JPH0533012A - Method for working steel reinforced by dispersion with small plane anisotropy - Google Patents

Method for working steel reinforced by dispersion with small plane anisotropy

Info

Publication number
JPH0533012A
JPH0533012A JP18478091A JP18478091A JPH0533012A JP H0533012 A JPH0533012 A JP H0533012A JP 18478091 A JP18478091 A JP 18478091A JP 18478091 A JP18478091 A JP 18478091A JP H0533012 A JPH0533012 A JP H0533012A
Authority
JP
Japan
Prior art keywords
steel
anisotropy
plane anisotropy
rolling
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP18478091A
Other languages
Japanese (ja)
Inventor
Susumu Hirano
奨 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP18478091A priority Critical patent/JPH0533012A/en
Publication of JPH0533012A publication Critical patent/JPH0533012A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the plane anisotropy of ferritic steel reinforced by oxide dispersion by heat-treating and working the steel under specified conditions. CONSTITUTION:Ferritic steel contg. dispersed fine oxide particles such as sintered steel obtd. by extrusion-compacting particles obtd. by mechanical alloying is subjected to recrystallization heat treatment at 1,250-1,400 deg.C and worked at >=50% working rate at <=800 deg.C. Works of ferritic steel reinforced by oxide dispersion and having small plane anisotropy can easily be obtd. These works are useful as parts for apparatus used at high temp. such as a heating furnace, a boiler, an internal-combustion engine, a turbine, etc.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、面内異方性の小さい酸
化物分散強化型鋼の加工法に関する。かかる鋼は、加熱
炉、ボイラ、内燃機関、タービン用等、高温下で使用さ
れる機器の材料として有望である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for working an oxide dispersion strengthened steel having a small in-plane anisotropy. Such steel is promising as a material for equipment used at high temperatures such as for heating furnaces, boilers, internal combustion engines, and turbines.

【0002】[0002]

【従来の技術】近年、高温に耐えしかも耐食性を具備し
た材料への要求が益々高まっている。こうした要求に答
える材料の一つとして有望視されている合金は、分散強
化型合金である。この分散強化型合金、とりわけ酸化物
分散強化型合金は、マトリックス中に微細な不活性粒子
が均一分散された焼結材であり、マトリックス合金の融
点に近い温度まで有用な強度を示しうる。分散強化型合
金の最も一般的な製造法は、粉末冶金法によるものにあ
っては、まず機械的合金化を行い、次いで得られた合金
化粉末を押出成形して焼結材とする方法である。
2. Description of the Related Art In recent years, there has been an increasing demand for materials that can withstand high temperatures and have corrosion resistance. One of the promising alloys as a material that meets these requirements is a dispersion strengthening alloy. This dispersion strengthening alloy, especially an oxide dispersion strengthening alloy, is a sintered material in which fine inert particles are uniformly dispersed in a matrix, and can exhibit useful strength up to a temperature close to the melting point of the matrix alloy. The most common method for producing dispersion strengthened alloys is by powder metallurgy, in which mechanical alloying is performed first, and then the obtained alloyed powder is extruded into a sintered material. is there.

【0003】機械的合金化法としては、金属粉末と硬質
微粒子(酸化物、炭化物、窒化物等)を高エネルギーボ
ールミル中で強力に粉砕混合する機械的合金化を行う方
法が一般的である。このようなプロセスは、特公昭50−
37631 号公報に教示される。このようにして機械的合金
化法によって製造された分散強化型合金粉末は、鋼製の
カプセルに真空封入され焼結されるが、鋼板を製造する
に際しては、押出、圧延工程が不可欠である。しかし一
般に金属材料が大きな歪を受けるとき、材料は変形集合
組織を生ずる。この場合、材料の結晶粒は特定の結晶学
的方位が加工方向に平行に整列するように材料の結晶粒
は配向される。
As a mechanical alloying method, a method is generally used in which metal powder and hard fine particles (oxide, carbide, nitride, etc.) are strongly pulverized and mixed in a high energy ball mill. Such a process is described in
No. 37631. The dispersion-strengthened alloy powder produced by the mechanical alloying method in this way is vacuum-encapsulated in a steel capsule and sintered, but in producing a steel sheet, extrusion and rolling steps are indispensable. However, in general, when a metallic material undergoes large strains, the material develops a deformed texture. In this case, the grains of the material are oriented such that the particular crystallographic orientations are aligned parallel to the processing direction.

