JPH03104822A - Method for heating slab for non-oriented electrical sheet - Google Patents

Method for heating slab for non-oriented electrical sheet

Info

Publication number
JPH03104822A
JPH03104822A JP24188989A JP24188989A JPH03104822A JP H03104822 A JPH03104822 A JP H03104822A JP 24188989 A JP24188989 A JP 24188989A JP 24188989 A JP24188989 A JP 24188989A JP H03104822 A JPH03104822 A JP H03104822A
Authority
JP
Japan
Prior art keywords
slab
heating
temperature
sheet
oriented electrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24188989A
Other languages
Japanese (ja)
Other versions
JP2768994B2 (en
Inventor
Yoshinari Muro
室 吉成
Kazumi Morita
森田 和巳
Takahiro Suga
菅 孝宏
Katsuo Sadayori
貞頼 捷雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP1241889A priority Critical patent/JP2768994B2/en
Publication of JPH03104822A publication Critical patent/JPH03104822A/en
Application granted granted Critical
Publication of JP2768994B2 publication Critical patent/JP2768994B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE:To produce the electrical steel sheet of a low iron loss valve with good productivity by heat treating the slab for the non-oriented electrical sheet under specific conditions, thereby effectively decreasing the effect of suppressing grain growth at the time of finish annealing in the production process of the electrical steel sheet. CONSTITUTION:The slab for the non-oriented electrical sheet is first heated to the temp. below 1150 deg.C, is then reheated up to a 1150 to 1200 deg.C range at >=7 deg.C/min heating up rate and is hot rolled to form a hot rolled sheet at the time of once cooling the slab down to ordinary temp., then hot rolling the slab. The slab is otherwise heated to <=1250 deg.C first, is cooled down to <1156 deg.C at <30 deg.C/min average cooling rate in a range at least form this temp. down to (heating temp.-100 deg.C), is then reheated up to 1150 to 1200 deg.C at >=7 deg.C/min heating up rate and is hot rolled. The slag heating temp. is otherwise set over 1250 deg.C and the slab is cooled down to <1150 deg.C at <30 deg.C/min average cooling rate in at least either of the temp. range of the range from this temp. down to 1250 deg.C or the range therefrom down to 1250 to 1150 deg.C. This slab is reheated up to 1150 to 1200 deg.C at >=7 deg.C/min heating up rate and is hot rolled. After this sheet is annealed, the sheet is subjected to cold rolling and annealing. The non-oriented electrical sheet having the small iron loss value is thus produced.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、無方向性電磁鋼板用スラブの加熱方法に関
し、とくにスラブ加熱処理に工夫を加えることによって
鉄損を低減を図りかつ、高い生産性を維持しようとする
ものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a method for heating a slab for non-oriented electrical steel sheets, and in particular, the invention aims to reduce iron loss and increase productivity by adding innovations to slab heating treatment. It is an attempt to maintain sexuality.

(従来の技術) 無方向性電磁鋼板は、主に回転機や変圧器の鉄心等に使
用されるが、最近、これらの電気機器の省エネルギー化
が強く望まれている。そのためには鉄損値を下げる必要
があり、一i的には素材のSi含有量を増すことで低鉄
損化が図られている。
(Prior Art) Non-oriented electrical steel sheets are mainly used for cores of rotating machines and transformers, and recently there has been a strong desire for energy savings in these electrical devices. To achieve this, it is necessary to lower the iron loss value, and one approach is to lower the iron loss by increasing the Si content of the material.

しかしながら素材のSi含有量を増加するとそれに伴っ
て磁束密度が低下するので、低鉄損化手段としては単に
St含有量を増す方法だけではなく、■ 素材中の不純
物を低減する方法(特公昭56一22931号、特開昭
59〜74223号各公報)、■ 微量元素添加によっ
て不純物を無害化する方法(特公昭54−36966号
、特公昭59−20731号各公報)、 ■不純物を熱処理によって無害化する方法(特公昭50
−35885号、特公昭56−18045号、特公昭5
6−33451号、特開昭58−123825号各公報
)など種々の鉄損低減方法が提案されている。
However, as the Si content of the material increases, the magnetic flux density decreases accordingly, so methods for reducing iron loss include not only increasing the St content, but also methods for reducing impurities in the material (Japanese Patent Publication No. 56 122931, JP-A-59-74223), ■ A method of making impurities harmless by adding trace elements (Japanese Patent Publications No. 54-36966 and JP-B No. 59-20731), ■ Making impurities harmless by heat treatment How to convert into
-35885, Special Publication No. 18045, Special Publication No. 56-18045, Special Publication No. 18045
Various iron loss reduction methods have been proposed, such as Japanese Patent Laid-Open No. 6-33451 and Japanese Patent Application Laid-Open No. 123825/1982).

ここに鋼中の不純物とは、主にN,Sを指し、これらの
元素は、鋼中に残存すると熱延板中にそれぞれ窒化物、
硫化物として分散析出し、冷延後の仕上げ焼鈍における
粒成長を阻害する。
Impurities in steel mainly refer to N and S, and if these elements remain in the steel, they will form nitrides and sulfur in the hot rolled sheet, respectively.
It is dispersed and precipitated as sulfide and inhibits grain growth during finish annealing after cold rolling.

(発明が解決しようとする課題) ■の方法は、不純物元素を製鋼段階で低減するものでそ
の効果は大きいけれども、所要コストが大きく、また全
ての電磁調板素材に対して適用できるものではない。
(Problem to be solved by the invention) Method (2) reduces impurity elements at the steel manufacturing stage and is highly effective, but requires a large cost and cannot be applied to all electromagnetic control plate materials. .

しかも工業的に不純物を完全になくすことばできないの
で、残存する不純物はその量に応じて磁性に対して悪影
響を及ぼすことになる。
Moreover, since it is not possible to completely eliminate impurities industrially, the remaining impurities have an adverse effect on magnetism depending on their amount.

