JPH03104818A - Oxide dispersion strengthened alloy tube and production thereof - Google Patents

Oxide dispersion strengthened alloy tube and production thereof

Info

Publication number
JPH03104818A
JPH03104818A JP24163089A JP24163089A JPH03104818A JP H03104818 A JPH03104818 A JP H03104818A JP 24163089 A JP24163089 A JP 24163089A JP 24163089 A JP24163089 A JP 24163089A JP H03104818 A JPH03104818 A JP H03104818A
Authority
JP
Japan
Prior art keywords
tube
oxide dispersion
alloy
internal pressure
dispersion strengthened
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24163089A
Other languages
Japanese (ja)
Inventor
Susumu Hirano
平野 奨
Hiroshi Teranishi
寺西 洋志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP24163089A priority Critical patent/JPH03104818A/en
Publication of JPH03104818A publication Critical patent/JPH03104818A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal Extraction Processes (AREA)

Abstract

PURPOSE:To produce the above alloy tube having an excellent internal pressure creep rapture strength by making the tube of an Fe-based oxide dispersion strengthened alloy and subjecting this tubular body to twisting below the recrystallization temp. to impart the texture of a spiral structure thereto. CONSTITUTION:The oxide dispersion strengthened alloy tube 4 of a prescribed size is produced by the conventional method using the Fe-based or Ni-based oxide dispersion strengthened alloy. One end of this alloy tube 4 is chucked by a head stock 2 and the other head is chucked by a tail stock 3. While tensile force is acted axially on the tube, the tube is twisted circumferentially below the recrystallization temp. (about 400 to 1100 deg.C). The tube is so twisted that the torsional angle theta of this time is about 20 deg.<=theta<=45 deg.. The texture of the spiral structure is generated in the alloy tube 4 in this way and the excellent internal pressure creep rupture strength is imparted to the tube. The alloy tube 4 useful for a boiler tube, etc., is thus obtd..

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、優れた内圧強度、特に内圧クリープ破断強度
を有する酸化物分散強化型合金管およびその製造法に関
する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an oxide dispersion strengthened alloy tube having excellent internal pressure strength, particularly internal pressure creep rupture strength, and a method for manufacturing the same.

本発明にかかる合金管は、ボイラチューブ、内燃機関の
配管、化学工業用配管、原子炉の燃料被覆管等、高温高
圧下で使用される管材料として有望である。
The alloy tube according to the present invention is promising as a tube material used under high temperature and pressure, such as boiler tubes, internal combustion engine piping, chemical industry piping, and nuclear reactor fuel cladding tubes.

(従来の技術) 近年、高温高圧に耐えしがも耐食性を具備した材料への
要求が益々高まっている。こうした要求に答える材料の
一つとして有望視されている合金は、分散強化型合金で
ある.この分散強化型合金、とりわけ酸化物分散強化型
合金は、マトリックス中に微細な不活性粒子を均一分散
させた材料であり、マトリックス合金の融点に近い温度
まで有用な強度を示し得る。
(Prior Art) In recent years, there has been an increasing demand for materials that can withstand high temperatures and high pressures and have corrosion resistance. Dispersion-strengthened alloys are considered to be one of the promising materials to meet these demands. Dispersion strengthened alloys, particularly oxide dispersion strengthened alloys, are materials in which fine inert particles are uniformly dispersed in a matrix, and can exhibit useful strength up to temperatures close to the melting point of the matrix alloy.

このような分散強化型合金の最も一般的な製造方法は、
金属粉末と硬質微粒子(酸化物、炭化物、窒化物等)を
高エネルギーボールミル中で強力に粉砕混合する機械的
合金化法である。このようなプロセスは、特公昭50−
37631号公報に開示されている. (発明が解決しようとする課題) 例えば、上述のようにして機械的合金化法によって製造
された分散強化型合金粉末は、鋼製のカプセルに真空封
入され焼結されて所望形状の最終製品とするかあるいは
単に板材、捧村などの素形材とする。ところで、そのよ
うな合金材料から管を製造するに際しては、そのような
素形材に対する押出、圧延あるいは引抜き工程が不可欠
である。
The most common manufacturing method for such dispersion-strengthened alloys is
This is a mechanical alloying method in which metal powder and hard particles (oxides, carbides, nitrides, etc.) are strongly ground and mixed in a high-energy ball mill. Such a process was developed in the 1970s.
It is disclosed in Publication No. 37631. (Problems to be Solved by the Invention) For example, the dispersion-strengthened alloy powder produced by the mechanical alloying method as described above is vacuum-sealed in a steel capsule and sintered to form a final product with a desired shape. Or simply use it as a material such as a board or a shank. By the way, when manufacturing pipes from such alloy materials, extrusion, rolling, or drawing processes for such raw materials are indispensable.