【0004】このような集合組織はその後の加工や熱処
理によって軽減されうるが、材料がランダムな結晶配向
を回復することはめったにない。とりわけ酸化物分散強
化型合金は、再結晶温度が非常に高く (1300℃以上にな
ることもある) 、通常の熱処理により集合組織を制御す
ることは非常に難しい。結晶配向は材料の物理的性質の
方向性に影響を与えることから、高温で2軸応力を受け
る構造材でこのような組織を持つ材料では、加工方向に
垂直な方向の強度、特にクリープ破断強度が、加工方向
から予想される強度よりも著しく劣るという問題 (これ
をクリープ破断強度の異方性と呼ぶこととする)が予想
され、この異方性を持たない酸化物分散強化型合金を開
発する必要がある。
While such texture can be mitigated by subsequent processing and heat treatment, the material rarely recovers a random crystallographic orientation. In particular, oxide dispersion strengthened alloys have a very high recrystallization temperature (sometimes 1300 ° C or higher), and it is very difficult to control the texture by ordinary heat treatment. Since the crystal orientation affects the directionality of the physical properties of the material, structural materials that have biaxial stress at high temperature and have such a structure have strength in the direction perpendicular to the processing direction, especially creep rupture strength. However, the problem is that the strength is significantly inferior to that expected from the processing direction (this is called the anisotropy of creep rupture strength), and an oxide dispersion strengthened alloy without this anisotropy was developed. There is a need to.

【0005】[0005]

【発明が解決しようとする課題】ところで、特開昭62−
83406号公報にはダイスの形状を特定化することによっ
て集合組織を実質上含まない分散強化金属押出物品の押
出方法が示されているが、寸法精度、表面性状等の点か
ら押出ままで製品となる場合は少なく、その後の圧延等
の工程により再び集合組織が発達し、クリープ破断強度
の異方性を増大させる恐れが充分に考えられる。一方、
特公昭59−1779号には、酸化物分散強化型合金の押出材
についての圧延・鍛造法が示されるが、この方法は、加
工条件としても840 〜1150℃の温度で熱間圧延 (鍛造)
することを示すにすぎず、しかも特殊な酸化物微粒子を
含有するNi基およびCo基合金についてであり、体心立方
晶金属であるフェライト鋼については何ら言及がなく、
クリープ破断強度の異方性についても触れていない。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
No. 83406 discloses an extrusion method of a dispersion-strengthened metal extruded article that does not substantially contain a texture by specifying the shape of the die, but as a product as it is extruded in terms of dimensional accuracy, surface properties, etc. It is considered that there is a small possibility that the anisotropy of creep rupture strength will be increased due to the development of texture again in the subsequent steps such as rolling. on the other hand,
Japanese Examined Patent Publication No. 59-1779 shows a rolling / forging method for extruded oxide dispersion strengthened alloys, and this method is also hot rolling (forging) at a temperature of 840 to 1150 ° C as processing conditions.
It only shows that, and is about Ni-based and Co-based alloy containing special oxide fine particles, there is no mention of ferrite steel is a body-centered cubic metal,
Nor does it mention the anisotropy of creep rupture strength.