■の方法のうち特公昭54−36966号公報に開示の
方法は、希土類元素(REM)を添加して硫化物を凝集
させる方法、また特公昭59−20731号公報に開示
の方法は鋼中のAIを0.1%以下にすると共にBを添
加してAINによる粒戒長抑制効果を消失させる方法で
あるが、REMおよびB共に高価な元素であるため経済
的に不利なだけでなく、共に特定の不純物(REM→S
,B−N)に対してしか効果がない。
Of the methods (2), the method disclosed in Japanese Patent Publication No. 54-36966 is a method of adding rare earth elements (REM) to aggregate sulfides, and the method disclosed in Japanese Patent Publication No. 59-20731 is a method of agglomerating sulfides in steel. This method eliminates the grain length suppressing effect of AIN by reducing AI to 0.1% or less and adding B, but since both REM and B are expensive elements, it is not only economically disadvantageous, but also Specific impurities (REM→S
, B-N).

■の方法のうち、特公昭56−18045号、特公昭5
6−33451号および特開昭58−123825号各
公報に開示の方法は、連続鋳造されたスラブを高温のま
ま保温(800〜1150℃) L、析出物を粗大化し
無害化されてから直接熱間圧延を施す方法であるが、連
続鋳造と熱間圧延とのタイ旦ングを常に取る必要がある
ため、上記したような直接熱間圧延設備がない工場では
、この方法は採用し難い。
Among the methods of ■, Special Publication No. 56-18045,
6-33451 and Japanese Patent Application Laid-Open No. 58-123825, the continuously cast slab is kept warm at a high temperature (800 to 1150°C) L, and the precipitates are coarsened and rendered harmless, and then heated directly. Although this is a method of performing inter-rolling, it is difficult to adopt this method in factories that do not have the above-mentioned direct hot-rolling equipment because it is necessary to always maintain a tie between continuous casting and hot rolling.

また特公昭50−35885号公報に開示の方法は、低
炭素、低温スラブ加熱(1200℃以下)を組合わせて
AINの凝集を図るものであるが、不純物の濃度および
種類に応じて凝集に適する温度が変化し、また実際のス
ラブ加熱炉は連続炉であるので、温度を自由には選べな
い不利があった。しかもこの方法で十分な効果を得よう
とすると、スラブ加熱温度を1200℃より低温(例え
ば1150℃未満)にする必要があるが、熱間圧延機の
負荷は低温ほど増大するため、生産性の低下を招く結果
となる。
Furthermore, the method disclosed in Japanese Patent Publication No. 50-35885 aims to agglomerate AIN by combining low-carbon and low-temperature slab heating (below 1200°C), but the method suitable for aggregation depends on the concentration and type of impurities. Since the temperature changes and the actual slab heating furnace is a continuous furnace, there was a disadvantage that the temperature could not be freely selected. Moreover, in order to obtain sufficient effects with this method, the slab heating temperature must be lower than 1200°C (for example, lower than 1150°C), but the load on the hot rolling mill increases as the temperature decreases, which reduces productivity. This results in a decrease in

ところで発明者らは、先に、特願昭63−257372
号明細書において、不純物元素の濃度が異なるスラブが
加熱炉内に混在していたり、スラブ加熱温度が不適切な
場合であっても、析出物の悪影響を大幅に軽減して低鉄
損化を達威できる、スラブ加熱後における冷却速度の制
御を基調とする無方向性電磁鋼板用スラブの加熱方法を
提案した。
By the way, the inventors previously filed the patent application No. 63-257372.
In the specification, even if slabs with different concentrations of impurity elements are mixed in the heating furnace or the slab heating temperature is inappropriate, the adverse effects of precipitates can be significantly reduced and iron loss can be lowered. We proposed a method for heating slabs for non-oriented electrical steel sheets based on controlling the cooling rate after heating the slab.

すなわち 「1.  無方向性電磁鋼板用スラブの加熱に際し、ス
ラブ加熱温度を1250℃以下とし、少なくともこの加
熱温度から(加熱温度−100℃)までの温度範囲を平
均冷却速度=30℃/分以下で1150℃未満まで冷却
することを特徴とする無方向性電磁鋼板用スラブの加熱
方法。
In other words, "1. When heating a slab for non-oriented electrical steel sheets, the slab heating temperature should be 1250°C or less, and the average cooling rate should be 30°C/min or less in the temperature range from at least this heating temperature to (heating temperature - 100°C) A method for heating a slab for a non-oriented electrical steel sheet, characterized by cooling it to below 1150°C.

2.無方向性電磁鋼板用スラブの加熱に際し、スラブ加
熱温度を1250℃超とし、この加熱温度から1250
”Cまで又は1250“Cから1150℃までの温度範
囲のうち少なくともいずれか一方の温度範囲について平
均冷却速度:30℃/分以下で冷却することを特徴とす
る無方向性電磁鋼板用スラブの加熱方法。」 である。
2. When heating a slab for non-oriented electrical steel sheets, the slab heating temperature is set to exceed 1250°C, and from this heating temperature to 1250°C.
Heating of a slab for a non-oriented electrical steel sheet characterized by cooling at an average cooling rate of 30°C/min or less for at least one of the temperature ranges from 1250°C to 1150°C. Method. ”.

上記の方法によれば、所定の冷却条件範囲内であれば、
1150℃以上の温度で粗圧延を開妬することもできる
ので、生産性の低下をある程度防止できるけれども、こ
の方法においても充分に析出物の粗大化防止を図るため
には、やはりスラブを1150℃未満の温度域まで低減
することが好ましく、従って良好な磁気特性を確保した
上での生産性の向上という観点からは未だ充分に満足の
いく解決策とはいえなかった。
According to the above method, if within the predetermined cooling condition range,
Rough rolling can be carried out at a temperature of 1,150°C or higher, which can prevent a decrease in productivity to some extent, but even with this method, in order to sufficiently prevent the coarsening of precipitates, it is still necessary to heat the slab to 1,150°C. It is preferable to reduce the temperature to a temperature range of less than 10,000 yen. Therefore, this has not yet been a fully satisfactory solution from the viewpoint of improving productivity while ensuring good magnetic properties.

