規な診断法であるから、従来よりも格段と精度の単
位損傷評価が期待される.
As explained above, the method for diagnosing structural members according to the present invention is a new method that adds data on physical and chemical changes in the metal structure, so it is possible to evaluate unit damage much more accurately than before. Be expected.

【図面の簡単な説明】[Brief explanation of drawings]

図面は,この発明にかかる構造部材の診断法の処理手順
を模式化したブロック図である。
The drawing is a block diagram schematically illustrating the processing procedure of the structural member diagnostic method according to the present invention.

Claims (1)

【特許請求の範囲】[Claims] 研磨後、腐食させた被検体の表層金属組織を転写する第
1レプリカと、同一被検体を再度研磨・腐食させたその
表層金属組織を転写する第2レプリカとを採取し、第1
レプリカで生成されているヴォイドのうち、その総表面
積と最小ヴォイド表面積との比から累積ヴォイド発生数
相当値を求め、また上記第2レプリカで生成されている
結晶粒度から結晶粒界単位長相当値を求め、上記求めた
累積ヴォイド発生数相当値と結晶粒界単位長相当値の比
から結晶粒界単位長当りの累積ヴォイド発生数相当値を
求め、求めた結晶粒界単位長当りの累積ヴォイド発生数
相当値と上記被検体の硬度とから損傷度合を診断するこ
とを特徴とする構造部材の損傷診断法。
After polishing, a first replica that transfers the surface metal structure of the corroded object and a second replica that transfers the surface metal structure of the same object that has been polished and corroded again are collected.
Among the voids generated in the replica, the value equivalent to the cumulative number of voids generated is calculated from the ratio of the total surface area and the minimum void surface area, and the value equivalent to the grain boundary unit length is calculated from the grain size generated in the second replica. The value equivalent to the cumulative number of voids generated per grain boundary unit length is calculated from the ratio of the value equivalent to the cumulative number of voids generated above and the value equivalent to the grain boundary unit length, and the cumulative voids per grain boundary unit length are calculated. A method for diagnosing damage to structural members, characterized by diagnosing the degree of damage from a value equivalent to the number of occurrences and the hardness of the object.
JP24185889A 1989-09-20 1989-09-20 Diagnosis of damage of structural member Pending JPH03105237A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24185889A JPH03105237A (en) 1989-09-20 1989-09-20 Diagnosis of damage of structural member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24185889A JPH03105237A (en) 1989-09-20 1989-09-20 Diagnosis of damage of structural member

Publications (1)

Publication Number Publication Date
JPH03105237A true JPH03105237A (en) 1991-05-02

Family

ID=17080561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24185889A Pending JPH03105237A (en) 1989-09-20 1989-09-20 Diagnosis of damage of structural member

Country Status (1)

Country Link
JP (1) JPH03105237A (en)

Similar Documents

Publication Publication Date Title
Tomlinson et al. Thermoelasticity for the analysis of crack tip stress fields—a review
US6789428B2 (en) Method and apparatus for evaluating damage of metal material
CN102317764B (en) Method for the non-destructive and contactless characterisation of a substantially spherical multilayered structure, and related device
CN111751383B (en) Defect depth detection method integrating speckle interference and shearing speckle interference
Ostachowicz et al. Wave propagation in delaminated beam
JP3064107B2 (en) High-temperature damage evaluation method for austenitic heat-resistant steel
CN112858474A (en) Ultrasonic testing method and system for stress of ceramic rock plate
JPH03105237A (en) Diagnosis of damage of structural member
Jeffers et al. A novel technique for the measurement of blade damping using piezoelectric actuators
JPH0313861A (en) Method for detecting damage in metal
JPH09257788A (en) Method for non-destructive judgement for creep damage of crmov steel product
CN114166948A (en) Solid engine burning speed testing method based on ultrasound
Obata et al. Estimating residual stresses of silicon wafer from measured full-field deflection distribution
Schlagwein et al. Non-contact blade vibration measurement analysis using a multi-degree-of-freedom model
JP2001004574A (en) Interface defect inspection method of coating member
Migot et al. Investigations of fatigue crack detection using local vibration techniques: Numerical and experimental studies
Pau et al. Experimental investigation on contact between cylindrical conformal surfaces
Bar-Cohen et al. Rapid characterization of the degradation of composites using plate waves dispersion data
Felahi The modal damping ratio of a Single-Degree-of-Freedom (SDOF)
Wang et al. Deep learning based ultrasonic reconstruction of rough surface morphology
JPH06317500A (en) Method and equipment for evaluating damage on high temperature structural member
JPS62169049A (en) Defect diagnosing apparatus for rotary part
JPH07174681A (en) Method for evaluating damage of high-temperature structural member
CN114034734A (en) Elastic wave method-based concrete high-temperature damage assessment method
JPS6126015B2 (en)