【0006】かかる異方性については、特公昭58−3604
3 号公報で述べられているが、これは押出材を再結晶温
度以上1120℃以下の温度で所定歪み速度の熱間圧延を行
う方法であって、その具体的方法としては機械的合金化
から押出、圧延そして完全な2次再結晶熱処理までの全
ての工程に細かい処理条件の制限がなされ、さらにクロ
ス圧延を必要とする場合も挙げられているなど、容易に
実施できる方法とは言い難い。特開昭54−146206号公報
には、異方性を解消させる熱処理法として、Ni基、Co基
合金についてではあるが、加工方向に対して垂直な方向
に再結晶化することでクリープ破断強度の異方性が低減
できることが示されている。しかし、これは熱間圧延に
続いて再結晶化を行っており、またかかる一方向再結晶
には特別な装置が必要であり実用的でない。
Regarding such anisotropy, Japanese Patent Publication No. 58-3604
As described in Japanese Patent Publication No. 3, this is a method of hot rolling an extruded material at a temperature of not less than the recrystallization temperature and not more than 1120 ° C at a predetermined strain rate. It is hard to say that the method can be easily carried out, for example, that all the steps from extrusion, rolling and complete secondary recrystallization heat treatment are limited in fine processing conditions, and in some cases, cross rolling is required. Japanese Unexamined Patent Publication No. 54-146206 discloses a heat treatment method for eliminating anisotropy for Ni-based and Co-based alloys, but creep rupture strength by recrystallization in a direction perpendicular to the working direction. It has been shown that the anisotropy of can be reduced. However, this is not practical because hot rolling is followed by recrystallization, and such unidirectional recrystallization requires a special device.

【0007】一方、面内異方性の小さい極薄鋼板の製造
方法が特開昭63−310924号公報に示されるが、この方法
は、冷間圧延後の再結晶時に、微細炭化物を作用させ集
合組織を制御するものである。これは一般に深絞り用鋼
と呼ばれ、高温強度を意図していない。また、本発明が
対象とする酸化物分散強化型合金は、再結晶温度が非常
に高く(1300 ℃以上になることもある) 上記のような通
常の熱処理により集合組織を制御することは非常に難し
い。このように、面内異方性は酸化物分散強型鋼におい
て問題であったが、その解消には複雑な処理工程を経た
りして、実用上有利な方法がないのが現状である。本発
明の目的は、異方性、特にクリープ破断強度の面内異方
性が非常に小さい酸化物分散強化型鋼の簡便な加工法を
提供することを目的とする。
On the other hand, a method for producing an ultra-thin steel sheet having a small in-plane anisotropy is disclosed in Japanese Patent Laid-Open No. 63-310924, which uses fine carbides during recrystallization after cold rolling. It controls the texture. This is commonly referred to as deep drawing steel and is not intended for high temperature strength. Further, the oxide dispersion strengthened alloy targeted by the present invention has a very high recrystallization temperature (sometimes 1300 ° C. or higher). It is very possible to control the texture by the usual heat treatment as described above. difficult. As described above, the in-plane anisotropy has been a problem in the oxide-dispersed strong steel, but the present situation is that there is no practically advantageous method for solving it due to complicated treatment steps. An object of the present invention is to provide a simple processing method for an oxide dispersion strengthened steel having a very small anisotropy, particularly an in-plane anisotropy of creep rupture strength.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するた
め、本発明者は、分散強化型合金の高温強度の異方性に
及ぼす集合組織の影響について鋭意研究を重ねた。図1
は、INCO社の酸化物分散強化型フェライト鋼であるMA95
7 鋼 (公称成分:Fe-14Cr-1Ti-0.3Mo-0.25Y2O3) のa、
b、cの各加工材、a: 一方向に加工度70%で圧延した
後、さらにその直角方向に加工度50%で圧延したクロス
圧延材、b: 押出材 (押出比5)、c: 押出材(押出比15)
について、長手方向(L) とその直角方向(T) のそれぞ
れにおける650 ℃×1000h クリープ破断強度と <110>方
位の応力軸への集積度、つまり<110> X線積分強度(I/I
0)との関係を調べてグラフに表わしたものである。
In order to achieve the above object, the present inventor has conducted extensive studies on the influence of texture on the anisotropy of high temperature strength of dispersion strengthened alloys. Figure 1
MA95, an oxide dispersion strengthened ferritic steel from INCO
7 Steel (nominal composition: Fe-14Cr-1Ti-0.3Mo-0.25Y 2 O 3 ) a,
Processed materials b and c, a: Cross-rolled material rolled at a working rate of 70% in one direction and then at a working rate of 50% in the right direction, b: Extruded material (extrusion ratio 5), c: Extruded material (extrusion ratio 15)
For 650 ℃ × 1000h creep rupture strength in the longitudinal direction (L) and its orthogonal direction (T), respectively, and the degree of integration on the stress axis in the <110> direction, that is, the <110> X-ray integrated strength (I / I
This is shown in a graph by investigating the relationship with 0 ).