この発明は、上述したような無方向性電磁鋼板の工業的
規模での製造過程で鋼中に通常残存する程度の不純物に
よって引き起こされる冷延鋼板の仕上げ焼鈍時における
粒或長抑制作用を、高価な特別の添加元素を用いること
なく、また連続鋳造と熱間圧延とのタイミングを取る必
要もなしに効果的に軽減し、しかも生産性を低下させる
もない無方向性電磁鋼板用スラブの有利な加熱方法を提
案することを目的とする。
This invention aims to suppress the grain size during final annealing of cold-rolled steel sheets, which is caused by impurities that normally remain in the steel during the manufacturing process of non-oriented electrical steel sheets on an industrial scale as described above. The advantages of non-oriented electrical steel plate slabs are that they can be effectively reduced without using special additive elements, without having to adjust the timing of continuous casting and hot rolling, and without reducing productivity. The purpose is to propose a heating method.

(課題を解決するための手段) まずこの発明の解明経緯について説明する。(Means for solving problems) First, the background to the elucidation of this invention will be explained.

無方向性電磁鋼板は、一般に以下のような工程で製造さ
れる。
Non-oriented electrical steel sheets are generally manufactured through the following process.

すなわち、転炉で溶製した溶鋼を出鋼した後、脱ガスし
、合金鉄等の添加を行って戒分を調整する。この威分調
整後の溶鋼は独立した鋳型に注入し、得られた鋼塊を分
塊圧延してスラブにするかもしくは連続鋳造法によって
直接スラブ化される。
That is, after tapping molten steel produced in a converter, it is degassed, and ferroalloy etc. are added to adjust the precepts. The molten steel after this weight adjustment is poured into an independent mold, and the resulting steel ingot is either bloomed into a slab or directly formed into a slab by continuous casting.

かくして得られたスラブは一旦常温まで冷却された後、
または温スラブの状態で通常1250℃以下の温度まで
再加熱(スラブ加熱)され、熱間圧延によって熱延板と
なる。その後熱延板は、必要に応して熱延板焼鈍が施さ
れ、冷間圧延および焼鈍を経て製品となる。なお場合に
よってはさらに冷間圧延および焼鈍が繰り返されたれ、
冷延後そのまま製品とする場合もある。
After the slab thus obtained is once cooled to room temperature,
Alternatively, the hot slab is usually reheated to a temperature of 1250° C. or lower (slab heating), and then hot-rolled into a hot-rolled sheet. Thereafter, the hot-rolled sheet is subjected to hot-rolled sheet annealing if necessary, and then becomes a product through cold rolling and annealing. In some cases, cold rolling and annealing are repeated,
In some cases, the product is made into a product as is after cold rolling.

さて無方向性電磁鋼板の素材中不純物は析出物となって
仕上げ焼鈍中における粒或長を阻害するが、この析出物
の形態にとくに大きな影響を与えるのは熱延工程である
。熱延工程における析出物の無害化対策としては、前掲
した特公昭50−35885号公報および特願昭63−
257372号明細書などがあるが、共に熱間圧延温度
の低下を余儀なくされ、生産性が低下する傾向にあった
のは前述したとおりである。
Now, impurities in the material of non-oriented electrical steel sheets become precipitates that inhibit grain elongation during final annealing, but the hot rolling process has a particularly large influence on the form of these precipitates. As measures to make precipitates harmless in the hot rolling process, the above-mentioned Japanese Patent Publication No. 50-35885 and Japanese Patent Application No. 1983-
No. 257372, etc., but as mentioned above, both of them required a reduction in the hot rolling temperature and tended to reduce productivity.

このような点に着目して発明者らは析出物の無害化を図
りつつ熱延工程における生産性を確保する方法について
鋭意研究を重ねた結果、粗圧延前に生産性が阻害される
温度まで低温化したスラブを再度急速加熱してやれば、
析出物の無害化効果を損なうことなしに、しかも熱延工
程の生産性を確保できることを見出し、この発明を完戒
するに至った。
Focusing on these points, the inventors conducted extensive research into methods for ensuring productivity in the hot rolling process while making precipitates harmless. If the cooled slab is rapidly heated again,
It was discovered that the productivity of the hot rolling process could be ensured without impairing the effect of making the precipitates harmless, and the invention was completely abandoned.

この発明は、上記の知見に立脚するものである。This invention is based on the above knowledge.

すなわちこの発明は、無方向性電VA鋼板用スラブの加
熱に際し、スラブをI150℃未満の温度で加熱した後
、7℃/分以上の昇温速度で1150〜1200℃の範
囲まで再加熱することからなる無方向性電磁調板用スラ
ブの加熱方法(第1発明)である。
That is, when heating a slab for a non-oriented electrical VA steel plate, this invention involves heating the slab to a temperature below I150°C, and then reheating it to a temperature in the range of 1150 to 1200°C at a heating rate of 7°C/min or more. A method of heating a slab for a non-directional electromagnetic control plate (first invention).

またこの発明は、無方向性電磁鋼板用スラブの加熱に際
し、スラブ加熱温度を1250℃以下とし、少なくとも
この加熱温度から(加熱温度−100℃)までの温度範
囲を平均冷却速度=30℃/分以下でl150℃未満ま
で冷却した後、7℃/分以上の昇温速度で1150〜1
200”Cの範囲まで再加熱することからなる無方向性
電磁鋼板用スラブの加熱方法(第2発明)である。
Furthermore, when heating a slab for a non-oriented electrical steel sheet, the slab heating temperature is set to 1250°C or lower, and the average cooling rate is 30°C/min at least in a temperature range from this heating temperature to (heating temperature - 100°C). After cooling to below l150℃, increase the temperature to 1150~1 at a heating rate of 7℃/min or more.
This is a method of heating a slab for a non-oriented electrical steel sheet (second invention), which comprises reheating to a temperature in the range of 200''C.

さらにこの発明は、無方向性電磁鋼板用スラブの加熱に
際し、スラブ加熱温度を1250℃超とし、この加熱温
度から1250℃まで又は1250℃から1150℃ま
での温度範囲のうち少なくともいずれか一方の温度範囲
について平均冷却速度:30℃/分以下で1150℃未
満まで冷却した後、7℃/分以上の昇温速度で1■50
〜1200℃の範囲まで再加熱することからなる無方向
性電磁鋼板用スラブの加熱方法(第3発明)である。
Further, in the present invention, when heating a slab for a non-oriented electrical steel sheet, the slab heating temperature is set to exceed 1250°C, and at least one of the temperature ranges from this heating temperature to 1250°C or from 1250°C to 1150°C is provided. About the range Average cooling rate: After cooling to less than 1150°C at 30°C/min or less, 1 x 50 at a heating rate of 7°C/min or more
This is a method for heating a slab for a non-oriented electrical steel sheet (third invention), which comprises reheating to a temperature in the range of ~1200°C.

