JPH03104872A - Production of oxide superconductor - Google Patents
Production of oxide superconductorInfo
- Publication number
- JPH03104872A JPH03104872A JP1241573A JP24157389A JPH03104872A JP H03104872 A JPH03104872 A JP H03104872A JP 1241573 A JP1241573 A JP 1241573A JP 24157389 A JP24157389 A JP 24157389A JP H03104872 A JPH03104872 A JP H03104872A
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- oxide superconductor
- rare earth
- reducing atmosphere
- thin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002887 superconductor Substances 0.000 title claims abstract description 33
- 238000004519 manufacturing process Methods 0.000 title description 12
- 239000010409 thin film Substances 0.000 claims abstract description 38
- 229910052761 rare earth metal Inorganic materials 0.000 claims abstract description 7
- 239000000758 substrate Substances 0.000 claims abstract description 7
- 229910052747 lanthanoid Inorganic materials 0.000 claims description 6
- 150000002602 lanthanoids Chemical class 0.000 claims description 6
- 229910002480 Cu-O Inorganic materials 0.000 claims 4
- 239000000203 mixture Substances 0.000 abstract description 8
- 238000005470 impregnation Methods 0.000 abstract description 5
- 238000000034 method Methods 0.000 abstract description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 abstract description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 abstract description 4
- 238000000137 annealing Methods 0.000 abstract description 4
- 239000010408 film Substances 0.000 abstract description 3
- 229910052786 argon Inorganic materials 0.000 abstract description 2
- 238000007654 immersion Methods 0.000 abstract description 2
- 229910052757 nitrogen Inorganic materials 0.000 abstract description 2
- 239000000654 additive Substances 0.000 abstract 1
- 230000000996 additive effect Effects 0.000 abstract 1
- 239000000243 solution Substances 0.000 description 10
- 238000004544 sputter deposition Methods 0.000 description 6
- 238000002347 injection Methods 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 101000916225 Schizosaccharomyces pombe (strain 972 / ATCC 24843) Cullin-4 Proteins 0.000 description 2
- 229910002077 partially stabilized zirconia Inorganic materials 0.000 description 2
- 229910052727 yttrium Inorganic materials 0.000 description 2
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 2
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 1
- 229960001759 cerium oxalate Drugs 0.000 description 1
- ZMZNLKYXLARXFY-UHFFFAOYSA-H cerium(3+);oxalate Chemical compound [Ce+3].[Ce+3].[O-]C(=O)C([O-])=O.[O-]C(=O)C([O-])=O.[O-]C(=O)C([O-])=O ZMZNLKYXLARXFY-UHFFFAOYSA-H 0.000 description 1
- VGBWDOLBWVJTRZ-UHFFFAOYSA-K cerium(3+);triacetate Chemical compound [Ce+3].CC([O-])=O.CC([O-])=O.CC([O-])=O VGBWDOLBWVJTRZ-UHFFFAOYSA-K 0.000 description 1
- GHLITDDQOMIBFS-UHFFFAOYSA-H cerium(3+);tricarbonate Chemical compound [Ce+3].[Ce+3].[O-]C([O-])=O.[O-]C([O-])=O.[O-]C([O-])=O GHLITDDQOMIBFS-UHFFFAOYSA-H 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- KZUNJOHGWZRPMI-UHFFFAOYSA-N samarium atom Chemical compound [Sm] KZUNJOHGWZRPMI-UHFFFAOYSA-N 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Chemically Coating (AREA)
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
Abstract
Description
【発明の詳細な説明】
[概要]
酸化物超伝導体の製造方法に係り、特にA−Ce −C
u−0系酸化物超伝導体(但し、Aはランタノイド元
素あるいは希土類元素)の製造方法に関し、
Ceを均一かつ定量的な制御性よく添加して均一な組成
のA−Ce−Cu−0系酸化物超伝導体薄膜を形成し、
超伝導特性を向上させる酸化物超伝導体の製造方法を提
供することを目的とし、基板上にA−Cu−0系薄膜を
形成し、Ceを含む溶液に前記A−Cu−0系薄膜を浸
漬させてCeを含浸させ、Ceを含浸させた前記A−C
u−0系薄膜を還元雰囲気中でアニールし、A−Ce−
C u−0系酸化物超伝導体薄膜を形成するように構成
する.