【0009】図中、破線で示すごとく酸化物分散強化型
フェライト鋼は、応力軸に<110> 方位を集積させると強
度が増加することが判明した。しかし、その直角方向
(T) の<110> 方位の集積度が小さいとクリープ破断強度
の異方性が顕著となる。例えば、図1の押出材(c) の場
合、L方向の積分強度は17で、クリープ破断強度が31kg
f/mm2 以上を示しているのに対して、T方向の積分強度
は0.3 で、クリープ破断強度も11kgf/mm2 程度しかな
く、強度差が約20kgf/mm2 もあり、その割合(T/L) は35
%である。
As shown by the broken line in the figure, it was found that the strength of the oxide dispersion strengthened ferritic steel increases when the <110> orientation is integrated on the stress axis. But its right angle
If the degree of integration in the <110> orientation of (T) is small, the anisotropy of creep rupture strength becomes remarkable. For example, in the case of the extruded material (c) in Fig. 1, the integrated strength in the L direction is 17 and the creep rupture strength is 31 kg.
Whereas shows f / mm 2 or more, the integrated intensity of the T direction is 0.3, the creep rupture strength 11 kgf / mm 2 only about without intensity difference is also about 20 kgf / mm 2, the ratio (T / L) is 35
%.

【0010】ここで、「集積する」とは、ある結晶方位
のX線積分強度を供試材の応力軸に沿って測定したとき
(I) に、粉末試料のような無秩序サンプルから得られる
もの(I0)の5倍を越える軸密度(I/I0)を持つことを意味
する。本発明者は、以上のような知見に基づき、クリー
プ破断強度の異方性と変形集合組織の相関に着目して、
スピニング加工を行うことによって不利な集合組織を減
少させるクリープ破断強度の異方性を減少させる加工法
を提案し (特願平1−284294号) 、さらに直角方向にも
<110> 方位を発達させクリープ破断強度の異方性を減少
させる加工法を提案した (特願平2−37687 号) 。
Here, "accumulate" means when the X-ray integrated intensity of a certain crystal orientation is measured along the stress axis of the test material.
It means that (I) has an axial density (I / I 0 ) that is more than 5 times that (I 0 ) obtained from a disordered sample such as a powder sample. The present inventor, based on the above findings, focusing on the correlation between the anisotropy of creep rupture strength and the deformation texture,
We proposed a processing method to reduce the anisotropy of creep rupture strength that reduces the disadvantageous texture by performing spinning processing (Japanese Patent Application No. 1-284294), and also in the perpendicular direction.
We proposed a processing method that develops <110> orientation and reduces the anisotropy of creep rupture strength (Japanese Patent Application No. 2-37687).

【0011】本発明者は、さらに研究開発をつづけたと
ころ、1250〜1400℃で再結晶熱処理を施した後、800 ℃
以下で加工率50%以上の加工を行うことで、クリープ破
断強度の面内異方性が非常に小さくなることを見出し、
本発明を完成した。ここに、最も広義には、本発明は、
押出焼結材を高温で再結晶させることで集合組織を等方
化し、その後、圧延等の加工を行うことで強度を回復
し、クリープ破断強度の面内異方性が非常に小さい酸化
物分散強化型鋼の製造方法である。
The present inventor further continued research and development. After carrying out recrystallization heat treatment at 1250 to 1400 ° C., 800 ° C.
It was found that the in-plane anisotropy of creep rupture strength becomes extremely small by performing processing with a processing rate of 50% or more below,
The present invention has been completed. Here, in the broadest sense, the present invention is
Oxide dispersion with extremely small in-plane anisotropy of creep rupture strength is obtained by recrystallizing the extruded sintered material at high temperature to make the texture isotropic, and then performing processing such as rolling to recover strength. This is a method for manufacturing a reinforced steel.

【0012】より具体的には、本発明は、酸化物微粒子
を分散含有するフェライト鋼に、1250〜1400℃で再結晶
熱処理を施した後、800 ℃以下で加工率50%以上の加工
を行うことを特徴とする、面内異方性の小さい酸化物分
散強化型鋼の加工法である。なお、再結晶熱処理温度に
保持する時間は集合組織の等方化が行われれば特に制限
ないが、好ましくは10〜40分間である。上記「酸化物を
分散含有するフェライト鋼」とは、例えば機械的合金化
法によって得た粒子を押出成形して得る焼結鋼である。
More specifically, in the present invention, ferritic steel containing dispersed oxide fine particles is subjected to recrystallization heat treatment at 1250 to 1400 ° C. and then processed at 800 ° C. or less at a processing rate of 50% or more. This is a method for processing an oxide dispersion strengthened steel having a small in-plane anisotropy. The time of holding at the recrystallization heat treatment temperature is not particularly limited as long as the texture is isotropic, but is preferably 10 to 40 minutes. The "ferrite steel containing oxide dispersed therein" is, for example, a sintered steel obtained by extruding particles obtained by a mechanical alloying method.

【0013】[0013]

【作用】次に、本発明において各加工条件を上述のよう
に制限した理由をその作用効果とともに説明する。本発
明において、対象鋼は酸化物を分散含有するフェライト
鋼であるが、これ以上特に制限されない。市販品として
はMA956 およびMA957 鋼 (いずれもINCO社商品名) があ
り、その他、例えば「NUCLEAR TECHNOLOGY」Vol.70, AU
G. 1985 の第216 頁表1中に記載されるTi2O3 やY2O3
分散させたDT2906鋼、DT2203Y05 鋼等が包含される。
Next, the reason why each processing condition is limited as described above in the present invention will be explained together with its function and effect. In the present invention, the target steel is ferritic steel containing oxides dispersed therein, but is not particularly limited. Commercially available products include MA956 and MA957 steels (both are INCO's product names), and other products such as "NUCLEAR TECHNOLOGY" Vol. 70, AU
DT2906 steel, DT2203Y05 steel, etc. in which Ti 2 O 3 or Y 2 O 3 described in Table 1 on page 216 of G. 1985 are dispersed are included.

【0014】再結晶熱処理温度は1250〜1400℃に制限す
るが、これは押出材にみられる集合組織を等方化するた
めのもので、1250℃未満では十分な再結晶組織が得られ
ず、集合組織が等方化しない。また1400℃を越えると、
分散粒子が粗大化し、その後の圧延などの加工で強度を
回復することができない。このため熱処理温度範囲を12
50〜1400℃とした。図2は、図1の場合と同様にMA957
鋼について各指示温度で30分間加熱してから炉冷する再
結晶熱処理を行った場合の再結晶熱処理温度と分散粒子
平均粒径および<110> X線積分強度との関係を示すグラ
フである。グラフからも分かるように1250〜1400℃の温
度範囲で十分な等方化がみられるのが分かる。
The recrystallization heat treatment temperature is limited to 1250 to 1400 ° C. This is for making the texture found in the extruded material isotropic, and if the temperature is less than 1250 ° C., a sufficient recrystallization structure cannot be obtained. The organization does not become isotropic. If it exceeds 1400 ° C,
The dispersed particles become coarse, and the strength cannot be recovered by subsequent processing such as rolling. Therefore, the heat treatment temperature range should be 12
It was set to 50 to 1400 ° C. FIG. 2 shows the MA957 as in the case of FIG.
It is a graph which shows the relationship between the recrystallization heat treatment temperature at the time of performing the recrystallization heat treatment which heats the steel for 30 minutes at each indicated temperature, and then cools it in the furnace, the average particle diameter of dispersed particles, and the <110> X-ray integrated intensity. As can be seen from the graph, it can be seen that sufficient isotropicity is observed in the temperature range of 1250 to 1400 ° C.

【0015】本発明によれば、再結晶熱処理後の圧延の
加工硬化により強度を回復させるが、その温度が800 ℃
を越える場合や、その加工度が50%未満の場合には十分
な効果が得られない。そのため圧延などの加工条件を80
0 ℃以下で加工率50%以上に制限する。圧延温度は余り
低くなると加工抵抗が大きくなることから、300 ℃以上
とするのが好ましい。なお、圧延などの加工は1回のみ
あるいは加工繰返し間に軟化熱処理を介存させることな
く複数回に分けて行ってもよい。
According to the present invention, the strength is recovered by the work hardening of the rolling after the recrystallization heat treatment, but the temperature is 800 ° C.
If it exceeds the limit, or if the degree of processing is less than 50%, a sufficient effect cannot be obtained. Therefore, processing conditions such as rolling are set to 80.
The processing rate is limited to 50% or more at 0 ° C or less. If the rolling temperature is too low, the working resistance increases, so it is preferable to set the rolling temperature to 300 ° C or higher. The working such as rolling may be carried out only once or may be carried out plural times without interposing the softening heat treatment between the working repetitions.

【0016】本発明に言う「加工法」としては第一に圧
延加工が挙げられるが、その他、鍛造、抽伸についても
加工硬化による強度回復効果が見られる限り、本発明の
いう「加工法」に包含される。また、圧延加工に用いら
れる圧延機は、板圧延のロール圧延機のように特に制限
されるものではないが、その他、例えば管圧延の場合を
考えると、ピルガーミル、プラグミルまたはマンドレル
ミル等が例示される。なお、「加工率 (圧下率) 」は下
式で定義される断面減少率である。
The "working method" referred to in the present invention is, first of all, rolling, but in addition, as for the forging and drawing, the "working method" referred to in the present invention is the "working method" as long as the strength recovery effect by work hardening is observed. Included. Further, the rolling mill used for rolling is not particularly limited like the roll rolling machine for sheet rolling, but in addition, considering the case of pipe rolling, for example, a Pilger mill, a plug mill or a mandrel mill is exemplified. It The "working ratio (reduction ratio)" is the area reduction ratio defined by the following formula.

【0017】{(A-A0)/A}×100(%) A : 加工 (圧延) 前の断面積 A0: 加工 (圧延) 後の断面積 このようにして得られた酸化物分散強化型フェライト鋼
は、その後特に処理加工することなくそのまゝ製品とし
て使用でき、実質上面内異方性がみられず、例えば650
℃×103hクリープ破断強度が20kgf/mm2 である高温部材
として用いられる。
{(AA 0 ) / A} × 100 (%) A: Cross-sectional area before processing (rolling) A 0 : Cross-sectional area after processing (rolling) Oxide dispersion strengthened ferrite thus obtained The steel can then be used as it is without any further processing, with no substantial in-plane anisotropy, for example 650
℃ × 10 3 h Used as a high temperature member with a creep rupture strength of 20 kgf / mm 2 .

【0018】[0018]

【実施例】以下に本発明の実施例を示すが、本例ではIN
CO社が市販する押出材である酸化物分散強化型フェライ
ト鋼 (商品名「MA957 鋼」) の25mmt ×100 mmw ×500
mml の寸法の押出材を用いた。この供試鋼の化学成分を
表1に示す。単位は重量%である。
EXAMPLES Examples of the present invention will be shown below. In this example, IN
25 mmt x 100 mmw x 500 of oxide dispersion strengthened ferritic steel (trade name "MA957 steel") that is an extruded material marketed by CO
Extruded material with dimensions of mml was used. Table 1 shows the chemical composition of this test steel. The unit is% by weight.

【0019】[0019]

【表1】 [Table 1]

【0020】このようにして用意した押出材に表2に示
す条件で、再結晶熱処理とそれに続く熱間圧延を加え
た。再結晶熱処理は、いずれも真空炉中で指示温度に30
分加熱してから炉冷した。圧延方向は押出材の押出方向
と合わせたその方向をL方向、それに直角な方向をT方
向とした。その後、全ての条件の場合について1100℃×
10分の溶体化処理を行い供試材として試験に供した。試
験ではそれぞれの方向の<110> X線積分強度と650 ℃×
1000h クリープ破断強度を測定した。結果を表2に示
す。また、クリープ破断強度の異方性 (σT /σL ) お
よびL方向の強度の変化量 (σL /σO ) を合わせて示
す。
The extruded material thus prepared was subjected to recrystallization heat treatment and subsequent hot rolling under the conditions shown in Table 2. All recrystallization heat treatments were carried out at the indicated temperature in a vacuum furnace at 30
After heating for a minute, the furnace was cooled. The rolling direction was the L direction, which was the same as the extrusion direction of the extruded material, and the T direction was the direction perpendicular thereto. After that, 1100 ℃ × for all conditions
A solution treatment for 10 minutes was performed and the test material was used for the test. In the test, <110> X-ray integrated intensity in each direction and 650 ℃ ×
1000 h creep rupture strength was measured. The results are shown in Table 2. Further, the anisotropy of creep rupture strength (σ T / σ L ) and the amount of change in strength in the L direction (σ L / σ O ) are also shown.

【0021】条件A、Bは本発明例、条件C〜Fは比較
例、条件Gは素材とした押出材、条件Hはその押出材に
再結晶熱処理のみを施したものであって、条件Gと条件
Hは従来例ということができる。表2に示す結果からも
明らかなように、本発明によれば、クリープ破断強度の
異方性 (σT /σL ) およびL方向の強度の変化量 (σ
L /σO ) がともに80%以上で、高温強度を損ねずに異
方性を軽減させていることがわかる。
Conditions A and B are the examples of the present invention, conditions C to F are comparative examples, condition G is the extruded material, and condition H is the extruded material that has been subjected only to recrystallization heat treatment. The condition H can be said to be a conventional example. As is clear from the results shown in Table 2, according to the present invention, the anisotropy of creep rupture strength (σ T / σ L ) and the amount of change in strength in the L direction (σ
It is understood that both L / σ O ) are 80% or more, and the anisotropy is reduced without impairing the high temperature strength.

【0022】[0022]

【表2】 [Table 2]

【0023】[0023]

【発明の効果】本発明によると、面内異方性の小さい酸
化物分散強化型フェライト鋼加工品が容易に得ることが
でき、かかる鋼加工品は、加熱炉、ボイラ、内燃機関、
タービン用等、高温下で使用される機器用の部品として
有用である。
According to the present invention, a processed product of oxide dispersion strengthened ferritic steel having a small in-plane anisotropy can be easily obtained, and the processed steel product is a heating furnace, a boiler, an internal combustion engine,
It is useful as a component for equipment used at high temperatures, such as for turbines.

【図面の簡単な説明】[Brief description of drawings]

【図1】種々の条件で加工した材料について、650 ℃×
1000h クリープ破断強度と2方位の応力軸への集積度を
調べた結果を示すグラフである。
[Figure 1] 650 ° C for materials processed under various conditions
It is a graph which shows the result of having investigated the 1000h creep rupture strength and the degree of integration on the stress axis of two directions.

【図2】再結晶熱処理温度による<110> X線積分強度と
分散粒子平均粒径の変化を示すグラフである。
FIG. 2 is a graph showing changes in <110> X-ray integrated intensity and average particle diameter of dispersed particles depending on a recrystallization heat treatment temperature.