以下、この発明を由来するに至った実験結果について説
明する。
Below, the experimental results that led to this invention will be explained.

表1に鋼塊記号aで示す組成になるスラブを、1100
℃および1200℃までそれぞれ加熱し、■200℃加
熱スラブについては断熱カバーを用いてII00℃まで
約20℃/分で冷却した後、この2種のスラブを誘導加
熱炉にて昇温速度を種々に変えて、1200℃まで再加
熱し、5分間均熱した後、通常の熱延によって厚さ2.
3閣の熱延板とし、ついで冷間圧延を施して0.5 m
m厚の冷延板とした後、soo”c,l分の焼鈍を施し
た。また比較のため、iioo℃1200℃加熱および
1200℃加熱後1100℃まで約20℃で冷却した再
加熱なしの各スラブについても同様の処理を行った。
A slab having the composition shown by the steel ingot symbol a in Table 1 is 1100
℃ and 1200℃, respectively, and the 200℃ heated slab was cooled at approximately 20℃/min to II 00℃ using a heat insulating cover, and then these two types of slabs were heated at various heating rates in an induction heating furnace. After reheating to 1200°C and soaking for 5 minutes, it was rolled to a thickness of 2.5mm by normal hot rolling.
It is made into a hot-rolled sheet of 3 rolls, then cold-rolled to 0.5 m.
After forming a cold-rolled sheet with a thickness of m, it was annealed for so"c, l.For comparison, sheets were heated at 1200°C at iioo°C, and after heating at 1200°C, cooled at about 20°C to 1100°C without reheating. Similar treatment was performed for each slab.

の処理を行った。was processed.

かくして得られた各製品板の鉄損値について調べた結果
を、スラブ再加熱時における昇温速度との関係で第1図
に示す。
The results of investigating the iron loss value of each product plate thus obtained are shown in FIG. 1 in relation to the temperature increase rate during slab reheating.

同図から明らかなように、昇温速度が7℃/分以上の場
合には、それぞれ対応する再加熱なしの場合に比べて鉄
損の劣化が少なく、また再加熱なしで1200℃で加熱
にした場合に比べると鉄損は十分低い値となっているこ
とがわかる。
As is clear from the figure, when the heating rate is 7°C/min or more, there is less deterioration in iron loss than in the corresponding case without reheating, and even when heated at 1200°C without reheating, It can be seen that the iron loss is a sufficiently low value compared to the case where

ここにスラブ温度が再加熱によって1200℃となるの
で、生産性の点では再加熱なしの場合に比較すると格段
に向上する。
Here, the slab temperature becomes 1200° C. by reheating, so productivity is significantly improved compared to the case without reheating.

次に同じ鋼塊記号aで示される組或のスラブを、110
0℃および1200℃までそれぞれ加熱し、1200℃
加熱スラブについては断熱カバーを用いて1100℃ま
で約20℃/分で冷却した後、この2種のスラブを誘導
加熱炉にて1130℃〜1250℃まで昇温速度約lO
℃/分で再加熱し、5分間均熱した後、上記の実験と同
様の処理を施して製品板とした。
Next, a set of slabs indicated by the same steel ingot symbol a is 110
Heating to 0℃ and 1200℃ respectively, 1200℃
The heated slab was cooled to 1100°C using a heat insulating cover at a rate of approximately 20°C/min, and then the two types of slabs were heated in an induction heating furnace to 1130°C to 1250°C at a heating rate of approximately 10°C.
After reheating at a rate of .degree. C./min and soaking for 5 minutes, the same treatment as in the above experiment was performed to obtain a product board.

かくして得られた各製品板の鉄損値について調べた結果
を、スラブ再加熱温度との関係で第2図に示す。
The results of examining the iron loss value of each product sheet thus obtained are shown in FIG. 2 in relation to the slab reheating temperature.

同図より明らかなように、再加熱温度が1130〜12
00℃の範囲では、それぞれ対応する再加熱なしの場合
に比べて鉄損の劣化はほとんどなかった。
As is clear from the figure, the reheating temperature is 1130~12
In the range of 00°C, there was almost no deterioration in core loss compared to the corresponding cases without reheating.

しかしながら、熱間圧延工程における通仮性すなわち粗
圧延から巻取りまでの処理時間については、1150〜
1250℃の温度域では、標準操業通りの所要時間で圧
延できたが、1130℃では約20%増となった。
However, the passability in the hot rolling process, that is, the processing time from rough rolling to winding, is
In the temperature range of 1,250°C, rolling could be done in the required time as per standard operation, but at 1,130°C, the rolling time was about 20% longer.

すなわち、鉄損特性と生産性との両面からいえば、再加
熱温度の適正範囲は1150〜1200℃ということに
なる。
That is, from the viewpoint of both iron loss characteristics and productivity, the appropriate range of reheating temperature is 1150 to 1200°C.

以上の実験結果から、発明者らはスラブ低温加熱または
スラブ加熱後制御冷却処理などの方法による不純物の無
害化処理を施した後、昇温速度7℃/分以上で1150
〜1200℃の温度域まで再加熱することによって、銖
損を低減しかつ生産性を確保できることを見出し、この
発明を完威させたのである。
From the above experimental results, the inventors found that after detoxifying impurities by methods such as slab low-temperature heating or controlled cooling treatment after slab heating, the
They discovered that by reheating to a temperature range of ~1200°C, it was possible to reduce barring loss and ensure productivity, and brought this invention to fruition.

(作 用) この発明で対象とするスラブ素材としては、純鉄をはじ
めとして、Siを3.5%以下程度含有するけい素鋼、
さらには無方向性電磁鋼板用素材として通常使用される
材料全てが適合する。
(Function) Slab materials targeted by this invention include pure iron, silicon steel containing about 3.5% or less of Si,
Furthermore, all materials commonly used as materials for non-oriented electrical steel sheets are suitable.