[産業上の利用分野]
本発明は酸化物超伝導体の製造方法に係り、特にA−C
e−Cu−0系酸化物超伝導体(但し、Aはランタノイ
ド元素あるいは希土類元素)の製造方法に関する.
最近、Y(イットリウム)系やBi(ビスマス)系等の
正孔注入型の酸化物超伝導体の他に、電子注入型の酸化
物超伝導体が提案されている。従来の正孔注入型の酸化
物超伝導体が酸素雰囲気中でのアニールを必要としてい
るのに対し、Ln2−xC e x C LI 0 4
−Y系の電子注入型の酸化物超伝導体は還元雰囲気中で
のアニールを必要とする。[Detailed Description of the Invention] [Summary] This invention relates to a method for producing an oxide superconductor, particularly A-Ce-C.
Regarding the manufacturing method of u-0 series oxide superconductor (where A is a lanthanide element or rare earth element), Ce is added uniformly and with good quantitative control to produce A-Ce-Cu-0 series with a uniform composition. Forming an oxide superconductor thin film,
The aim is to provide a method for producing an oxide superconductor that improves superconducting properties, by forming an A-Cu-0 based thin film on a substrate, and then adding the A-Cu-0 based thin film to a solution containing Ce. Said A-C impregnated with Ce by immersion
The u-0 based thin film is annealed in a reducing atmosphere to form A-Ce-
The structure is configured to form a Cu-0 based oxide superconductor thin film. [Industrial Field of Application] The present invention relates to a method for producing an oxide superconductor, particularly
This article relates to a method for producing an e-Cu-0-based oxide superconductor (where A is a lanthanide element or a rare earth element). Recently, in addition to hole injection type oxide superconductors such as Y (yttrium) type and Bi (bismuth) type, electron injection type oxide superconductors have been proposed. While conventional hole injection type oxide superconductors require annealing in an oxygen atmosphere, Ln2-xC e x C LI 0 4
-Y-based electron injection type oxide superconductors require annealing in a reducing atmosphere.
従って、電子注入型の酸化物超伝導体は電子素子の製造
プロセスに適応し易くなり、例えば配線層として使用す
る等の電子素子への応用が注目されている。Therefore, electron-injection type oxide superconductors are easily adaptable to the manufacturing process of electronic devices, and their application to electronic devices, such as use as wiring layers, is attracting attention.
[従来の技術]
従来の酸化物超伝@体薄膜は、通常、焼結バルクをター
ゲットとして用いるスパッタ法により形成されていた。[Prior Art] Conventional oxide superconducting @body thin films are usually formed by a sputtering method using a sintered bulk as a target.
例えばL n 2−x C e x C u 04−Y
系の場合、Ln(ランタニド)、Ce(セリウム)、C
u(@)等の組成を含む焼結バルクを形成し、この焼結
バルクをターゲットとしてスバッタを行ない、所定の基
板上に形成していた.
?発明が解決しようとする課題]
このように、従来のLnt−x Cex CuO<−y
系酸化物超伝導体薄膜の製造方法においては、スパッタ
法を用いるため、CeがLnに固溶ずる形で取り込まれ
、Ceの均一な添加及び添加量の制御が非常に困難であ
るという問題があった。For example, L n 2-x C e x C u 04-Y
In the case of Ln (lanthanide), Ce (cerium), C
A sintered bulk containing a composition such as u(@) was formed, and sputtering was performed using this sintered bulk as a target to form it on a predetermined substrate. ? Problems to be Solved by the Invention] In this way, the conventional Lnt-x Cex CuO<-y
Since the method for manufacturing oxide superconductor thin films uses sputtering, Ce is incorporated into Ln as a solid solution, making it extremely difficult to add Ce uniformly and to control the amount added. there were.