しかし、一般に酸化物分散強化型合金の組織は、これら
の工程により加工方向(押出、圧延、引抜き方向)に伸
びた展伸粒となる。
However, the structure of oxide dispersion strengthened alloys generally becomes elongated grains that are elongated in the processing direction (extrusion, rolling, drawing direction) through these steps.

なお、合金粉末から焼結を経て直接製管する方法もある
が、そのような場合にあっても素管を押出、圧延あるい
は引抜きによって仕上げる必要があり、組織的には展伸
粒となる。
Note that there is also a method of directly producing a pipe from alloy powder through sintering, but even in such a case, the raw pipe must be finished by extrusion, rolling, or drawing, and the structure becomes an elongated grain.

このような組織を持つ材料では、例えば日本鉄鋼協会講
演大会CAMP−ISIJ Vo1.I(198B)−
856に示されるように、加工方向の強度は優れるが、
その垂直方向は強度が劣るという傾向がある。このため
高温で内圧応力を受ける管の場合このような組織を持つ
材料では、その内圧強度、特に内圧クリープ破断強度が
、長手方向から予想される強度よりも著しく劣るという
問題がある. そのためガスタービン翼のように主として長平方向のみ
に応力をうける部材にあっては、特開昭63−3109
44号公報に示されるように、組織の異方性を助長する
ような熱処理を施すことが行われている。この開示例で
は、再結晶温度より高い温度でのねじり加工により押出
ビレットの軸方向に一方向再結晶を誘発することを特徴
としており、ねしり加工により歪を導入し再結晶を促進
しようとするものである.しかしながら、かかる方法は
歪量も30%と高く、再結晶温度に均一に加熱すること
が要件となっており、管材に適用した場合には前記一方
向再結晶が管軸方向に促進されるため、内圧強度をより
低下させる欠点を有する。
For materials with such a structure, for example, CAMP-ISIJ Vol. 1. I (198B)-
As shown in No. 856, the strength in the processing direction is excellent, but
There is a tendency for the strength to be inferior in the vertical direction. For this reason, in the case of pipes that are subjected to internal pressure stress at high temperatures, there is a problem in that the internal pressure strength, especially the internal pressure creep rupture strength, of materials with this type of structure is significantly inferior to the strength expected from the longitudinal direction. Therefore, for members that are mainly subjected to stress only in the longitudinal direction, such as gas turbine blades, Japanese Patent Application Laid-Open No. 63-3109
As shown in Japanese Patent No. 44, heat treatment that promotes the anisotropy of the structure has been carried out. This disclosed example is characterized by inducing unidirectional recrystallization in the axial direction of the extruded billet by twisting at a temperature higher than the recrystallization temperature, and attempts to promote recrystallization by introducing strain through twisting. It is something. However, in this method, the amount of strain is as high as 30%, and uniform heating to the recrystallization temperature is required, and when applied to pipe materials, the unidirectional recrystallization is promoted in the pipe axis direction. , which has the disadvantage of lowering the internal pressure strength.

また、一般に酸化物分散強化型合金は、通常の熱処理に
より展伸粒を等方粒化することは非常に難しいことが知
られている。
Further, it is generally known that it is very difficult to make the elongated grains of oxide dispersion strengthened alloys into isotropic grains by normal heat treatment.

mmの異方性をなくす押出方法が特開昭62−8340
6号公報に示されているが、寸法精度、表面性状等の点
から押出したままで製品となる場合は少なく、その後の
圧延等の工程により再びIJlmの異方性が発達し、内
圧クリープ破断強度を低下させる恐れが充分に考えられ
る。更には上記発明を実施ずるに当たっては、特開昭6
2 − 83402号公報に示される低温下での機械的
合金化を行う必要がある場合もあり、製造工程が複雑化
するという問題もある。
An extrusion method that eliminates mm anisotropy was published in JP-A-62-8340.
Although it is shown in Publication No. 6, it is rare that products are produced as they are extruded due to dimensional accuracy, surface texture, etc., and the IJlm anisotropy develops again in subsequent steps such as rolling, and the internal pressure creep rupture strength increases. It is quite conceivable that this could lead to a decrease in Furthermore, in carrying out the above invention,
In some cases, it may be necessary to perform mechanical alloying at low temperatures, as disclosed in Japanese Patent No. 2-83402, which poses the problem of complicating the manufacturing process.

本発明は、従来技術における上記問題点をいずれも解消
し、内圧強度、特に優れた内圧クリープ破断強度を有す
る酸化物分散強化型合金管およびその製造法を提供する
ことを目的とする。
An object of the present invention is to solve all of the above-mentioned problems in the prior art and to provide an oxide dispersion strengthened alloy tube having internal pressure strength, particularly excellent internal pressure creep rupture strength, and a method for manufacturing the same.