また第1発明において、スラブ加熱温度を1150℃未
満としたのは、析出物の充分な粗大化を図るためである
が、あまりに低すぎるとかえって析出物の粗大化は達或
できないので、少なくとも900℃程度の加熱温度は必
要である。
In addition, in the first invention, the reason why the slab heating temperature is set to be less than 1150°C is to sufficiently coarsen the precipitates, but if it is too low, the coarsening of the precipitates cannot be achieved. A heating temperature of about °C is necessary.

第2発明および第3発明において、スラブ加熱条件を前
記の範囲に限定したのも、第1発明と同じく析出物の充
分な粗大化を図るためである。
In the second and third inventions, the slab heating conditions are limited to the above-mentioned range in order to sufficiently coarsen the precipitates, as in the first invention.

第2発明は、加熱温度が1250℃以下の一般的なスラ
ブ加熱の場合で、この場合には、スラブ加熱温度から(
加熱温度−100℃)までの温度域を平均冷却速度:3
0℃/分以下で1150℃未満まで冷却することが肝要
である。
The second invention is a case of general slab heating where the heating temperature is 1250°C or less, and in this case, from the slab heating temperature (
Average cooling rate in the temperature range up to heating temperature -100℃: 3
It is essential to cool to less than 1150°C at 0°C/min or less.

表1に鋼塊記号eで示す組戒になるスラブを、1100
℃, 1200℃および1250℃までそれぞれ加熱し
、均熱後、この加熱温度から(加熱温度−100℃)ま
での冷却速度を、基本的には空冷で、粗圧延までの時間
や粗圧延機の圧下率配分を調節することによって、種々
変化させたのち、厚さ:2.3mmの熱延板とした。つ
いで冷間圧延を施して0.5nun厚の冷延板としたの
ち、800℃、1分の焼鈍を施した。
In Table 1, the slab with steel ingot symbol e is 1100
℃, 1200℃ and 1250℃, and after soaking, the cooling rate from this heating temperature to (heating temperature - 100℃) is basically air-cooled, depending on the time until rough rolling and the rough rolling mill. After various changes were made by adjusting the rolling reduction distribution, a hot rolled sheet with a thickness of 2.3 mm was obtained. The sheet was then cold-rolled to obtain a cold-rolled sheet with a thickness of 0.5 nm, and then annealed at 800° C. for 1 minute.

かくして得られた無方向性電磁鋼板の鉄損値について調
べた結果を第3図に示す。
FIG. 3 shows the results of examining the iron loss value of the non-oriented electrical steel sheet thus obtained.

同図より明らかなように、冷却速度が遅い程鉄損は減少
し、とくに冷却速度が30℃/分以下の場合に優れた鉄
損特性が得られている。
As is clear from the figure, the slower the cooling rate, the lower the iron loss is, and especially when the cooling rate is 30° C./min or less, excellent iron loss characteristics are obtained.

なお通常の工程では、スラブ加熱温度から(加熱温度−
100℃)までの冷却速度は、状況によって異なるけれ
ども、だいたい40〜60℃/分の範囲である。
In addition, in the normal process, from the slab heating temperature (heating temperature -
The cooling rate to 100° C.) varies depending on the situation, but is generally in the range of 40 to 60° C./min.

ここに冷却速度とは、スラブ平均温度の変化速度であり
、かつ対象温度間隔における平均値を意味する(以下、
同様)。
The cooling rate here refers to the rate of change of the slab average temperature, and means the average value in the target temperature interval (hereinafter,
similar).

次に1200℃加熱と1100℃加熱の場合を比較する
と、同程度の冷却速度ならば、1100℃加熱の方が低
鉄損となるが、1200℃加熱でも冷却速度を30℃/
分以下にすれば、1100℃加熱の通常冷却の場合と比
べ同程度以上の良好な鉄損が得られることがわかる。
Next, comparing heating to 1200°C and heating to 1100°C, if the cooling rate is the same, heating to 1100°C has lower core loss, but even when heating to 1200°C, the cooling rate is 30°C/30°C.
It can be seen that if the temperature is less than 1,100° C., a good iron loss comparable to or higher than that of normal cooling with heating at 1100° C. can be obtained.

わかる。Recognize.

以上のことはスラブ加熱後の冷却速度をスラブ加熱温度
から(スラブ加熱温度−100℃)の間を30℃/分以
下とすることにより、スラブ加熱温度の高低にかかわら
ず、安定して鉄損を低減できることを示している。すな
わち鋼中の不純物威分濃度によってスラブ加熱温度を微
調整しなくてもよいことになる。実際の操業において、
スラブ加熱温度を各スラブ毎に微調整することは困難な
場合が多いし、また不純物を無害化するのに適切な温度
を事前に知るには、多くの努力を要する。上記の方法に
従えば、これら実際上の難点を克服でき、スラブ加熱温
度の高低にかかわらず安定した低鉄損化が図れるわけで
ある。
By setting the cooling rate after heating the slab to 30°C/min or less between the slab heating temperature and (slab heating temperature - 100°C), stable iron loss can be achieved regardless of the high or low slab heating temperature. This shows that it is possible to reduce In other words, there is no need to finely adjust the slab heating temperature depending on the impurity concentration in the steel. In actual operation,
It is often difficult to finely adjust the slab heating temperature for each slab, and it takes a lot of effort to know in advance the appropriate temperature to render impurities harmless. By following the above method, these practical difficulties can be overcome, and stable iron loss can be achieved regardless of whether the slab heating temperature is high or low.

次に、第3発明は、加熱温度が通常よりも高めの温度域
でスラブ加熱を行う場合である。
Next, the third invention is a case where slab heating is performed at a heating temperature in a higher temperature range than usual.