また、膜組或が変動し易く、超伝導相であるLn x−
x C e x C u O 4−Y相以外にもC e
O 2やLn 2 C e 2 0■等の異相が現わ
れるため、超伝導特性が低下するという問題もあった。In addition, the film composition is easy to change, and the superconducting phase Ln x-
x C e x C u O In addition to the 4-Y phase, C e
There is also the problem that superconducting properties deteriorate because different phases such as O 2 and Ln 2 C e 2 0■ appear.
そこで本発明は、Ceを均一かつ定量的な制御性よく添
加して均一な組成のLn2−x Cex CuO,−,
系酸化物超伝導体薄膜を形威し、超伝導特性を向上させ
る酸化物超伝導体の製造方法を提供することを目的とす
る.
[課題を解決するための手段1
上記課題は、基板上にA − C u−0系薄膜《但し
、Aはランタノイド元素あるいは希土類元素)を形成し
、Ceを含む溶液に前記A−Cu−0系薄膜を浸漬させ
てCeを含浸させ、Ceを含浸させた前記A−Cu−0
系薄膜を還元雰囲気中でアニールし、A−C e−C
u−0系酸化物超伝導体薄膜を形戊することを特徴とす
る酸化物超伝導体の製造方法によって達成される.
[作 用]
すなわち、A−Cu−0系薄膜をCefJ液に浸漬させ
ることによってCeを含浸させるため、Ceが均一に添
加されて、均一な組成のA−Ce−Cu−0系酸化物超
伝導体薄膜が形成される.同時に、A.−Ce−Cu
−0のほぼ単一組成が形成されて、超伝導相でない他の
相の混在が防止される。Therefore, the present invention aims to add Ce uniformly and quantitatively with good controllability to produce Ln2-x Cex CuO,-, with a uniform composition.
The purpose of this study is to provide a method for producing oxide superconductors that improves superconducting properties by forming oxide superconductor thin films. [Means for solving the problem 1 The above problem is to form an A-Cu-0 thin film (where A is a lanthanide element or a rare earth element) on a substrate, and add the A-Cu-0 to a solution containing Ce. The above A-Cu-0 which was impregnated with Ce by immersing the system thin film and impregnating it with Ce.
The system thin film is annealed in a reducing atmosphere, and A-C e-C
This is achieved by a method for manufacturing an oxide superconductor, which is characterized by forming a thin film of a u-0-based oxide superconductor. [Function] That is, since the A-Cu-0-based thin film is impregnated with Ce by immersing it in the CefJ solution, Ce is added uniformly and the A-Ce-Cu-0-based oxide with a uniform composition is superimposed. A conductive thin film is formed. At the same time, A. -Ce-Cu
A substantially single composition of −0 is formed, and the coexistence of other phases other than the superconducting phase is prevented.
また、Ce溶液の濃度及び温度並びにCeの含漫時間を
制御することにより、Ce添加量の定量的な制御が容易
に行なわれる。Further, by controlling the concentration and temperature of the Ce solution and the Ce-inclusion time, the amount of Ce added can be easily controlled quantitatively.
[実施例]
以下、本発明を図示する実施例に基づいて具体的に説明
する.
第1図は本発明の一実施例による酸化物超伝導体の製造
方法を示すフローチャートである。[Example] The present invention will be specifically described below based on an illustrative example. FIG. 1 is a flowchart showing a method for manufacturing an oxide superconductor according to an embodiment of the present invention.