(課題を解決するための手段) 上記目的を達或するため、本発明者らは、分散強化型合
金、特に酸化物分散強化型合金の組織と高温強度の異方
性および製管方法について鋭意研究を重ねた結果、優れ
た内圧クリープ破断強度を有する酸化物分散強化型合金
管とその製造方法を見出し、本発明を完威した. すなわち、本発明は、その一つの面からは、Fe基ある
いはNi基酸化物分散強化型合金から成り、螺旋構造の
組織を持つことを特徴とする、内圧強度に優れた酸化物
分散強化型合金管である。
(Means for Solving the Problems) In order to achieve the above object, the present inventors have made extensive efforts to study the anisotropy of the structure and high-temperature strength of dispersion-strengthened alloys, particularly oxide dispersion-strengthened alloys, and pipe manufacturing methods. As a result of repeated research, we have discovered an oxide dispersion-strengthened alloy tube with excellent internal pressure creep rupture strength and a method for manufacturing the same, and have brought the present invention to fruition. That is, one aspect of the present invention is to provide an oxide dispersion strengthened alloy which is made of an Fe-based or Ni-based oxide dispersion strengthened alloy and has a helical structure, and which has excellent internal pressure strength. It's a tube.

また、本発明はその別の面からは、FelあるいはNi
基酸化物分敗強化型合金から製管し、次いで得られた管
体に再結晶温度未膚でのねじり加工を加えることを特徴
とする、内圧強度に優れた酸化物分散強化型合金管の製
造法である。
In addition, from another aspect of the present invention, Fel or Ni
An oxide dispersion-strengthened alloy tube with excellent internal pressure strength, which is characterized by manufacturing a tube from a base oxide decomposition-strengthened alloy and then subjecting the obtained tube to twisting at a temperature below the recrystallization temperature. It is a manufacturing method.

ここに、螺旋構造の&II織&!!!liとは、展伸粒
の長袖が管軸方向に対し好まし《は20〜45度傾斜し
た結晶構造を云う。
Here, the spiral structure &II weave &! ! ! li refers to a crystal structure in which the long sleeves of the expanded grains are preferably inclined at 20 to 45 degrees with respect to the tube axis direction.

(作用) 本発明を図面を参照して具体的に説明する。(effect) The present invention will be specifically described with reference to the drawings.

本発明にかかる管材は、代表的には機械的合金化→真空
封入→押出の各工程を経て製管されるが、特定の製管方
法に制限されず、鍛接法によって鍛造板材から戒形して
もよく、いずれにしても、このようにして慣用法により
製管された酸化物分散強化型合金管は、その後圧延等に
より所定寸法の管に仕上げられる。
The pipe material according to the present invention is typically manufactured through the steps of mechanical alloying → vacuum encapsulation → extrusion, but is not limited to a specific pipe manufacturing method, and is formed from a forged plate material using a forge welding method. In any case, the oxide dispersion strengthened alloy tube produced by the conventional method is then finished into a tube of a predetermined size by rolling or the like.

いずれにしても当業者にとって分散強化型合金からの製
管法はよく知られているところであり、説明を簡略化す
るため、これ以上の説明を省略する8 なお、Fe基酸化物分敗強化型合金の例としては、IN
CO社市販の?IA956、パ957(いずれも商品名
)があり、またNi基の例としては前記同様にINCO
社市販のMA754、MA6000 (いずれも商品名
)があり、これらはいずれも当業者には良く知られてお
り、本発明にあっても特定のものに制限されない。
In any case, the method of manufacturing pipes from dispersion-strengthened alloys is well known to those skilled in the art, and in order to simplify the explanation, further explanation will be omitted8. Examples of alloys include IN
Is it commercially available from CO? There are IA956 and PA957 (both trade names), and examples of Ni groups include INCO as above.
There are commercially available MA754 and MA6000 (both trade names), both of which are well known to those skilled in the art, and the present invention is not limited to any particular one.

本発明によれば、このようにして最終製品寸法に製管さ
れた後、第1図(a)および(b)に示す如き装置等に
て再結晶温度未満での管周方向へのねしり加工を施し、
組織に螺旋構造を付与する。
According to the present invention, after the pipe is manufactured to the final product size in this manner, it is subjected to bending in the circumferential direction at a temperature below the recrystallization temperature using an apparatus such as that shown in FIGS. 1(a) and (b). Processed,
Gives a spiral structure to the tissue.