前掲表1にfで示した成分の冷スラブを、スラブ加熱温
度1350℃で2時間加熱したのち、表2の弘1〜4の
冷却条件で冷却し、ついで熱間圧延によって2ffl!
I+厚の熱延板とした。また比較例として、スラブ加熱
をl250℃,  2時間で行ったのち表2の隘5の条
件で冷却した場合も加えた。このときスラブ冷却速度の
調節は、1350℃から1250℃までは保温カバーの
使用(表2、kl,3)および空冷(N(12,4)に
より、又1250℃から1150℃までは空冷を基本と
し、粗圧延までの時間および粗圧延機の圧下率配分の調
節により行い、ついで熱間圧延によって2Inll厚の
熱延板とした。
A cold slab having the components indicated by f in Table 1 above was heated at a slab heating temperature of 1350°C for 2 hours, cooled under the cooling conditions of Hiroshi 1 to 4 in Table 2, and then hot rolled to form a 2ffl!
It was made into a hot rolled sheet of I+ thickness. As a comparative example, a case where the slab was heated at 1250°C for 2 hours and then cooled under the conditions in box 5 of Table 2 was also included. At this time, the slab cooling rate can be adjusted by using a heat insulating cover (Table 2, kl, 3) and air cooling (N(12,4) from 1350°C to 1250°C, and by air cooling from 1250°C to 1150°C. This was carried out by adjusting the time until rough rolling and the distribution of the rolling reduction of the rough rolling mill, and then hot rolling was performed to obtain a hot rolled sheet with a thickness of 2 inches.

その後各熱延板とも巻取、冷却後、950℃、2分の焼
鈍を施し、ついで冷間圧延によって0.5 mm厚の冷
延板としたのち、非酸化性雰囲気中で、970℃、2分
の焼鈍を施した。
After that, each hot-rolled sheet was coiled, cooled, annealed at 950°C for 2 minutes, then cold-rolled into a cold-rolled sheet with a thickness of 0.5 mm, and then heated at 970°C in a non-oxidizing atmosphere. Annealing was performed for 2 minutes.

かくして得られた製品板の鉄損値の測定結果を表2に併
記する。
Table 2 also shows the measurement results of the iron loss values of the product plates thus obtained.

同表に示したとおり、通常の例であるNo.5に対し、
1350”C→1250”Cおよび、1250℃→11
50℃の冷却速度を共に30℃/分以上としたNα2で
は鉄損の改善は認められなかったけれども、少なくとも
一方の冷却速度を、30℃/分以下とした、Nα1,3
.4ではいずれも鉄損が改善され、特に両方とも冷却速
度を30℃/分以下としたNα3では、鉄損特性が大幅
に向上した。
As shown in the table, No. 1, which is a normal example. For 5,
1350"C→1250"C and 1250℃→11
Although no improvement in iron loss was observed with Nα2 where the cooling rate at 50°C was both 30°C/min or more, Nα1 and 3 where at least one cooling rate was 30°C/min or less
.. Iron loss was improved in all cases of No. 4, and especially in Nα3 in which the cooling rate was set to 30° C./min or less in both cases, iron loss characteristics were significantly improved.

すなわち1250℃〜1150℃間の平均冷却速度を、
30℃/分以下にすることによってスラブ加熱温度が、
1250℃以上の場合でも鉄損は改善されること、また
1250℃までの平均冷″却速度を30℃/分以下とす
ることのみでも鉄損は改善されること、さらに両温度範
囲共平均冷却速度を30℃/分以下にすれば一層鉄損を
低減できることが判明したのである。
That is, the average cooling rate between 1250°C and 1150°C,
By setting the heating temperature to 30℃/min or less, the slab heating temperature can be
The iron loss can be improved even when the temperature is 1250℃ or higher, and the iron loss can be improved even if the average cooling rate up to 1250℃ is 30℃/min or less. It has been found that core loss can be further reduced by reducing the speed to 30° C./min or less.

従来の常識である低鉄損化のためのスラブ低温加熱に反
して、1250℃超のスラブ加熱であっても特定の冷却
条件下では低鉄損化に有効に寄与することは、これまで
に知られていない新規な知見である。
Contrary to the conventional wisdom of heating slabs at low temperatures to reduce iron loss, it has been shown that heating slabs over 1250°C effectively contributes to lowering iron loss under certain cooling conditions. This is new and unknown knowledge.

さらに第2発明および第3発明とも、充分な析出物の粗
大化を図るためには、加熱処理後のスラブを1150℃
を下回る温度まで低下させた方がこのましいので、第2
、第3発明ではスラブ加熱後の冷却温度につき、115
0℃未満の範囲に限定した。
Furthermore, in both the second and third inventions, in order to sufficiently coarsen the precipitates, the slab after heat treatment must be heated to 1150°C.
It is preferable to lower the temperature below the
, in the third invention, the cooling temperature after heating the slab is 115
The temperature was limited to below 0°C.

なおスラブの再加熱に際しては、上記のように7℃/分
以上の昇温速度を必要とするので、再加熱法としては誘
導加熱あるいは通電加熱などが適している。というのは
通常スラブ加熱に使用される燃焼式加熱炉では上記の昇
温速度が達或できないからである。また再加熱温度域に
おける保持時間については特に規定しないけれども、で
きるだけ短時間が望ましい。
Note that when reheating the slab, as mentioned above, a temperature increase rate of 7° C./min or more is required, so induction heating or electrical heating is suitable as the reheating method. This is because the combustion type heating furnace normally used for heating slabs cannot achieve the above temperature increase rate. Although the holding time in the reheating temperature range is not particularly specified, it is desirable to keep it as short as possible.

(実施例) 2益■工 表1に鋼塊記号Cで示した組成になるスラブを、l05
0℃で加熱した後、誘導加熱炉によって1190℃まで
昇温速度14℃/分で再加熱し、5分間均熱後、通常の
熱延によって厚さ2.0肛の熱延板とした。
(Example) 2 Benefit ■ A slab with the composition shown in the steel ingot symbol C in the construction table 1 is 105
After heating at 0°C, it was reheated to 1190°C in an induction heating furnace at a heating rate of 14°C/min, and after soaking for 5 minutes, it was made into a hot rolled sheet with a thickness of 2.0 mm by normal hot rolling.

この熱延板に950℃.30sの焼鈍を施した後、冷間
圧延によって0.5mmの冷延板とし、900℃,30
sの焼鈍を施した。
This hot-rolled plate was heated to 950°C. After annealing for 30 seconds, it was cold-rolled to a thickness of 0.5 mm and rolled at 900°C for 30 seconds.
S annealing was performed.