まず、例えばNd.O.とCuOの粉末を混合し、ボー
ルミルで粉砕する(ステyプ1)。続いて、大気又は酸
素雰囲気中において温度850〜950℃で10〜30
時間の仮焼を行なう(ステッ7″2).そしてプレス成
形を行ない(ステップ3)、続いて大気又は酸素雰囲気
中において温度980〜1200℃で10〜30時間の
本焼を行なう(ステップ4)。こうしてNd203とC
uOの焼結バルクによるターゲットを形或する。First, for example, Nd. O. and CuO powder are mixed and ground in a ball mill (Step 1). Subsequently, in the air or oxygen atmosphere at a temperature of 850 to 950°C for 10 to 30 minutes.
Perform calcination for a time (Step 7''2). Then perform press forming (Step 3), and then perform main firing for 10 to 30 hours at a temperature of 980 to 1200°C in air or oxygen atmosphere (Step 4). .In this way, Nd203 and C
A target is formed from a sintered bulk of uO.
次いで、このターゲッ1〜を用いてスパッタリングを行
なう(ステップ5)。すなわち、基板としてMgO又は
PSZ(部分安定化ジルコニア)を用い、この基板を5
00〜700゜Cに加熟して、0、1 丁orrの酸素
雰囲気中でスパッタリングする.こうして、基板上に5
000人のNdt Cul4薄膜を堆積する.
次いで、このNd2Cub.薄膜をCeを含む溶液に浸
漬させることにより、Nd2Cub4薄膜にCeを含浸
させる(ステップ6)。このとき、Ce溶液の溶質とし
ては酢酸セリウムCe (CH= Coo ) s 、
炭酸セリウムCe2 (cos )s ,又はシュウ酸
セリウムCe2 (C2 04 )sを用い、溶媒とし
てはメタノール又はエタノールを用いる.そしてCeの
含浸時間は5〜30時間とする。Next, sputtering is performed using targets 1 to 1 (step 5). That is, MgO or PSZ (partially stabilized zirconia) is used as a substrate, and this substrate is
The sample is heated to 0.000 to 700°C and sputtered in an oxygen atmosphere of 0.1 orr. In this way, 5
Deposit 000 Ndt Cul4 thin films. Next, this Nd2Cub. The Nd2Cub4 thin film is impregnated with Ce by immersing the thin film in a solution containing Ce (step 6). At this time, the solute of the Ce solution is cerium acetate Ce (CH=Coo)s,
Cerium carbonate Ce2(cos)s or cerium oxalate Ce2(C204)s is used, and methanol or ethanol is used as the solvent. The Ce impregnation time is 5 to 30 hours.
なお、このCeの含漫において、Ce溶液の濃度及び温
度並びにCeの含浸時間を制御することにより、Nd2
Cul4薄膜へのCeの添加量を定量的に制御すること
ができる.
次いで、Ceを含浸させた薄膜を、窒素又はアルゴン等
の還元雰囲気中において温度900〜1100゜Cで1
0〜20時間アニールする〈ステップ7)。こうしてN
d2−x Cex Cuba−Y (x0.05〜0
.2)酸化物超伝導体薄膜が形成される。In addition, in this Ce impregnation, by controlling the concentration and temperature of the Ce solution and the Ce impregnation time, Nd2
The amount of Ce added to the Cul4 thin film can be quantitatively controlled. Next, the thin film impregnated with Ce is heated for 1 hour at a temperature of 900 to 1100°C in a reducing atmosphere such as nitrogen or argon.
Anneal for 0 to 20 hours (Step 7). In this way N
d2-x Cex Cuba-Y (x0.05~0
.. 2) An oxide superconductor thin film is formed.
次に、このN dz−x C e x C u 04−
Y ( X=O.05〜0.2)酸化物超伝導体薄膜
の温度一比抵抗特性を、第2図に示す。Next, this N dz-x C e x C u 04-
FIG. 2 shows the temperature-resistivity characteristics of the Y (X=O.05-0.2) oxide superconductor thin film.
第2図のグラフにおいて、従来のスパッタ法によって形
成されたNd2−x Cex CuOi−y酸化物超伝
導体薄膜の場合、破線で示されるように、零抵抗温度T
cが5〜15Kであるのに対して、本実施例の場合は、
零抵抗温度Tcは40Kと高くなっている。すなわち、
明らかに超伝導特性の改善がみられる。In the graph of FIG. 2, in the case of the Nd2-x Cex CuOi-y oxide superconductor thin film formed by the conventional sputtering method, as shown by the broken line, the zero resistance temperature T
While c is 5 to 15K, in the case of this example,
The zero resistance temperature Tc is as high as 40K. That is,
A clear improvement in superconducting properties can be seen.
このように本実施例によれば、スパッタ法を用いて形成
したNdt Cub4薄膜をCe溶液に浸漬させてCe
を含浸させることにより、Nd2Cu O 4薄膜にC
eを均一に添加することができる。As described above, according to this example, the Ndt Cub4 thin film formed using the sputtering method is immersed in a Ce solution to form a Ce
By impregnating Nd2CuO4 thin film with C
e can be added uniformly.
従って、超伝導相でないC e O 2やNd2Ce2
07等の異相の混在が防止され、均一な組成のNdz−
x Cex CuO4−y酸化物超伝導体薄膜を形成す
ることができる.これにより、N d 2−X C e
x C 13 0 4−Y酸化物超伝導体薄膜の超伝導
体特性が向上される.
また、Ce溶液の濃度及び温度並びにCeの含浸時間を
制御することにより、Ce添加量を定量的に制御するこ
とができる.
なお、上記実施例においては、LnとしてNd(ネオジ
ウム〉の場合について述べたが、これに限定されず例え
ばSm(サマリウム)やPr(プロセオジム)等の他の
Lnであってもよい。更にLn系だけでなく、希土類元
素のY(イットリウム)等でもよい.
[発明の効果]
以上のように本発明によれば、A − C u − 0
系薄11!(1Bし、Aはランタノイド元素あるいは希
土類元素)をCe7B液に浸漬させてCeを含浸させた
後、還元雰囲気中でアニールしてA−Ce−Cu−0系
酸化物超伝導体薄膜を形成することにより、Ceが均一
に添加されて、超伝導相でない異相の混在がない均一組
成のA−Ce−Cu−0系酸化物超伝導体薄膜を形成す
ることができると共に、Ce添加量の定量的な制御を行
なうことができる。Therefore, C e O 2 and Nd2Ce2 which are not superconducting phases
Mixing of foreign phases such as 07 is prevented, and Ndz-
x Cex CuO4-y oxide superconductor thin film can be formed. As a result, N d 2-X C e
The superconducting properties of the x C 13 0 4-Y oxide superconductor thin film are improved. Furthermore, by controlling the concentration and temperature of the Ce solution and the Ce impregnation time, the amount of Ce added can be quantitatively controlled. In the above embodiments, the case where Nd (neodymium) is used as Ln is described, but it is not limited to this, and other Ln such as Sm (samarium) or Pr (proseodymium) may be used.Furthermore, Ln-based In addition, the rare earth element Y (yttrium), etc. may also be used. [Effects of the Invention] As described above, according to the present invention, A-Cu-0
Thin 11! (1B, A is a lanthanide element or rare earth element) is immersed in Ce7B solution to impregnate Ce, and then annealed in a reducing atmosphere to form an A-Ce-Cu-0 based oxide superconductor thin film. By doing so, it is possible to uniformly add Ce and form an A-Ce-Cu-0 based oxide superconductor thin film with a uniform composition without the presence of a foreign phase that is not a superconducting phase, and it is also possible to quantify the amount of Ce added. control.
これにより、A−Ce−Cu−0系酸化物超伝導体薄膜
の超伝導特性を向上させることができる.Thereby, the superconducting properties of the A-Ce-Cu-0 based oxide superconductor thin film can be improved.
第1図は本発明の一実施例による酸化物超伝導体の製造
方法を示すフローチャート、
第2図は本発明の一実施例による酸化物超伝導体の特性
を示すグラフである。FIG. 1 is a flowchart showing a method for manufacturing an oxide superconductor according to an embodiment of the present invention, and FIG. 2 is a graph showing characteristics of an oxide superconductor according to an embodiment of the present invention.