第1図(a)の装置は、本来、製管後の管の真直度を高
める目的で、ねじりによる矯正を加えるために使用され
るストレンチャー装置を利用したものである。図示スト
レノチャー装置は、油圧シリンダー1と、これに連結し
て材料に軸方向の引張力を与えるへ冫ドストンク2と、
図中矢印で示すように管4に周方向のねしりトルクを与
えるテイルストノク3とを具有する。
The device shown in FIG. 1(a) utilizes a stretcher device, which is originally used to straighten a tube by twisting it in order to improve the straightness of the tube after tube manufacturing. The illustrated stretcher device includes a hydraulic cylinder 1, a hydraulic cylinder 2 connected to the hydraulic cylinder 1, and a cylinder 2 that applies a tensile force in the axial direction to the material.
As shown by arrows in the figure, the tube 4 is provided with a tail stylus 3 that applies a torsion torque in the circumferential direction to the tube 4.

第1図(a)に示す装置を使って本発明を実施するに当
たっては、予め仕上げ或形された前記酸化物分散強化型
合金管4をヘンドストック2にて一端をチャックすると
ともに、他端をテイルストソク3にてチャックして、管
軸方向に引張力を加えなから管周方向にねしり加工を施
す。
When carrying out the present invention using the apparatus shown in FIG. The tube is chucked with the tail striker 3, and the twisting process is performed in the tube circumferential direction without applying tensile force in the tube axis direction.

ねしり加工温度は、組織内に螺旋構造を確実に持たせる
ために、再結晶温度未満である必要がある。
The twisting temperature needs to be below the recrystallization temperature to ensure a helical structure within the tissue.

ここでいう再結晶温度とは、粒或長を伴う温度領域を指
し、回復のみの温度領域を含まない。再結晶温度以上で
ねじり加工を行うと、管軸方向に再結晶が発達し充分な
ねじり角が得られ難い。酸化物分散強化型合金の再結晶
温度は非常に高く、1100゜C以上になることもある
が、一aに酸化物分散強化型合金は、室温では高強度低
延性で加工性に乏しく、ほぼ400〜1000’Cとい
う瓜間〜熱間加工温度領域で延性のピークを示すことか
ら[G.ll.Gessinger″Powder M
etallugy of Superalloys(1
984) BuLterworth & Co. P.
264参照)、400〜1100゜Cでのねじり加工が
望ましい.第1図中)はヘッドストック2とテイルスト
ック3との間に加熱装置5を設けたストレンチャー装置
を示す。薄肉管にねしり加工を施す場合、ねしり加工中
に温度低下が予測され、上記のような400〜I000
゜Cという範囲を超えて温度が低下することがあるため
、第1図(b)に示すように加熱装置5を装備し、テイ
ルストック3側からヘノドストンク2側に向けて該加熱
装置を走らせながらねしりを加えるとよい。
The recrystallization temperature referred to here refers to a temperature range accompanied by a certain length of grains, and does not include a temperature range only for recovery. If twisting is performed above the recrystallization temperature, recrystallization will develop in the tube axis direction, making it difficult to obtain a sufficient twist angle. The recrystallization temperature of oxide dispersion strengthened alloys is very high, sometimes exceeding 1100°C, but oxide dispersion strengthened alloys have high strength, low ductility, and poor workability at room temperature, and almost Since the ductility peaks in the hot working temperature range of 400 to 1000'C [G. ll. Gessinger"Powder M
etallogy of Superalloys (1
984) BuLterworth & Co. P.
264), twisting at 400 to 1100°C is preferable. 1) shows a stretcher device in which a heating device 5 is provided between a headstock 2 and a tailstock 3. When twisting a thin-walled pipe, a drop in temperature is expected during the twisting process, and the
Since the temperature may drop beyond the range of °C, a heating device 5 is installed as shown in Fig. 1(b), and while running the heating device from the tail stock 3 side to the henodo stock 2 side, It is good to add batter.

ねしり量は、未再結晶展伸粒の長袖方向と管軸方向のな
す角度、つまりねしれ角をθとすると、θが20゜未満
では充分な強度改善効果が得られず、45゜超ではねし
り加工中に座屈を起こす恐れがあることから、20゛ 
≦θ≦45“が望ましい。
The amount of torsion is defined as the angle between the long sleeve direction of unrecrystallized expanded grains and the tube axis direction, that is, the torsion angle is θ.If θ is less than 20°, sufficient strength improvement effect cannot be obtained, and if θ is more than 45°, Because there is a risk of buckling during the bending process, 20゛
It is desirable that ≦θ≦45''.

また、ねしりを管軸方向で均一にならしめるため引張力
を加えた状態でねしり加工を施すが、この引張応力は管
の加工温度領域における材料の耐力を超えないように配
慮されなければならない。
In addition, in order to make the twist uniform in the pipe axis direction, the twisting process is performed with tensile force applied, but care must be taken to ensure that this tensile stress does not exceed the proof stress of the material in the processing temperature range of the pipe. No.

なお、従来にあっても矯正を目的にねしり加工を管に施
すこともあったが、その場合のねしり量はねしれ角θで
20゜未満であって、本発明によるねしり加工およびそ
れにより与えられる螺旋構造の&tlwhはそれら従来
法によるものと明確に区別される。
Incidentally, even in the past, twisting was sometimes applied to the pipe for the purpose of straightening, but in that case, the amount of bending was less than 20 degrees at the heel angle θ, and the twisting and twisting according to the present invention The helical structure &tlwh provided thereby is clearly distinguishable from those obtained by those conventional methods.

このようにして、管材料の組織に螺旋構造の組織が付与
されるのであって、それにまり展伸粒はその長袖方向が
管軸方向に対して傾斜したものとなる。それだけ材料の
異方性が改善される。本発明の場合、そのような改善は
内圧クリープ破断強度によって評価するのであるが、ほ
ぼ管軸方向破断強度の5〜7割程度までの改善が見られ
る。
In this way, a spiral structure is imparted to the structure of the tube material, and the long sleeve direction of the elongated grains is inclined with respect to the tube axis direction. The anisotropy of the material is improved accordingly. In the case of the present invention, such improvement is evaluated by internal pressure creep rupture strength, and an improvement of approximately 50 to 70% of the rupture strength in the tube axis direction is observed.

次に、実施例によって本発明をさらに具体的に説明する
Next, the present invention will be explained in more detail with reference to Examples.

(実施例) 本例では、INCO社より市販されている酸化物分散強
化型フェライ} NMA956(商品名)押出材および
酸化物分散強化型旧基耐熱合金MA754 (商品名)
鍛造材を用い、孔型ロール圧延法によって製管してから
、これらにねじり加工を加え、その異方性が改善される
ことを明らかにした。
(Example) In this example, oxide dispersion-strengthened ferrite NMA956 (trade name) extruded material and oxide dispersion-strengthened old-base heat-resistant alloy MA754 (trade name) commercially available from INCO were used.
It was revealed that the anisotropy of forged materials can be improved by forming tubes by groove roll rolling and then twisting them.

使用した酸化物分散強化型合金の化学成分を第1表に示
す。
The chemical composition of the oxide dispersion strengthened alloy used is shown in Table 1.

(実施例1) まず、直径50wm X長さ500問の開956押出棒
材を切削加工によって、直径50mm X厚さ3mm 
X長さ500+s+eの管材に加工した後、直径20.
0*mX厚さ2.0開×長さ2000+u+の管に圧延
した.このときの再結晶温度は1150゜Cであった。
(Example 1) First, a 956 extruded bar with a diameter of 50 mm and a length of 500 pieces was cut into 50 mm in diameter and 3 mm in thickness.
After processing into a tube material with a length of 500+s+e, the diameter is 20.
It was rolled into a tube of 0*m x thickness 2.0 open x length 2000+u+. The recrystallization temperature at this time was 1150°C.

これを1000゜C×30分加熱して歪取り焼鈍後直ち
に第1図(a)のストレ・ンチャー装置で15回転のね
じり加工を加えた。ねしり加工時の温度は800〜60
0 ”Cであった。このときのねじれ角θは約25゜で
あった.このねじり加工管に1000゜C×10分AC
の歪取り焼鈍を施し、得られた管に650゜Cで内圧お
よび単軸(管軸方向)クリープ試験を行った。
This was heated at 1000°C for 30 minutes to remove strain, and immediately after that it was twisted 15 times using the stretcher device shown in FIG. 1(a). The temperature during the rolling process is 800 to 60
The twist angle θ at this time was approximately 25°. This twisted pipe was heated at 1000°C x 10 minutes AC.
The resulting tube was subjected to strain relief annealing and subjected to internal pressure and uniaxial (tube axial direction) creep tests at 650°C.

また比較のため圧延したままの管に1000℃×10分
ACの熱処理を施して得た管に、同し<650’cで内
圧および単軸クリープ試験を行った。
For comparison, a tube obtained by subjecting an as-rolled tube to AC heat treatment at 1000°C for 10 minutes was subjected to internal pressure and uniaxial creep tests at <650'C.

本発明の実施に当り用いられたストレノチャー!J置は
、第1図(a)に示す構造を有し、ヘソドスト・7ク2
の最大引張能力50t、同ストローク1000mm、テ
イルストノク3の最大ねしりトルク300kg−mであ
った。
Strenochar used in carrying out the present invention! The J position has the structure shown in Fig. 1(a), and has the structure shown in Fig. 1(a).
The maximum tensile capacity was 50 tons, the stroke was 1000 mm, and the maximum torsion torque of Tailstonok 3 was 300 kg-m.

