JPH03103753A - Color in-tube inspecting device - Google Patents

Color in-tube inspecting device

Info

Publication number
JPH03103753A
JPH03103753A JP24251689A JP24251689A JPH03103753A JP H03103753 A JPH03103753 A JP H03103753A JP 24251689 A JP24251689 A JP 24251689A JP 24251689 A JP24251689 A JP 24251689A JP H03103753 A JPH03103753 A JP H03103753A
Authority
JP
Japan
Prior art keywords
steel pipe
light
wall
internal wall
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24251689A
Other languages
Japanese (ja)
Inventor
Tsutomu Nishimura
力 西村
Tadashi Kato
忠 加藤
Norihiro Funakoshi
船越 宣博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP24251689A priority Critical patent/JPH03103753A/en
Publication of JPH03103753A publication Critical patent/JPH03103753A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the size, weight, and power consumption of the inspecting device by converting LED light beams of the primary colors on the surface of the internal wall of a tube and detecting intensity distributions of reflected light beams of the respective LED light beams which are reflected by the internal wall as rotary motion is carried out. CONSTITUTION:The respective light beams of the primary colors, i.e. red, green, and blue emitted by LEDs 21 - 23 of a light source part 20 are converged on one point on the internal surface of the steel pipe 10 through a movable beam scanning part 30. The scanning part 30 scans the internal wall of the steel pipe 10 through its rotary motion. A fixed photodetection part 10 detects the quantity of reflected light which is incident from the internal wall of the steel pipe 10 and outputs its intensity distribution as defect information on the inter nal wall of the steel pipe 10. The color in-tube inspecting device of this constitu tion is movable in the steel pipe 10 and mounted on, for example, a self-runing robot to gather reflection factor information on the internal wall of the steel pipe 10. Therefore, the device can operates with a small amount of electric power, so only the electric power of a secondary battery is required.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、人間が入って検査することができない小径の
パイプあるいは鋼管の内壁状態の検査を行う管内検査装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an inside pipe inspection device for inspecting the condition of the inner wall of a small-diameter pipe or steel pipe that cannot be inspected by entering the pipe.

特に、3原色対応のLED (発光ダイオード)を光源
とする集束された小径光ビームを管内に出射し、内壁か
らの反射光の光量をモニタし、各色別の反射率の変化(
強度分布)を検出して内壁状態を把握するカラー管内検
査装置に関する。
In particular, we emit a focused, small-diameter light beam into the tube using an LED (light emitting diode) that supports three primary colors as a light source, monitor the amount of light reflected from the inner wall, and monitor the changes in reflectance for each color (
This invention relates to a color tube inspection device that detects the inner wall condition by detecting the intensity distribution (intensity distribution).

〔従来の技術〕[Conventional technology]

従来の管内検査装置は、管内を自走可能な駆動機械(以
下、「自走ロボット」という。)の先端にテレビカメラ
を備え、カラー画像として管内の内壁状態(欠陥部位、
欠陥の大きさ、欠陥の数、欠陥の色)を把握する構威で
あった。したがって、担当者はその映像情報をもとに、
欠陥の種別、修理の必要度および可能性を判断していた
Conventional pipe inspection equipment is equipped with a television camera at the tip of a drive machine (hereinafter referred to as a "self-propelled robot") that can self-propel within the pipe, and displays color images of the inner wall condition (defects, defects, etc.) inside the pipe.
The system was designed to ascertain the size of the defects, the number of defects, and the color of the defects. Therefore, based on the video information, the person in charge
Determined the type of defect, necessity and possibility of repair.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、従来の管内検査装置ではテレビカメラを用い
るために、撮影用の照明(光源)としてかなり大きな出
力のものが必要であった。
However, since conventional pipe inspection equipment uses a television camera, a lighting device (light source) for photographing needs to have a fairly high output.

したがって、管内の温度が上昇しやすく、これに伴って
撮影機器の劣化が早まることがあった。
Therefore, the temperature inside the tube tends to rise, which may accelerate the deterioration of the imaging equipment.

また、自走ロボットは、光源の電力供給に太い電a線を
引きずることになり、長距離にわたる検査が困難である
とともに、それ自体の駆動力を高く設計する必要があっ
た。さらに、作業現場では、大出力光源用の電源確保が
不可欠になっていた。
In addition, self-propelled robots have to drag thick electric wires to supply power to the light source, making it difficult to inspect over long distances and requiring a design with high driving force. Furthermore, securing a power supply for high-output light sources has become essential at work sites.

特に、カラー画像を得る場合には、照明その他の電力量
増大が避けられず、撮影機器を含む検査装置の大型化を
もたらし、操作性が悪く却って効率的な管内検査を妨げ
る要因となっていた.一方、このような課題に加えて、
本来欠陥部位のみのデータがあれば十分であるにもかか
わらず、従来のテレビカメラを用いた管内検査装置では
、映像データとして内壁面全体の情報が取り込まれるの
で、データ量が膨大なものになり操作性の向上および効
率化の妨げになっていた。
In particular, when obtaining color images, an increase in the amount of electricity used for lighting and other equipment is unavoidable, which leads to the increase in the size of inspection equipment including photographic equipment, which is difficult to operate and actually hinders efficient pipe inspections. .. On the other hand, in addition to these challenges,
Although it would normally be sufficient to have data on only the defective area, conventional pipe inspection equipment using television cameras captures information on the entire inner wall surface as video data, resulting in a huge amount of data. This hindered improvements in operability and efficiency.

このように、従来の管内検査装置では操作性に多くの課
題があるために、例えば鋼管内に錆びが目視可能な程度
に発生した場合のように特殊なケースにおいてのみ使用
されていた。したがって、そのような場合以外には管内
の検査が省略されることが多く、検査なしの管内に不用
意にケーブルを敷設し、ケーブル外皮に傷をつくりその
寿命を縮めてしまうことがあった。
As described above, conventional pipe inspection devices have many problems with operability, and are therefore used only in special cases, such as when rust is visible within a steel pipe. Therefore, inspection of the inside of the pipe is often omitted except in such cases, and the cable may be carelessly laid inside the pipe without inspection, causing damage to the cable jacket and shortening its lifespan.

本発明は、小型化、軽量化および小電力化を実現し、欠
陥部位の位置情報と欠陥状態を示す情報を選択的に得る
ことができるカラー管内検査装置を提供することを目的
とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a color tube inspection device that is compact, lightweight, and low-power, and that can selectively obtain positional information on a defective site and information indicating a defective state.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、管内を移動してその内壁の欠陥を検査する管
内検査装置において、赤、緑および青の3原色のLED
光を出射する光源部と、光源部から出射される各LED
光の光路を変化させて内壁の表面に集束させ、その回転
運動に伴って内壁を走査する可動光ビーム走査部と、内
壁に反射した各LED光の反射光を取り込み、その反射
光の強度分布を検出する光検出部とを備えて構戒される
.〔作 用〕 光源部では、3原色の各L E D光を可動光ビーム走
査部に出射する。
The present invention provides an in-pipe inspection device that moves inside a pipe and inspects defects on the inner wall of the pipe.
A light source section that emits light and each LED that is emitted from the light source section
A movable light beam scanning section that changes the optical path of the light and focuses it on the surface of the inner wall, and scans the inner wall with its rotational movement, and a movable light beam scanning section that captures the reflected light of each LED light reflected on the inner wall, and the intensity distribution of the reflected light. It is equipped with a light detection section that detects the [Function] The light source section emits each of the three primary colors of LED light to the movable light beam scanning section.

可動光ビーム走査部では、各LED光の光軸を合わせて
内壁表面に集束させ、回転運動に伴ってその内壁面を走
査する。なお、各LED光の走査と管内検査装置の移動
が同期している場合には管内がスパイラル状に走査され
、管内検査装置を停止させた場合には同一面内の二次元
方向の走査が行われる。
In the movable light beam scanning section, the optical axes of the respective LED lights are aligned and focused on the inner wall surface, and the inner wall surface is scanned with rotational movement. Note that when the scanning of each LED light and the movement of the pipe inspection device are synchronized, the inside of the pipe is scanned in a spiral pattern, and when the pipe inspection device is stopped, scanning is performed in a two-dimensional direction within the same plane. be exposed.

光検出部では、管内の内壁に反射した反射光の強度分布
を検出し、内壁の欠陥情報として出力する。
The light detection unit detects the intensity distribution of the reflected light reflected on the inner wall of the tube and outputs it as inner wall defect information.

〔実施例〕〔Example〕

以下、図面に基づいて本発明の実施例について詳細に説
明する. 第1図は、本発明一実施例の要部構威を示す図である. なお、本実施例では、管内検査装置のブロック構成を示
し、それが搭載される自走ロボットその他については省
略されている。
Hereinafter, embodiments of the present invention will be described in detail based on the drawings. FIG. 1 is a diagram showing the main structure of an embodiment of the present invention. In this embodiment, the block configuration of the pipe inspection device is shown, and the self-propelled robot on which it is mounted and other details are omitted.

図において、参照番号lOは被検査物体である鋼管の一
部で゛あり、光源部20、可動光ビーム走査部30およ
び固定光検出部40により構威される管内検査装置がそ
の内部に挿入された状態の断面横威である。
In the figure, reference number lO is a part of the steel pipe that is the object to be inspected, and an inside pipe inspection device consisting of a light source section 20, a movable light beam scanning section 30, and a fixed light detection section 40 is inserted inside. This is the cross-sectional force in the state.

光源部20は固定されており、赤、緑および青の3原色
のLED光を出射する3種類のLED(発光ダイオード
>21:22、23と、LED光を平行光(光ビーム)
とするためのコリメータレンズ25とにより横威される
The light source unit 20 is fixed, and includes three types of LEDs (light emitting diodes>21:22, 23) that emit LED light in the three primary colors of red, green, and blue, and converts the LED light into parallel light (light beam).
This is effected by the collimator lens 25 for the purpose of

可動光ビーム走査部30は、光源部20から入射された
光ビームを所定の方向に出射するミラー3lと、光ビー
ムの方向を変更する光ビーム方向変更プリズム33と、
対物レンズ35とにより構成される.なお、可動光ビー
ム走査部30はガイド37に保持され、その一端に接続
されたモータ39によって回転運動する構造であり、出
射される光ビームは鋼管10の内周に沿って照射される
The movable light beam scanning unit 30 includes a mirror 3l that emits the light beam incident from the light source unit 20 in a predetermined direction, and a light beam direction changing prism 33 that changes the direction of the light beam.
It is composed of an objective lens 35. The movable light beam scanning unit 30 is held by a guide 37 and rotated by a motor 39 connected to one end thereof, and the emitted light beam is irradiated along the inner circumference of the steel pipe 10.

ところで、各LED光はランダム偏光となっており、特
定の偏光面をもたない。したがって、可動光ビーム走査
部30の回転運動によってその円周方向に出射される光
ビームの光量は一定となり、方位に依存したデータ補正
が不要である。
By the way, each LED light is randomly polarized and does not have a specific plane of polarization. Therefore, the amount of light beam emitted in the circumferential direction by the rotational movement of the movable light beam scanning section 30 is constant, and data correction depending on the direction is not necessary.

固定光検出部40は、可動光ビーム走査部30から出射
された光ビームが鋼管lOの内壁で反射した反射光の選
択を行うフィルタ41と、選択された反射光を検出する
円筒形のフォトディテクタ43とにより構威される。な
お、第1図に示す破線は、光源部20のLED2 1、
22、23から固定光検出部40までの光路を示す。
The fixed light detection unit 40 includes a filter 41 that selects reflected light from the light beam emitted from the movable light beam scanning unit 30 and reflected on the inner wall of the steel pipe IO, and a cylindrical photodetector 43 that detects the selected reflected light. It is structured by Note that the broken lines shown in FIG.
The optical path from 22 and 23 to the fixed light detection section 40 is shown.

固定光検出部40は、鋼管10の内径の微小な変化に対
応して、反射光の入射位置の変動を吸収できる十分な大
きさを有しており、入射される反射光の光量を検出し、
その強度分布を鋼管10の内壁の欠陥情報として出力す
る構威である。
The fixed light detection unit 40 has a sufficient size to absorb fluctuations in the incident position of reflected light in response to minute changes in the inner diameter of the steel pipe 10, and detects the amount of incident reflected light. ,
The structure is such that the intensity distribution is output as defect information on the inner wall of the steel pipe 10.

なお、光源部20から出射される赤、緑および青の3原
色の各光ビームは、可動光ビーム走査部30を介して鋼
管lOの内壁面上の一点に集束するように各光軸が合わ
せられ、その一点の光学情報が固定光検出部40に得ら
れるようになっている。鋼管内壁の欠陥部位のカラー画
像は、この光学情報を合成することにより得ることがで
きる。
Note that the optical axes of the three primary color light beams of red, green, and blue emitted from the light source section 20 are aligned so that they are focused on one point on the inner wall surface of the steel pipe IO via the movable light beam scanning section 30. The optical information of that one point can be obtained by the fixed light detection section 40. A color image of a defective site on the inner wall of a steel pipe can be obtained by combining this optical information.

ところで、この場合には幾何光学的な振る舞いが前提で
あり、各LED2 1、22、23の光出射部位の像が
内壁面に結像することになり、約l00ξクロン程度の
ビームスポットが得られる。
By the way, in this case, geometrical optical behavior is assumed, and the images of the light emitting parts of each LED 2 1, 22, 23 will be imaged on the inner wall surface, and a beam spot of about 100ξcm will be obtained. .

このような構成のカラー管内検査装置は、被検査物体で
ある鋼管10の内部を移動可能であり、例えばリモート
コントロール可能な自走ロボットに搭載され、鋼管内壁
の反射率情報の収集を行う。
The color pipe interior inspection device having such a configuration is movable inside the steel pipe 10, which is the object to be inspected, and is mounted on, for example, a remotely controllable self-propelled robot, to collect reflectance information on the inner wall of the steel pipe.

したがって、少量の電力で動作可能なために、例えばニ
ッカド電池などの二次電池の電力で十分であり、外部か
ら電源ケーブルを用いて電力を仇給する必要がなく、そ
れを搭載する自走ロボットの運動性能に与える影響を最
小限に抑えることができる。
Therefore, because it can operate with a small amount of electricity, the electricity from a secondary battery such as a NiCd battery is sufficient, and there is no need to supply electricity using an external power cable, and a self-propelled robot equipped with it can operate with a small amount of electricity. The impact on exercise performance can be minimized.

また、自走ロボットの走行用モータと、可動光ビーム走
査部30の回転用のモータ39とを連動させる、あるい
は同一のモータを用いることにより、管内の走行と光ビ
ームの照射およびその反射光によるデータ収集のタイミ
ング調整を容易にすることができる。すなわち、管内に
対してスパイラル状あるいは二次元方向の走査形態を容
易に設定することができる。
In addition, by linking the traveling motor of the self-propelled robot and the rotating motor 39 of the movable light beam scanning unit 30, or by using the same motor, it is possible to move within the pipe, irradiate the light beam, and use the reflected light. It is possible to easily adjust the timing of data collection. That is, it is possible to easily set a spiral or two-dimensional scanning pattern inside the tube.

また、本発明のカラー管、内検査装置では、反射光の強
度分布として収集された検査データは、例えば別途設け
られる無線送信機または光の空間伝播を利用した送信機
を用いて、アナログ信号またはディジタル信号として送
信され、鋼管10の所定位置(例えばマンホール)に設
置された受信機に受信してデータ処理装置に送出する.
データ処理装置では、入力データに所定の処理を施すこ
とにより、鋼管10内の欠陥部位の位置および大きさの
判定とともに、欠陥部位を画像として表示させることが
可能となる。
In addition, in the color tube internal inspection device of the present invention, the inspection data collected as the intensity distribution of reflected light is transmitted as an analog signal or The signal is transmitted as a digital signal, received by a receiver installed at a predetermined position (for example, a manhole) in the steel pipe 10, and sent to a data processing device.
By performing predetermined processing on the input data, the data processing device can determine the position and size of the defective portion within the steel pipe 10 and display the defective portion as an image.

このように外部に取り出し可能な検査データは、映像デ
ータに比べて情報量が大幅に小さいために送信処理、受
信処理およびデータ処理が容易であり、また調管内の欠
陥に関する総合的情報が限定され、しかも一括して取り
扱うことが可能になるので効率的な判定作業を行うこと
ができる。
Inspection data that can be retrieved externally has a much smaller amount of information than video data, so it is easier to send, receive, and process data, and comprehensive information about defects inside the control pipe is limited. Moreover, since it becomes possible to handle them all at once, efficient judgment work can be performed.

第2図は、赤、緑および青の3原色のLEDを光源とす
るカラー管内検査装置を用い、欠陥を有する鋼管内を3
原色の内のいずれかの単色光で走査して得られた反射光
の強度分布を示す。
Figure 2 shows the inside of a steel pipe with defects using a color pipe inspection device that uses LEDs in the three primary colors of red, green, and blue as light sources.
It shows the intensity distribution of reflected light obtained by scanning with monochromatic light of any of the primary colors.

すなわち、第2図には、管内走査により欠陥部位に応じ
て得られた反射率の低下パターンが示されている。ここ
で、線間の距離は1mmであり、計測された欠陥の大き
さは約15m m X20m mと見積もることができ
た。
That is, FIG. 2 shows a pattern of decrease in reflectance obtained according to the defect site by intra-tube scanning. Here, the distance between the lines was 1 mm, and the size of the measured defect could be estimated to be approximately 15 mm x 20 mm.

第3図は、欠陥部位に対して3原色を用いて精細カラー
スキャンを行った結果であり、各色対応の情報をCRT
上に表示した例を示す。
Figure 3 shows the results of fine color scanning of the defective area using three primary colors, and the information corresponding to each color is transferred to the CRT.
Here is the example shown above.

第3図(a)は赤色に対応した反射光の強度分布の表示
例(赤色情報)であり、第3図中)は緑色に対応した反
射光の強度分布の表示例(緑色情報)であり、第3図(
C)は青色に対応した反射光の強度分布の表示例(青色
情報)であり、それぞれ欠陥部位の検出が可能なことが
わかる.また、各色対応の情報からその欠陥種別の判定
が可能なことがわかる。
Figure 3(a) is a display example of the intensity distribution of reflected light corresponding to red (red information), and (in Figure 3) is a display example of the intensity distribution of reflected light corresponding to green (green information). , Figure 3 (
C) is a display example of the intensity distribution of reflected light corresponding to blue (blue information), and it can be seen that defective parts can be detected in each case. Furthermore, it can be seen that the defect type can be determined from the information corresponding to each color.

〔発明の効果〕〔Effect of the invention〕

上述したように、本発明のカラー管内検査装置により、
小型化、軽量化および小電力化が可能となり、管内の検
査を容易かつ効果的に行うことができる。また、鋼管内
の欠陥情報をカラー画像ディジタルデータとして得るこ
とができるので、その判定作業を容易にすることができ
る。
As mentioned above, the color pipe inspection device of the present invention allows
It becomes possible to reduce the size, weight, and power consumption, making it possible to inspect the inside of the pipe easily and effectively. Furthermore, since defect information within the steel pipe can be obtained as color image digital data, the determination work can be facilitated.

したがって、従来のように管内検査が面倒なために検査
工程を省略する必要もなく、管内の内壁状態を容易に検
査することができるので、管内の障害に伴うケーブル敷
設の不良工事を最小限に抑えることができる。
Therefore, there is no need to omit the inspection process, which is troublesome as in the past, and the condition of the inner wall inside the pipe can be easily inspected, minimizing defective cable installation work caused by obstructions inside the pipe. It can be suppressed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明一実施例の要部構成を示す図。 第2図は管内走査により欠陥部位に応じて得られた反射
率の低下パターンを示す図。 第3図は欠陥部位に対して各色対応の情報をCRT上に
表示した例を示す図。 10・・・鋼管、20・・・光源部、2l、22、23
・・・LED,25・・・コリメータレンズ、30・・
・可動光ビーム走査部、3l・・・ごラー、33・・・
光ビーム方向偏光プリズム、35・・・対物レンズ、3
7・・・ガイド、39・・・モータ、40・・・固定光
検出部、4l・・・フィルタ、43・・・フォトディテ
クタ。
FIG. 1 is a diagram showing the main structure of an embodiment of the present invention. FIG. 2 is a diagram showing a pattern of decrease in reflectance obtained according to the defect site by intra-tube scanning. FIG. 3 is a diagram showing an example of displaying information corresponding to each color for a defective part on a CRT. 10... Steel pipe, 20... Light source part, 2l, 22, 23
...LED, 25...Collimator lens, 30...
・Movable light beam scanning unit, 3l...Ler, 33...
Light beam direction polarizing prism, 35...objective lens, 3
7...Guide, 39...Motor, 40...Fixed light detection unit, 4l...Filter, 43...Photodetector.