Claims (1)
ド元素あるいは希土類元素)を形成し、Ceを含む溶液
に前記A−Cu−O系薄膜を浸漬させてCeを含浸させ
、 Ceを含浸させた前記A−Cu−O系薄膜を還元雰囲気
中でアニールし、 A−Ce−Cu−O系酸化物超伝導体薄膜を形成する ことを特徴とする酸化物超伝導体の製造方法。[Claims] An A-Cu-O thin film (where A is a lanthanide element or a rare earth element) is formed on a substrate, and the A-Cu-O thin film is immersed in a solution containing Ce to remove Ce. Oxide superconductor characterized in that the A-Cu-O based thin film impregnated with Ce is annealed in a reducing atmosphere to form an A-Ce-Cu-O based oxide superconductor thin film. How the body is manufactured.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1241573A JPH03104872A (en) | 1989-09-18 | 1989-09-18 | Production of oxide superconductor |
US07/584,345 US5110791A (en) | 1989-09-18 | 1990-09-18 | Method for producing oxide superconductor |
EP19900310180 EP0419200A3 (en) | 1989-09-18 | 1990-09-18 | Method for producing oxide superconductors |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1241573A JPH03104872A (en) | 1989-09-18 | 1989-09-18 | Production of oxide superconductor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03104872A true JPH03104872A (en) | 1991-05-01 |
Family
ID=17076336
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1241573A Pending JPH03104872A (en) | 1989-09-18 | 1989-09-18 | Production of oxide superconductor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03104872A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006199440A (en) * | 2005-01-20 | 2006-08-03 | Chugoku Electric Power Co Inc:The | Approach alarm device |
-
1989
- 1989-09-18 JP JP1241573A patent/JPH03104872A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006199440A (en) * | 2005-01-20 | 2006-08-03 | Chugoku Electric Power Co Inc:The | Approach alarm device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0330214B1 (en) | High-Tc oxide superconductor and method for producing the same | |
JPS63232208A (en) | Manufacture of conductive or superconductive thin film | |
JPH03104872A (en) | Production of oxide superconductor | |
KR900004047A (en) | Deposition Method of Bi-based Composite Oxide Superconducting Thin Films | |
JPH02167820A (en) | Method for forming tl-base multiple oxide superconducting thin film | |
JP2817048B2 (en) | Method for producing Bi-Sr-Ca-Cu-O-based superconducting film by screen printing | |
JP2579311B2 (en) | How to prevent deterioration of superconductors | |
JP2969273B2 (en) | Surface stabilization method for oxide superconducting bulk | |
US5110791A (en) | Method for producing oxide superconductor | |
JPH01252533A (en) | Laminate of superconducting ceramics and production thereof | |
JP2982964B2 (en) | Method for producing Y-Ba-Cu-O-based oxide superconducting thin film | |
JPS63239740A (en) | Manufacture for superconductive compound thin film | |
JPH01126208A (en) | Production of superconducting thin film | |
JPH0446098A (en) | Superconducting member | |
JPS63303810A (en) | Ceramic superconductor | |
JP3164392B2 (en) | Manufacturing method of oxide superconductor | |
JP2920496B2 (en) | Method of forming oxide dispersed particles | |
JPH0238359A (en) | Production of superconductor | |
JPH03103307A (en) | Heat treating method of oxide-based superconducting thin film | |
JPH01203258A (en) | Production of oxide superconducting sintered body | |
JPH01238190A (en) | Manufacture of superconductor thick film | |
JPH01252526A (en) | Production of oxide superconductor film containing copper | |
JPH01169981A (en) | Manufacture of superconducting thin-film | |
JPH03112810A (en) | Production of oxide superconducting film | |
JPS63299015A (en) | Manufacture of sheet-like oxide superconductive material |