ねしり量をねしり角度に概算するには、第2図に示すよ
うに、直径D、長さしの管において、ねしり角度をλ 
(ラジアン)として管軸方向の変形を無視すると 2L の関係がある。これに20゜≦θ≦45゜の条件を入れ
ると 0.728L/D  ≦λ (ラジアン)≦ 21/D
が得られ、管長さ当りのねしり回転数Rで表すとπD 
         πD となり、これがねしり加工範囲である。
To roughly estimate the amount of torsion in terms of the torsion angle, as shown in Figure 2, for a pipe of diameter D and length, the torsion angle is λ.
(in radians) and ignoring the deformation in the tube axis direction, there is a relationship of 2L. Adding the condition 20゜≦θ≦45゜ to this, 0.728L/D ≦λ (radian) ≦ 21/D
is obtained, and when expressed as the helix rotation speed R per tube length, πD
πD, which is the twisting range.

また、試作管材の内圧クリープ破断試験では、第3図に
示されるように管4の片端に端栓6を、もう一方の端に
導孔8を有する端栓7を同材で作威し液相拡散接合によ
って接合し試験片とした。
In addition, in the internal pressure creep rupture test of the prototype pipe material, as shown in Fig. 3, an end plug 6 was made at one end of the pipe 4, and an end plug 7 having a guide hole 8 at the other end was made of the same material. They were bonded by phase diffusion bonding to form test pieces.

これを電気炉に入れ所定の温度に加熱した後、導孔8よ
りArガスを送り込み所定の圧力とした。このときボイ
ラチューブの内圧クリープ破断試験でよく用いられる、
平均径の式 2t σ:周方向の応力  P;内圧力 D:管の外径    t:管の肉厚 によって、圧力を周方向の応力に換算して、管軸方向の
車軸クリープ破断試験と比較した。
After this was placed in an electric furnace and heated to a predetermined temperature, Ar gas was fed through the guide hole 8 to set a predetermined pressure. At this time, it is often used in internal pressure creep rupture tests of boiler tubes.
Average diameter formula 2t σ: Stress in the circumferential direction P: Internal pressure D: Outside diameter of the pipe t: Depending on the wall thickness of the pipe, convert the pressure into stress in the circumferential direction and compare with the axle creep rupture test in the pipe axial direction did.

これらの試験結果を第4図にグラフで示す。ねじり加工
管の内圧クリープ破断強度は、単軸のそれには及ばない
ものの圧延したままの管に比べ著しく改善されているの
が分かる。
The results of these tests are shown graphically in FIG. It can be seen that the internal pressure creep rupture strength of the twisted pipe is significantly improved compared to the as-rolled pipe, although it is not as good as that of the uniaxial pipe.

ねしり加工の前後の光学顕微鏡組織写真を第5図(a)
、(b)にそれぞれ示す。
Figure 5 (a) shows the optical microscopic structure photographs before and after the twisting process.
, (b) respectively.

(実施例2) 実施例1と同様にして厚さ301×幅80llI11×
長さ300■のl’lA754鍛造材を切削加工によっ
て、直径25mm X厚さ3問×長さ300Iの管材に
加工した後、直径10.On+mX厚さ0.8nv x
長さ2000mmの管に圧延した。この管材の再結晶温
度は1230゜Cであった。
(Example 2) Same as Example 1, thickness 301×width 80llI11×
A 300cm long l'lA754 forged material was machined into a tube with a diameter of 25mm, 3 thicknesses, and a length of 300mm. On+mX thickness 0.8nv x
It was rolled into a tube with a length of 2000 mm. The recrystallization temperature of this tube material was 1230°C.

これを第1図(b)のストレンチャー装置で800゜C
に加熱しながら、35回転のねしり加工を加えた。θは
約30゜であった。このねじり加工管に1100゜C×
10分ACの歪取り焼鈍を施し、得られた管に1000
゜Cで内圧および単軸クリープ試験を行った。
This was heated to 800°C using the stretcher device shown in Figure 1(b).
While heating the material, it was subjected to 35 revolutions of twisting. θ was approximately 30°. 1100°C× for this twisted pipe
The resulting tube was subjected to AC strain relief annealing for 10 minutes.
Internal pressure and uniaxial creep tests were conducted at °C.

また比較のため圧延したままの管に1100’C X 
10分ACの熱処理を施した管にも、l000゜Cで内
圧および単軸クリープ試験を行った。
For comparison, 1100'C
The tubes subjected to 10 minutes AC heat treatment were also subjected to internal pressure and uniaxial creep tests at 1000°C.

結果を第6図にグラフで示す。ねしり加工管の内圧クリ
ープ破断強度は、単軸のそれには及ばないものの圧延し
たままの管に比べ著しく改善されているのがわかる。
The results are shown graphically in FIG. It can be seen that the internal pressure creep rupture strength of the twisted pipe is significantly improved compared to the as-rolled pipe, although it is not as good as that of the uniaxial pipe.

(比較例) 実施例1と同様に直径50■×長さ500mn+のMA
956押出棒材を切削加工によって、直径50mm X
厚さ8mm X長さ500+nn+の管材に加工した後
、直径20.0開×厚さ2.0mm X長さ2000I
IIfflの管に圧延した。これを第I図(b)のスト
レノチャー装置で■200゜Cに加熱しながら、15回
転のねしり加工を加えた。次いでこのねしり加工管に1
000’C x 10分ACの歪取り焼鈍を施し、65
0″Cで内圧および車軸クリープ試験を行った。
(Comparative example) Same as Example 1, MA with diameter 50mm x length 500mm+
By cutting 956 extruded bar material, diameter 50mm
After processing it into a tube material of 8 mm thick x 500 + nn+ length, it is 20.0 mm in diameter x 2.0 mm thick x 2000 I in length.
It was rolled into a IIffl tube. This was heated to 200°C using the stretcher device shown in Figure I (b) and twisted 15 times. Next, add 1 to this twisted pipe.
000'C x 10 minutes AC strain relief annealing, 65
Internal pressure and axle creep tests were conducted at 0″C.

結果を第4図に1200“C加工と表示して示す。この
ときの光学顕微鏡組織を第7図に示す。ねしり加工中に
一方向再結晶が起こりθは約5゜ しか得られず、内圧
クリープ破断強度は圧延したままの管と同等であった。
The results are shown in Fig. 4 as 1200"C processing. The optical microscopic structure at this time is shown in Fig. 7. During the twisting process, unidirectional recrystallization occurred and a θ of only about 5° was obtained. The internal pressure creep rupture strength was equivalent to that of the as-rolled tube.

(発明の効果) 本発明は以上説明したとおり構威されているから、優れ
た内圧クリープ破断強度を有する酸化物分敗強化型合金
管が得られ、かかる合金管は、ボイラヂューブ、内燃機
関の配管、化学工業用配管、原子炉の燃料被覆管等、高
温高圧下で使用される管材料として産業上きわめて有用
である、
(Effects of the Invention) Since the present invention is constructed as described above, an oxide breakdown-strengthened alloy tube having excellent internal pressure creep rupture strength can be obtained, and such an alloy tube can be used in boiler tubes and internal combustion engine piping. It is extremely useful industrially as a pipe material used under high temperature and pressure, such as chemical industry piping and nuclear reactor fuel cladding.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)(b)は、本発明を実施する装置の一例を
示す側面図; 第2図は、管のねしり角度を概算するための説明図; 第3図は、内圧クリープ破断試験片の形状の説明図; 第4図は、実施例1および比較例で得られた管の650
″Cでの内圧クリープ破断試験結果を示すグラフ; 第5図(aJは、実施例1で圧延ままの分敗強化型合金
管の光学顕微鏡組織金属写真;および第5図0)は、実
施例1でねじり加工した分散強化型合金管の光学顕微鏡
組織金属写真;第6図は、実施例2で得られた管の10
00“Cでの内圧クリープ破断試験結果を示すグラフ;
および第7図は、比較例でねしり加工した分散強化型合
金管の光学顕微鏡紹織金属写真である。 】;油圧シリンダー  2:ヘッドストック3:テイル
ストック  4:分散強化型合金管5:加熱装置 7;端栓 6:@栓 8:導管 真!凹
Figures 1 (a) and (b) are side views showing an example of a device implementing the present invention; Figure 2 is an explanatory diagram for estimating the torsion angle of a pipe; Figure 3 is an internal pressure creep rupture An explanatory diagram of the shape of the test piece; Figure 4 shows the 650 mm diameter of the tubes obtained in Example 1 and Comparative Example.
Graph showing the results of the internal pressure creep rupture test at "C"; FIG. 5 (aJ is an optical microscopic metal photograph of the fracture-strengthened alloy tube as rolled in Example 1; and FIG. An optical microscopic metal photograph of the dispersion-strengthened alloy tube twisted in Example 1;
Graph showing internal pressure creep rupture test results at 00"C;
FIG. 7 is an optical micrograph of a dispersion-strengthened alloy tube twisted in a comparative example. ];Hydraulic cylinder 2: Headstock 3: Tailstock 4: Dispersion-strengthened alloy tube 5: Heating device 7; End plug 6: @Plug 8: Conduit true! Concave