かくして得られた製品板の鉄損特性および生産性(熱延
に要した時間で評価するものとした)について調べた結
果を表3に示す. なお表3には比較のため、スラブ再加熱なしで上記と同
様に処理して得た製品板についての調査結果も併せて示
す。
Table 3 shows the results of investigating the iron loss characteristics and productivity (evaluated by the time required for hot rolling) of the product sheet thus obtained. For comparison, Table 3 also shows the results of a survey on product boards obtained by processing in the same manner as above without reheating the slab.

表3 同表より明らかなように、鉄損はほぼ同レヘルであった
が、熱間圧延の処理時間については、スラブ再加熱有の
場合は通常レベルであったのに対し、再加熱なしの場合
は著しく長くなり、しかも熱延板の目標2閣が実現でき
ず、2.4mm厚と過厚になってしまった。
Table 3 As is clear from the same table, the iron loss was almost the same level, but the hot rolling processing time was at the normal level with slab reheating, whereas it was at the normal level with slab reheating. The length of the sheet was significantly longer, and the two goals of hot-rolled sheets could not be achieved, resulting in an excessive thickness of 2.4 mm.

夫旌明主 表1に鋼塊記号dで示したU戒になるスラブを、123
0℃に加熱し、この温度から1100℃まで断熱カーを
用いて平均冷却速度25℃/分で冷却した後、誘導加熱
炉で平均昇温速度18℃/分で1190℃まで再加熱し
た後、直ちに熱間圧延を施して厚さ2,3餉の熱延仮と
した。この熱延板を冷間圧延で0.5閣厚の冷延板とし
たのち、810℃,1分の焼鈍を施した。
123
After heating to 0°C and cooling from this temperature to 1100°C using an insulated car at an average cooling rate of 25°C/min, reheating in an induction heating furnace to 1190°C at an average heating rate of 18°C/min. Immediately hot rolling was performed to obtain a hot-rolled blank with a thickness of 2 to 3 mm. This hot-rolled sheet was cold-rolled into a cold-rolled sheet with a thickness of 0.5 mm, and then annealed at 810° C. for 1 minute.

かくして得られた製品板の鉄損特性および生産性につい
て調べた結果を表4に示す。
Table 4 shows the results of examining the iron loss characteristics and productivity of the product sheets thus obtained.

なお表4には比較のため、スラブ再加熱なしで上記と同
様に処理して得た製品板についての調査結果も併せて示
す。
For comparison, Table 4 also shows the results of a survey on product boards obtained by processing in the same manner as above without reheating the slab.

表4 同表より明らかなように、鉄損はほぼ同レベルであった
。しかしながら生産性に関しては、スラブ再加熱有のも
のは操業標準通りの所要時間で圧延できたのに対し、再
加熱無のものは2倍の時間を必要とした。
Table 4 As is clear from the table, the iron loss was at almost the same level. However, in terms of productivity, the slab with reheating was able to be rolled in the required time according to the operating standard, whereas the slab without reheating required twice as much time.

実益班主 表1に鋼塊記号bで示した組或になるスラブを、誘導熱
炉で加熱温度1350℃で2時間加熱し、同炉中でII
00℃まで25℃/分の平均冷却速度で冷却した後、再
度、昇温速度8“C/分で1170”Cまで加熱し、1
0分保持した。このスラブを通常の熱延によって2.0
 mm厚の熱延板としたのち、l000℃,30sの焼
鈍を施し、ついで冷間圧延によって0.5mm厚の冷延
板とした後、980℃、1分の焼鈍を施した。
The slabs shown in Table 1 with the steel ingot symbol b were heated in an induction heat furnace at a heating temperature of 1350°C for 2 hours, and then
After cooling down to 00°C at an average cooling rate of 25°C/min, it was heated again to 1170°C at a temperature increase rate of 8°C/min.
It was held for 0 minutes. This slab was rolled to 2.0 mm by normal hot rolling.
After forming a hot-rolled sheet with a thickness of mm, it was annealed at 1000°C for 30 seconds, and then cold-rolled into a cold-rolled sheet with a thickness of 0.5mm, which was then annealed at 980°C for 1 minute.

かくして得られた製品板の鉄損特性および生産性につい
て調べた結果を表5に示す。
Table 5 shows the results of examining the iron loss characteristics and productivity of the product sheets thus obtained.

なお表5には比較のため、スラブ再加熱なしで上記と同
様に処理して得た製品板についての調査結果も併せて示
す。
For comparison, Table 5 also shows the results of an investigation on product sheets obtained by processing in the same manner as above without reheating the slab.

表5 同表より明らかなように、鉄損の増加は再加熱を行って
も極めて小さい。一方、熱間圧延の所要時間は再加熱な
しの場合には著しく長くなる。この点、再加熱有の場合
の所要時間は通常レベルである。
Table 5 As is clear from the table, the increase in iron loss is extremely small even after reheating. On the other hand, the time required for hot rolling becomes significantly longer without reheating. In this respect, the time required in the case of reheating is at the normal level.

これらの結果からも、この発明法によれば、低鉄損化を
図りつつ生産性を確保できることがわかる。
These results also show that according to the method of the present invention, productivity can be ensured while reducing iron loss.

(発明の効果) かくしてこの発明によれば、無方向性電磁鋼板の工業的
規模での製造過程で調中に通常残存する工程の不純物に
よって引き起こされる冷延鋼板の仕上げ焼鈍時における
粒戒長抑制作用を、高価な特別の添加元素を用いること
なく、また連続鋳造と熱間圧延とのタイミングを取る必
要もなしに効果的に軽減することができ、しかも生産性
の低下を招くこともない。
(Effects of the Invention) Thus, according to the present invention, it is possible to suppress grain length during final annealing of cold-rolled steel sheets caused by process impurities that normally remain during conditioning during the manufacturing process of non-oriented electrical steel sheets on an industrial scale. The effects can be effectively alleviated without using expensive special additive elements, without having to adjust the timing of continuous casting and hot rolling, and without causing a decrease in productivity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、スラブ再加熱時における昇温速度と鉄損との
関係を示すグラフ、 第2図は、スラブ再加熱温度と鉄損との関係を示すグラ
フ、 第3図は、スラブ加熱後の冷却速度と鉄損との関係を示
すグラフである。
Figure 1 is a graph showing the relationship between heating rate and iron loss during slab reheating. Figure 2 is a graph showing the relationship between slab reheating temperature and iron loss. Figure 3 is a graph showing the relationship between slab reheating temperature and iron loss. Figure 3 is a graph showing the relationship between slab reheating temperature and iron loss. 3 is a graph showing the relationship between cooling rate and iron loss.