Claims (1)

【特許請求の範囲】 【請求項1】 酸化物微粒子を分散含有するフェライト
鋼に、1250〜1400℃で再結晶熱処理を施した後、800 ℃
以下で加工率50%以上の加工を行うことを特徴とする、
面内異方性の小さい酸化物分散強化型鋼の加工法。
Claims: 1. A ferritic steel containing oxide fine particles dispersed therein is subjected to recrystallization heat treatment at 1250 to 1400 ° C, and then 800 ° C.
Characterized by processing at a processing rate of 50% or more,
Processing method of oxide dispersion strengthened steel with small in-plane anisotropy.
JP18478091A 1991-07-24 1991-07-24 Method for working steel reinforced by dispersion with small plane anisotropy Withdrawn JPH0533012A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18478091A JPH0533012A (en) 1991-07-24 1991-07-24 Method for working steel reinforced by dispersion with small plane anisotropy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18478091A JPH0533012A (en) 1991-07-24 1991-07-24 Method for working steel reinforced by dispersion with small plane anisotropy

Publications (1)

Publication Number Publication Date
JPH0533012A true JPH0533012A (en) 1993-02-09

Family

ID=16159172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18478091A Withdrawn JPH0533012A (en) 1991-07-24 1991-07-24 Method for working steel reinforced by dispersion with small plane anisotropy

Country Status (1)

Country Link
JP (1) JPH0533012A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010047840A (en) * 2000-03-03 2010-03-04 Boehler Uddeholm Ag Material produced by powder metallurgy with improved isotropy of the mechanical property

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010047840A (en) * 2000-03-03 2010-03-04 Boehler Uddeholm Ag Material produced by powder metallurgy with improved isotropy of the mechanical property

Similar Documents

Publication Publication Date Title
EP3587606A1 (en) Ni-based super heat-resistant alloy and method for manufacturing same
US4110131A (en) Method for powder-metallurgic production of a workpiece from a high temperature alloy
US5413752A (en) Method for making fatigue crack growth-resistant nickel-base article
EP3772544A1 (en) Method for manufacturing super-refractory nickel-based alloy and super-refractory nickel-based alloy
Bartels et al. Deformation behavior of differently processed γ-titanium aluminides
US5266131A (en) Zirlo alloy for reactor component used in high temperature aqueous environment
Sizova et al. Hot workability and microstructure evolution of pre-forms for forgings produced by additive manufacturing
JPH09508670A (en) Superalloy forging method and related composition
Ham An introduction to arc-cast molybdenum and its alloys
KR100187794B1 (en) Super alloy forging process and related composition
EP2801631B1 (en) Alpha+beta-type titanium alloy plate for welded pipe, method for producing same, and alpha+beta-type titanium-alloy welded pipe product
JPH03193850A (en) Production of titanium and titanium alloy having fine acicular structure
JP3672903B2 (en) Manufacturing method of oxide dispersion strengthened ferritic steel pipe
JPH0692630B2 (en) Method for producing seamless pipe made of pure titanium or titanium alloy
JPH0533012A (en) Method for working steel reinforced by dispersion with small plane anisotropy
US3494807A (en) Dispersion hardened cobalt alloy sheet and production thereof
Ammon et al. Pilot production and evaluation of tantalum alloy sheet
Bhowal et al. Full scale gatorizing of fine grain inconel 718
JPH06220566A (en) Molybdenum-base alloy minimal in anisotropy and its production
JPH05255740A (en) Production of oxide dispersion strengthened alloy material
JPS599610B2 (en) Alloys suitable for furnace components
JP3563523B2 (en) Fe-Cr-Al steel pipe with excellent shape stability at high temperature
JPH0364435A (en) Method for forging ni base superalloy
JP3582797B2 (en) Method for producing oxide dispersion strengthened alloy
JP2001152208A (en) OXIDE DISPERSION STRENGTHENED TYPE Ni BASE ALLOY WIRE AND PRODUCING METHOD THEREFOR

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19981008