Claims (2)

【特許請求の範囲】[Claims] (1)Fe基あるいはNi基酸化物分散強化型合金から
成り、螺旋構造の組織を持つことを特徴とする、内圧強
度に優れた酸化物分散強化型合金管。
(1) An oxide dispersion strengthened alloy tube made of a Fe-based or Ni-based oxide dispersion strengthened alloy and characterized by having a helical structure and excellent internal pressure strength.
(2)Fe基あるいはNi基酸化物分散強化型合金から
製管し、次いで得られた管体に再結晶温度未満でのねじ
り加工を加えることを特徴とする、内圧強度に優れた酸
化物分散強化型合金管の製造法。
(2) Oxide dispersion with excellent internal pressure strength, characterized by making a tube from a Fe-based or Ni-based oxide dispersion-strengthened alloy, and then twisting the obtained tube at a temperature below the recrystallization temperature. Manufacturing method for reinforced alloy tubes.
JP24163089A 1989-09-18 1989-09-18 Oxide dispersion strengthened alloy tube and production thereof Pending JPH03104818A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24163089A JPH03104818A (en) 1989-09-18 1989-09-18 Oxide dispersion strengthened alloy tube and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24163089A JPH03104818A (en) 1989-09-18 1989-09-18 Oxide dispersion strengthened alloy tube and production thereof

Publications (1)

Publication Number Publication Date
JPH03104818A true JPH03104818A (en) 1991-05-01

Family

ID=17077179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24163089A Pending JPH03104818A (en) 1989-09-18 1989-09-18 Oxide dispersion strengthened alloy tube and production thereof

Country Status (1)

Country Link
JP (1) JPH03104818A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6283406A (en) * 1983-08-17 1987-04-16 エクソン・リサ−チ・アンド・エンジニアリング・カンパニ− Dispersed reinforced extrusion metal product substantially containing no aggregated structure and die for producing thesame
JPS63310944A (en) * 1987-06-13 1988-12-19 Ishikawajima Harima Heavy Ind Co Ltd Heat treatment of grain dispersion strengthening

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6283406A (en) * 1983-08-17 1987-04-16 エクソン・リサ−チ・アンド・エンジニアリング・カンパニ− Dispersed reinforced extrusion metal product substantially containing no aggregated structure and die for producing thesame
JPS63310944A (en) * 1987-06-13 1988-12-19 Ishikawajima Harima Heavy Ind Co Ltd Heat treatment of grain dispersion strengthening

Similar Documents

Publication Publication Date Title
EP3587606A1 (en) Ni-based super heat-resistant alloy and method for manufacturing same
US7601232B2 (en) α-β titanium alloy tubes and methods of flowforming the same
US5141566A (en) Process for manufacturing corrosion-resistant seamless titanium alloy tubes and pipes
US5226981A (en) Method of manufacturing corrosion resistant tubing from welded stock of titanium or titanium base alloy
US5266131A (en) Zirlo alloy for reactor component used in high temperature aqueous environment
JP2940558B2 (en) Method for producing tube made of zirconium alloy
JP3310155B2 (en) Manufacturing method of seamless pipe of α + β type titanium alloy with excellent fracture toughness
EP2801631B1 (en) Alpha+beta-type titanium alloy plate for welded pipe, method for producing same, and alpha+beta-type titanium-alloy welded pipe product
JPH0692630B2 (en) Method for producing seamless pipe made of pure titanium or titanium alloy
EP2786814A1 (en) Method for manufacturing seamless pipe
US2921875A (en) Manufacture of molybdenum and alloys thereof
JPH03104818A (en) Oxide dispersion strengthened alloy tube and production thereof
JP3073981B1 (en) Method for manufacturing iron-based dispersion strengthened alloy pipe
JPS60141823A (en) Production of nonmagnetic steel working member
JP3521290B2 (en) Molybdenum thick bar and method for producing the same
JP2830200B2 (en) Manufacturing method of oxide dispersion strengthened alloy tube
JP2004131816A (en) Method for producing oxide dispersion-strengthened ferritic steel tube
JP2002266026A (en) Method for producing chromium-containing oxide dispersion strengthened ferritic iron alloy tube
JP2506604B2 (en) Method for manufacturing cold drawn steel pipe with improved ductility
JPH10286602A (en) Seamless tube made of titanium and manufacture thereof
JPH10291008A (en) Tool for hot making tube and its manufacture
JPH0649202B2 (en) Titanium seamless pipe manufacturing method
WO2023176333A1 (en) Tapered material manufacturing method
JPH0533012A (en) Method for working steel reinforced by dispersion with small plane anisotropy
CN117564199A (en) Forging method for improving uniformity of mechanical properties of end part of titanium alloy bar