Claims (1)

【特許請求の範囲】[Claims] (1)管内を移動してその内壁の欠陥を検査する管内検
査装置において、 赤、緑および青の3原色のLED光を出射する光源部と
、 前記光源部から出射される各LED光の光路を変化させ
て前記内壁の表面に集束させ、その回転運動に伴って前
記内壁を走査する可動光ビーム走査部と、 前記内壁に反射した前記各LED光の反射光を取り込み
、その反射光の強度分布を検出する光検出部と を備えたことを特徴とするカラー管内検査装置。
(1) A pipe inspection device that moves inside a pipe and inspects defects on its inner wall, which includes a light source unit that emits LED light of three primary colors of red, green, and blue, and an optical path of each LED light emitted from the light source unit. a movable light beam scanning unit that changes and focuses the light on the surface of the inner wall and scans the inner wall with its rotational movement; A color tube inspection device comprising: a light detection section that detects distribution.
JP24251689A 1989-09-19 1989-09-19 Color in-tube inspecting device Pending JPH03103753A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24251689A JPH03103753A (en) 1989-09-19 1989-09-19 Color in-tube inspecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24251689A JPH03103753A (en) 1989-09-19 1989-09-19 Color in-tube inspecting device

Publications (1)

Publication Number Publication Date
JPH03103753A true JPH03103753A (en) 1991-04-30

Family

ID=17090271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24251689A Pending JPH03103753A (en) 1989-09-19 1989-09-19 Color in-tube inspecting device

Country Status (1)

Country Link
JP (1) JPH03103753A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0835933A (en) * 1994-07-22 1996-02-06 Nippon Components Kk Camera apparatus for tube-inside inspection
JP2008022551A (en) * 2006-07-11 2008-01-31 Xerox Corp System, method and video projector for automatically correcting image before projection

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0835933A (en) * 1994-07-22 1996-02-06 Nippon Components Kk Camera apparatus for tube-inside inspection
JP2008022551A (en) * 2006-07-11 2008-01-31 Xerox Corp System, method and video projector for automatically correcting image before projection

Similar Documents

Publication Publication Date Title
JP5112432B2 (en) Device for inspection and measurement of measured objects
JP4889913B2 (en) Infrared camera sensitive to infrared rays
US20040109170A1 (en) Confocal distance sensor
US9874436B2 (en) Hole inspection method and apparatus
JP4557491B2 (en) Ultrasonic probe
JP5445324B2 (en) Alignment device, core position specifying method, core loss measuring method, and crosstalk measuring method between cores
JP5481484B2 (en) Apparatus and method for optically converting a three-dimensional object into a two-dimensional planar image
JP2004012301A (en) Method and apparatus for detecting pattern defect
JPH10197215A (en) Optical inspection device for internal surface of tubular product
US6929604B2 (en) Optic for industrial endoscope/borescope with narrow field of view and low distortion
JPH05149884A (en) In-pipe inspection device
JPH03103753A (en) Color in-tube inspecting device
JPH0375544A (en) Apparatus for inspecting inside of laser tube
JPH05149885A (en) In-pipe inspection device
KR102110941B1 (en) Apparatus for manhole monitoring
JP3964283B2 (en) Nondestructive inspection equipment
KR101507950B1 (en) apparatus for examining pattern image of semiconductor wafer
JPH0593694A (en) Method and device for inspecting cylindrical surface
JPS58196406A (en) Device for measuring furnace wall profile
JPH04113260A (en) Method and apparatus for detecting surface defect
RU2152065C1 (en) Method for checking of inner surface of chimney and device for its embodiment
JPH07306164A (en) Flaw detecting device
JPH04309834A (en) Lens inspection device
JP2000295639A (en) Lighting device for inspecting solid-state image pickup element and adjustment tool used for the same
CN207351889U (en) photoelectric measuring head and optical measuring system