Claims (1)

【特許請求の範囲】 1、無方向性電磁鋼板用スラブの加熱に際し、スラブを
1150℃未満の温度で加熱した後、7℃/分以上の昇
温速度で1150〜1200℃の範囲まで再加熱するこ
とを特徴とする無方向性電磁鋼板用スラブの加熱方法。 2、無方向性電磁鋼板用スラブの加熱に際し、スラブ加
熱温度を1250℃以下とし、少なくともこの加熱温度
から(加熱温度−100℃)までの温度範囲を平均冷却
速度:30℃/分以下で1150℃未満まで冷却した後
、7℃/分以上の昇温速度で1150〜1200℃の範
囲まで再加熱することを特徴とする無方向性電磁鋼板用
スラブの加熱方法。 3、無方向性電磁鋼板用スラブの加熱に際し、スラブ加
熱温度を1250℃超とし、この加熱温度から1250
℃まで又は1250℃から1150℃までの温度範囲の
うち少なくともいずれか一方の温度範囲について平均冷
却速度:30℃/分以下で1150℃未満まで冷却した
後、7℃/分以上の昇温速度で1150〜1200℃の
範囲まで再加熱することを特徴とする無方向性電磁鋼板
用スラブの加熱方法。
[Claims] 1. When heating a slab for non-oriented electrical steel sheets, the slab is heated to a temperature below 1150°C, and then reheated to a temperature in the range of 1150 to 1200°C at a heating rate of 7°C/min or more. A method for heating a slab for non-oriented electrical steel sheet, characterized by: 2. When heating a slab for non-oriented electrical steel sheets, the slab heating temperature is 1250°C or less, and the temperature range from this heating temperature to (heating temperature -100°C) is at least 1150°C at an average cooling rate of 30°C/min or less. A method for heating a slab for a non-oriented electrical steel sheet, which comprises cooling the slab to less than 0.degree. C. and then reheating it to a temperature in the range of 1150 to 1200.degree. C. at a temperature increase rate of 7.degree. C./min or more. 3. When heating the slab for non-oriented electrical steel sheets, the slab heating temperature is set to exceed 1250°C, and from this heating temperature to 1250°C.
Average cooling rate for at least one of the temperature ranges from 1250°C to 1150°C: after cooling to less than 1150°C at 30°C/min or less, at a heating rate of 7°C/min or more A method for heating a slab for a non-oriented electrical steel sheet, comprising reheating the slab to a temperature in the range of 1150 to 1200°C.
JP1241889A 1989-09-20 1989-09-20 Heating method of slab for non-oriented electrical steel sheet Expired - Fee Related JP2768994B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1241889A JP2768994B2 (en) 1989-09-20 1989-09-20 Heating method of slab for non-oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1241889A JP2768994B2 (en) 1989-09-20 1989-09-20 Heating method of slab for non-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JPH03104822A true JPH03104822A (en) 1991-05-01
JP2768994B2 JP2768994B2 (en) 1998-06-25

Family

ID=17081057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1241889A Expired - Fee Related JP2768994B2 (en) 1989-09-20 1989-09-20 Heating method of slab for non-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP2768994B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004002954A (en) * 2002-04-05 2004-01-08 Nippon Steel Corp Non-oriented electromagnetic steel sheet extremely superior in core loss and magnetic flux density, and manufacturing method therefor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63418A (en) * 1986-06-20 1988-01-05 Kawasaki Steel Corp Production of non-oriented electrical steel sheet having decreased surface flaws

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63418A (en) * 1986-06-20 1988-01-05 Kawasaki Steel Corp Production of non-oriented electrical steel sheet having decreased surface flaws

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004002954A (en) * 2002-04-05 2004-01-08 Nippon Steel Corp Non-oriented electromagnetic steel sheet extremely superior in core loss and magnetic flux density, and manufacturing method therefor

Also Published As

Publication number Publication date
JP2768994B2 (en) 1998-06-25

Similar Documents

Publication Publication Date Title
EP0606884B1 (en) Grain-oriented electrical steel sheet with very low core loss and method of producing the same
JP3359449B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
US5139582A (en) Method of manufacturing an oriented silicon steel sheet having improved magnetic characeristics
JPS5842727A (en) Production of unidirectional electrical steel plate of low watt loss
JP3392664B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP3921806B2 (en) Method for producing grain-oriented silicon steel sheet
JP5920387B2 (en) Method for producing grain-oriented electrical steel sheet
JP5005873B2 (en) Method for producing directional electromagnetic steel strip
KR960011799B1 (en) Method of producing non-oriented electrical steel sheet having good magnetic properties
JP3357603B2 (en) Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet with extremely low iron loss
JP3392579B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP3743707B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JPH03104822A (en) Method for heating slab for non-oriented electrical sheet
KR100530069B1 (en) Manufacturing method for non-oriented electrical steel sheet having low core loss and high magnetic induction after stress relief annealing
JP3310004B2 (en) Manufacturing method of unidirectional electrical steel sheet
JP4473357B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JPH06240358A (en) Production of nonoriented silicon steel sheet high in magnetic flux density and low in iron loss
JPH02107718A (en) Method for heating of slab for non-oriented electrical steel sheet
KR100940719B1 (en) Method for manufacturing non-oriented electrical steel sheet having higher magnetic induction after stress relief annealing
JP4277529B2 (en) Method for producing grain-oriented electrical steel sheet having no undercoat
JPH10259422A (en) Production of grain-oriented silicon steel sheet good in core loss characteristic
JP3392699B2 (en) Method for manufacturing grain-oriented electrical steel sheet having extremely low iron loss characteristics
WO2023277170A1 (en) Grain-oriented electromagnetic steel sheet manufacturing method and rolling equipment for manufacturing grain-oriented electromagnetic steel sheet
JPS61149432A (en) Manufacture of grain oriented silicon steel sheet having high magnetic flux density and low iron loss
KR100817156B1 (en) A method for grain-oriented electrical steel sheet with good magnetic properties

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees