JPH03103313A - Production device of aluminum nitride powder - Google Patents

Production device of aluminum nitride powder

Info

Publication number
JPH03103313A
JPH03103313A JP24297789A JP24297789A JPH03103313A JP H03103313 A JPH03103313 A JP H03103313A JP 24297789 A JP24297789 A JP 24297789A JP 24297789 A JP24297789 A JP 24297789A JP H03103313 A JPH03103313 A JP H03103313A
Authority
JP
Japan
Prior art keywords
reaction tube
powder
reaction
tube
aluminum nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24297789A
Other languages
Japanese (ja)
Inventor
Koichiro Fukui
福井 紘一郎
Yuichi Furukawa
裕一 古川
Juichi Nonaka
野中 寿一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Altemira Co Ltd
Original Assignee
Showa Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Aluminum Corp filed Critical Showa Aluminum Corp
Priority to JP24297789A priority Critical patent/JPH03103313A/en
Publication of JPH03103313A publication Critical patent/JPH03103313A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/072Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with aluminium
    • C01B21/0722Preparation by direct nitridation of aluminium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To make it possible to continuously produce AIN over relatively long period in attachment of Al suppressed in the inside face of a reaction tube by forming the inside face of the reaction tube into a face having low wettability. CONSTITUTION:A material (e.g. BN material) 6 having low wettability to melted Al is applied to the inside face of reaction tube 1 to suppress bonding of melted Al to the inside face. Then N2 gas G and Al powder P1 are introduced from an inlet 3 into the reaction tube 1 and the Al powder P1 is dropped in suspension state in the reaction tube 1 and simultaneously heated with a heating device 2 provided around the reaction tube 1 and the Al powder P1 is subjected to nitriding reaction and then led out from an outlet 4 and separated from N2 gas G by a filter 5a and the produced AlN powder is caught in a vessel 5.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、熱伝導性、耐熱性、絶縁性に優れた電子材
料用基板、金属溶融器等の材料に使用される窒化アルミ
ニウム粉末(以下、AlN粉末という)の製造装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to aluminum nitride powder (hereinafter referred to as AlN (referred to as powder) manufacturing equipment.

従来の技術 従来より知られている各種AlN粉末製造方法のうち、
最も注目を集めているのは、いわゆる浮遊式による直接
窒化法である。
BACKGROUND OF THE INVENTION Among the various AlN powder manufacturing methods known in the past,
The method that is attracting the most attention is the so-called floating direct nitriding method.

この方法を実施するための装置の具体例を、第1図の概
略構成図に基づいて説明すると、(1)は反応管であっ
て、アルミナ焼結体によって形成され、耐熱性、高温耐
酸化性に優れたものとなされている。この反応管(1)
の中間部には加熱装置(2)が周設され、その作動によ
り、反応管(1)内の温度を窒化反応に必要な温度(通
常15500C)にまで高めうるちのとなされている。
A specific example of an apparatus for carrying out this method will be explained based on the schematic diagram of FIG. It is considered to be of excellent quality. This reaction tube (1)
A heating device (2) is disposed around the middle of the tube, and its operation raises the temperature inside the reaction tube (1) to the temperature required for the nitriding reaction (usually 15,500 C).

また、反応管(1)には、この加熱装置(2)よりも上
方の位置においてA2粉とN2ガスとを反応管内に導入
する導入口(3)が設けられる一方、加熱装置(2)よ
りも下方の位置に、N2ガスと生成A,12N粉とを反
応管(1)外に導出する導出口(4)が設けられている
。なお、(5)は、フィルター(5a)付きの捕集客器
である。
Further, the reaction tube (1) is provided with an inlet (3) for introducing A2 powder and N2 gas into the reaction tube at a position above the heating device (2). An outlet port (4) is provided at a lower position for guiding the N2 gas and the produced A, 12N powder out of the reaction tube (1). In addition, (5) is a collection device with a filter (5a).

この装置では、導入口(3)からN2ガス(G)と1粉
(P1)とが導入されると、A塁粉(P1)はN2ガス
雰囲気下浮遊状態となって反応管(1)内を落下してい
く。その過程で、Al粉とN2ガスとが加熱装置(2)
からの加熱を受けて反応し、A℃粉の窒化が達成される
。この窒化反応の初期の段階では、Al粉の個々の粒子
はその表面部のみが窒化され、そこに硬いA42N皮膜
が形成されるものとなり、それによって内部への窒化が
阻害される現象をもたらす。しかしそのまま反応管(1
)内を落下していく過程で加熱温度及び反応時間の増大
とともに、粒子表面のAkN皮膜と内部未反応のA4と
の熱膨張差、おそらくは蒸気圧差等にも起因してiN皮
膜に亀裂が発生し、その部分でまた新しい反応を生じ、
その反応熱が蓄積された場合は反応部付近の急激な温度
上昇でA4N皮膜の崩壊とともに溶融A2の飛び出しを
伴いつつ、反応が加速度的連鎖進行を生じ、AAN粉に
生成される。かつ表面のAflN皮膜の亀裂による内部
からの未反応溶融Alの飛び出し、あるいは流出は、そ
れによって粒子の空洞化をもたらし、粉砕の容易なAp
N中空粒子を形成する一方、ApN皮膜の崩壊、及び流
出A2の二次的窒化は実質的に粉砕に相当する効果をも
たらす。このようにして生成された微細なA,12N粉
(P2)はN2ガス中を浮遊しつつ、更に落下し、導出
口(4)から反応管(1)外に導出され、フィルター(
5a)によってN2ガスと分離され容器(5)に捕集さ
れる。
In this device, when N2 gas (G) and 1 powder (P1) are introduced from the inlet (3), the A base powder (P1) becomes suspended in the N2 gas atmosphere and enters the reaction tube (1). is falling. In the process, Al powder and N2 gas are heated to the heating device (2).
The reaction occurs under heating from A°C, and nitridation of the powder is achieved. At the initial stage of this nitriding reaction, only the surface portions of individual particles of Al powder are nitrided, and a hard A42N film is formed thereon, thereby causing a phenomenon in which nitriding to the inside is inhibited. However, the reaction tube (1
) As the heating temperature and reaction time increase, cracks occur in the iN film due to the difference in thermal expansion between the AkN film on the particle surface and the unreacted A4 inside, and possibly due to the difference in vapor pressure. Then, a new reaction occurs in that part,
When the reaction heat is accumulated, the temperature in the vicinity of the reaction part rapidly rises, causing the collapse of the A4N film and the splashing of molten A2, causing an accelerated chain reaction and producing AAN powder. In addition, the splashing or outflow of unreacted molten Al from the inside due to cracks in the AflN film on the surface causes the particles to become hollow, resulting in easy-to-pulverize Ap.
While forming N hollow particles, the collapse of the ApN film and the secondary nitridation of the effluent A2 results in an effect substantially corresponding to comminution. The fine A, 12N powder (P2) thus generated falls further while floating in the N2 gas, is led out of the reaction tube (1) from the outlet (4), and is filtered (
5a) and is separated from N2 gas and collected in a container (5).

発明が解決しようとする課題 しかしながら、浮遊式直接窒化法によるAI2N粉の製
造の場合、反応過程で溶融したA4が反応管(1)の内
面に付着し、それが経時的に堆積して、早期のうちに反
応管(1)内が閉塞してしまうという不具合があり、長
期間連続したAQNの製造を行うことが困難であった。
Problems to be Solved by the Invention However, in the case of producing AI2N powder by the floating direct nitriding method, A4 melted during the reaction process adheres to the inner surface of the reaction tube (1) and accumulates over time, leading to premature There was a problem that the inside of the reaction tube (1) became clogged over time, making it difficult to continuously produce AQN for a long period of time.

この発明は、かかる問題点に鑑み、反応管内面への1の
付着を抑制し、もって比較的長期に亘ってINの製造を
連続して行うことのできる窒化アルミニウム粉末製造装
置を提供することを目的とする。
In view of these problems, the present invention aims to provide an apparatus for producing aluminum nitride powder that can suppress the adhesion of 1 to the inner surface of a reaction tube and thereby continuously produce IN over a relatively long period of time. purpose.

課題を解決するための手段 上記目的を達成するため、この発明は、反応管と、該反
応管の周囲に設けられた加熱装置とによって構戊された
反応部を備え、前記反応管内で12粉をN2ガス気流中
に浮遊せしめてA4粉の窒化反応を遂行するものとなさ
れた窒化アルミニウム粉末製造装置において、前記反応
管の内面が溶融AJJに対し低湿潤性の面に構成されて
なることを特徴とする窒化アルミニウム粉末製造装置を
要旨とする。
Means for Solving the Problems In order to achieve the above object, the present invention includes a reaction section constituted by a reaction tube and a heating device provided around the reaction tube, and in which 12 powders are heated in the reaction tube. In an apparatus for producing aluminum nitride powder, which performs a nitriding reaction of A4 powder by suspending it in a N2 gas flow, the inner surface of the reaction tube is configured to have a low wettability surface for molten AJJ. This article focuses on the characteristic aluminum nitride powder manufacturing equipment.

作用 上記装置では、反応管内面が溶融Aflに対し低湿潤性
の面に構成されているから、管内の溶融Alは、管内面
に接触すると、すぐにそこからはじかれるようにして離
れ、あるいはしばらく接触状態を保っていてもそのうち
周囲雰囲気の影響を受けて離れるものとなり、AQの反
応管内面への堆積の進行が抑制される。
Function: In the above device, the inner surface of the reaction tube is configured to have a low wettability to molten Afl, so when the molten Al in the tube comes into contact with the inner surface of the tube, it is immediately repelled and separated, or remains for a while. Even if they maintain contact, they will eventually separate due to the influence of the surrounding atmosphere, and the progress of deposition of AQ on the inner surface of the reaction tube is suppressed.

実施例 以下、この発明を図示実施例に基づいて説明する。Example The present invention will be explained below based on illustrated embodiments.

この実施例にかかる窒化アルミニウム粉末製造装置は、
反応管(1)を除き、第1図に示される装置と同様のも
のであるから、ここではその説明を省略し、反応管(1
)の説明を中心に行う。符号はf81図に用いられてい
るものをそのまま使用するものとする。なお、第1図に
示される装置は、いわゆる浮遊式の中でも特に落下式を
採用したものであるが、Al粉をN2ガスにのせて反応
管内を浮澹状態で上昇せしめて窒化反応を遂行する、い
わゆる浮上式の装置に本発明を適用しうるちのであるこ
とはいうまでもない。
The aluminum nitride powder manufacturing apparatus according to this example is as follows:
Except for the reaction tube (1), it is the same as the apparatus shown in FIG. 1, so its explanation will be omitted here.
) will be mainly explained. The symbols used in the f81 diagram shall be used as they are. The apparatus shown in Figure 1 is a so-called floating type, in particular a falling type, in which Al powder is placed on N2 gas and raised in a suspended state inside a reaction tube to carry out the nitriding reaction. It goes without saying that the present invention can be applied to a so-called floating type device.

本発明の反応管(1)は、その内面を溶融ARに対し低
湿潤性の面に構威したものである。
The reaction tube (1) of the present invention has an inner surface that has low wettability against molten AR.

それを実現するため反応管(1)にBN材を使用するの
が最も好ましい。BN材は、溶融Anとの接触角(固体
の疎液性即ち湿潤性ないし濡れ性を現す尺度で、固・液
・気3相の境界において、固液界面と気液界面とのなす
角を液相を通って測った値)が、10000Cにおいて
1570であり、溶融1に対し、低湿潤性を示すもので
ある。因みに、反応管に従来より使用されているAJ2
203材は同温度において1000であり、溶融Afl
に対する湿潤性が相当高いものであった。従って、反応
管にBN材を使用することにより、窒化アルミニウム粉
末の製造中、管内の溶融A4は、管内面に接触すると、
すぐにそこからはじかれるようにして離れ、あるいはし
ばらく接触状態を保っていてもそのうち周囲雰囲気の影
響を受けて離れていくものとなり、反応管(1)の内面
にAlが付着、堆積するのが抑制され、長期に亘る窒化
アルミニウム粉末の製造に適したものとなる。
To achieve this, it is most preferable to use BN material for the reaction tube (1). The BN material has a contact angle with molten An (a measure that expresses the lyophobicity of a solid, that is, its wettability), which is the angle between the solid-liquid interface and the gas-liquid interface at the boundary between solid, liquid, and gas. The value (measured through the liquid phase) was 1570 at 10000C, indicating low wettability for melt 1. By the way, AJ2, which has traditionally been used for reaction tubes,
203 material is 1000 at the same temperature, and the molten Afl
The wettability was considerably high. Therefore, by using BN material in the reaction tube, during the production of aluminum nitride powder, when the molten A4 in the tube comes into contact with the inner surface of the tube,
They will be immediately repelled and separated, or even if they remain in contact for a while, they will eventually separate due to the influence of the surrounding atmosphere, causing Al to adhere and accumulate on the inner surface of the reaction tube (1). This makes it suitable for the long-term production of aluminum nitride powder.

ただ、反応管(1)をBN材のみによって構成するのは
、BN材が高温耐酸化性に比較的乏しいものであること
より、好ましくない。そこで、反応管(1)はその内面
が低湿潤姓の面に構成されるだけでなく、外面が高温耐
酸化性の面に構成されることが望まれる。つまり、例え
ば、反応管(1)の内面をBN材の面で構成し、外面を
高温耐酸化性に優れた12203材の面で構或するので
ある。
However, it is not preferable to construct the reaction tube (1) only from BN material because BN material has relatively poor high-temperature oxidation resistance. Therefore, it is desirable that the reaction tube (1) not only have an inner surface with a low-humidity surface, but also have an outer surface with a high-temperature oxidation-resistant surface. That is, for example, the inner surface of the reaction tube (1) is made of BN material, and the outer surface is made of 12203 material, which has excellent high-temperature oxidation resistance.

具体的には、第2図に示されるように、市販のBNスプ
レーを用い、これに延長ノズルを取り付けて、BN微粉
(6)をAfl203焼結体による管(7)の内面にコ
ーティングしたもの、あるいは、第3図に示されるよう
に、Aj2203焼結体による管(8)の下端内面に内
方突出状のストッパー(9)を設けておき、BN焼結体
による管c.10 )を密な状態に挿入し、その下端を
ストッパー(9)に当接支持せしめ、2重管となしたも
の、等に反応管(1)を構或すれのが好ましい。
Specifically, as shown in Figure 2, a commercially available BN spray was used, an extension nozzle was attached to it, and BN fine powder (6) was coated on the inner surface of a tube (7) made of Afl203 sintered body. Alternatively, as shown in FIG. 3, an inwardly protruding stopper (9) is provided on the inner surface of the lower end of the tube (8) made of Aj2203 sintered body, and the tube made of BN sintered body c. It is preferable to construct the reaction tube (1) into a double tube, etc., by inserting a tube (10) in a tight state and having its lower end abutted and supported by a stopper (9).

上記構成では、反応管(1)の内面の低湿潤性により、
窒化アルミニウム粉末の製造中、溶融Alが反応管(1
)の内面に付着しにくいものとなることはもとより、反
応管(1)の外面の高温耐酸化性により、加熱装置(2
)の作動による反応管腐食が生じ難いものとなる。加え
て、従来のAn203材による反応管の場合、その製造
に焼結助剤してSi02、MgOをそれぞれ0.15%
、0,l%ほど使用することが必要であったため、これ
らが反応管内の反応雰囲気を汚染し、生成AlN粉の純
度を低下せしめるものとなっていたが、これに対し、B
N材は、Cl2ガスによる純化処理によりFe,St等
の不純物を処理した純度99.99%のものに形成する
ことができ、従って、反応管中の雰囲気がS t,Mg
等で汚染されるのを防止することができ、ひいてはそれ
らによるAUN粉の純度の低下を回避することが可能と
なる。
In the above configuration, due to the low wettability of the inner surface of the reaction tube (1),
During the production of aluminum nitride powder, molten Al is passed through a reaction tube (1
) as well as being difficult to adhere to the inner surface of the heating device (2).
) is less likely to cause corrosion of the reaction tube. In addition, in the case of conventional reaction tubes made of An203 material, 0.15% each of Si02 and MgO are used as sintering aids during manufacture.
, 0.1%, which contaminates the reaction atmosphere inside the reaction tube and reduces the purity of the produced AlN powder.
The N material can be formed to have a purity of 99.99% by removing impurities such as Fe and St by purification treatment with Cl2 gas, so that the atmosphere in the reaction tube is St, Mg
It is possible to prevent the AUN powder from being contaminated by such substances, and it is also possible to avoid a decrease in the purity of the AUN powder due to such substances.

なお、上記実施例では、BN材と、Au203材との組
み合わせによる反応管について説明したが、BN材に替
えてC材を使用してもよく、またAU203材に替えて
ムライト材(45〜60%Au203 )を使用しても
よい。C材の溶融A℃に対する接触角は温度8750C
において1530であり、また反応管(1)内の雰囲気
をSt,Mgで汚染する心配もなく、BN材の代替材と
して遜色なく使用することができる。
In the above embodiment, a reaction tube made of a combination of BN material and Au203 material was described, but C material may be used instead of BN material, and mullite material (45 to 60 %Au203) may be used. The contact angle of C material to melting A℃ is 8750C.
1530, and there is no fear of contaminating the atmosphere inside the reaction tube (1) with St and Mg, and it can be used as a substitute for the BN material without inferiority.

次に、A4203材のみで構成した反応管を用いた場合
と、AJ2203管の内面にBN微粉をコーティングし
た反応管を用いた場合とについて第1図に示されるよう
な落下式製造装置を使用して行った比較実験を説明する
。内径35mm、長さITrLの反応管(1)を加熱長
さ300胴のシリコニット管状炉よりなる加熱装置(2
)に設置し、アトマイズ法によって製造した純度99.
99%、粒径25p以下の高純度AΩ粉を0.7g/分
の割り合いで、またN2ガスを1.  5fl/分の割
り合いで、上部から反応管(1)内に供給し、炉温15
500Cの下で4時間窒化反応を行った。その結果、A
R203材のみで構成した反応管では3時間で閉塞を起
こし、供給A{の40%が反応管の内面に付着したのに
対し、BN微粉をコーティングした反応管では閉塞は起
こらず、管内面に付着したAQの量も、供給AΩの量の
4%にしかすぎなかった。また、窒化反応により得られ
たAI2N粉の純度を比較したところ、12203材の
みで構成した反応管では、S1が2 5 0ppm ,
 Mgが40ppmであったのに対し、BN微粉をコー
ティングした反応管では、Siが28ppII,Mgが
1 ppmであった。以上の比較実験により、本発明に
よれば、反応管内面へのA[の付着量が大幅に減少し、
管の閉塞を効果的に抑制しうろこと、及び高純度のAl
N粉を得ることができることを確認しえた。
Next, we used a drop-type manufacturing apparatus as shown in Figure 1 for the case of using a reaction tube made of only A4203 material and the case of using a reaction tube of which the inner surface of the AJ2203 tube was coated with BN fine powder. The comparative experiment conducted will be explained. A reaction tube (1) with an inner diameter of 35 mm and a length of ITrL is heated using a heating device (2) consisting of a silicone tubular furnace with a length of 300 mm.
) and manufactured by the atomization method with a purity of 99.
99%, high purity AΩ powder with a particle size of 25p or less at a rate of 0.7 g/min, and 1.0 g/min of N2 gas. It is supplied into the reaction tube (1) from the top at a rate of 5 fl/min, and the furnace temperature is 15 fl/min.
The nitriding reaction was carried out at 500C for 4 hours. As a result, A
In the reaction tube made only of R203 material, clogging occurred in 3 hours and 40% of the feed A adhered to the inner surface of the reaction tube, whereas in the reaction tube coated with BN fine powder, no clogging occurred and no The amount of AQ deposited was also only 4% of the amount of AΩ supplied. In addition, when comparing the purity of AI2N powder obtained by nitriding reaction, in the reaction tube made only of 12203 material, S1 was 250 ppm,
While Mg was 40 ppm, in the reaction tube coated with BN fine powder, Si was 28 ppII and Mg was 1 ppm. The above comparative experiments have shown that according to the present invention, the amount of A[ attached to the inner surface of the reaction tube is significantly reduced;
Scales that effectively suppress duct blockage and high-purity Al
It was confirmed that N powder could be obtained.

発明の効果 上述の次第で、この発明の窒化アルミニウム粉末製造装
置は、反応管の内面を溶融A2に対し低湿潤性の面に構
威したものであるから、窒化反応中、管内の溶融A[は
、管内面に接触すると、すぐにそこからはじかれるよう
にして離れ、あるいはしばらく接触状態を保っていても
そのうち周囲雰囲気の影響を受けて離れてしまうものと
なり、反応管内面への12の付着、堆積が抑制され、比
較的長期に亘ってAlNの製造を連続的に行うことが可
能となる。
Effects of the Invention As described above, the apparatus for producing aluminum nitride powder of the present invention has the inner surface of the reaction tube having low wettability with respect to the molten A2, so that the molten A[ When it comes into contact with the inner surface of the reaction tube, it is immediately repelled and separated, or even if it remains in contact for a while, it eventually separates due to the influence of the surrounding atmosphere. , deposition is suppressed, and AlN can be manufactured continuously over a relatively long period of time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の窒化アルミニウム粉末製造装置の一
例を示す概略構成図、第2図は反応管の一実施例を示す
縦断面図、第3図は反応管の他の実施例を示す縦断面図
である。 (1)・・・反応管、(2)・・・加熱装置。 以上
Fig. 1 is a schematic configuration diagram showing an example of the aluminum nitride powder manufacturing apparatus of the present invention, Fig. 2 is a longitudinal sectional view showing one embodiment of the reaction tube, and Fig. 3 is a longitudinal sectional view showing another embodiment of the reaction tube. It is a front view. (1)...Reaction tube, (2)...Heating device. that's all

Claims (1)

【特許請求の範囲】[Claims] 反応管と、該反応管の周囲に設けられた加熱装置とによ
って構成された反応部を備え、前記反応管内でAl粉を
N_2ガス気流中に浮遊せしめてAl粉の窒化反応を遂
行するものとなされた窒化アルミニウム粉末製造装置に
おいて、前記反応管の内面が溶融Alに対し低湿潤性の
面に構成されてなることを特徴とする窒化アルミニウム
粉末製造装置。
It is equipped with a reaction section consisting of a reaction tube and a heating device provided around the reaction tube, and performs a nitriding reaction of the Al powder by suspending the Al powder in an N_2 gas stream within the reaction tube. An apparatus for producing aluminum nitride powder, characterized in that the inner surface of the reaction tube is configured to have a low wettability to molten Al.
JP24297789A 1989-09-18 1989-09-18 Production device of aluminum nitride powder Pending JPH03103313A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24297789A JPH03103313A (en) 1989-09-18 1989-09-18 Production device of aluminum nitride powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24297789A JPH03103313A (en) 1989-09-18 1989-09-18 Production device of aluminum nitride powder

Publications (1)

Publication Number Publication Date
JPH03103313A true JPH03103313A (en) 1991-04-30

Family

ID=17097055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24297789A Pending JPH03103313A (en) 1989-09-18 1989-09-18 Production device of aluminum nitride powder

Country Status (1)

Country Link
JP (1) JPH03103313A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003034511A (en) * 2001-07-23 2003-02-07 Denki Kagaku Kogyo Kk Method of manufacturing aluminum nitride powder
JP2005022960A (en) * 2003-06-09 2005-01-27 National Institute Of Advanced Industrial & Technology Method for producing nonoxide-based particle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003034511A (en) * 2001-07-23 2003-02-07 Denki Kagaku Kogyo Kk Method of manufacturing aluminum nitride powder
JP4545357B2 (en) * 2001-07-23 2010-09-15 電気化学工業株式会社 Method for producing aluminum nitride powder
JP2005022960A (en) * 2003-06-09 2005-01-27 National Institute Of Advanced Industrial & Technology Method for producing nonoxide-based particle

Similar Documents

Publication Publication Date Title
JPH06228669A (en) Method and device for removing from molten aluminum particle contained therein
CN107406270A (en) The method for manufacturing high-purity alpha-alumina
JP4933430B2 (en) Stopper rod for supplying gas to molten metal
JP5387267B2 (en) Chlorosilane purification apparatus and purification method
JPH03103313A (en) Production device of aluminum nitride powder
JPH11320083A (en) Melting and holding furnace
US20120285194A1 (en) Dry dust removal method in organic chlorosilane production
CN111926199B (en) Pre-smelting process of electrolytic aluminum liquid
JPS63195102A (en) Continuous production of aluminum nitride powder and device therefor
WO2009128501A1 (en) Process for production of silicon
JP2018203579A (en) Method for collecting chlorosilanes and apparatus for collecting chlorosilanes
JP2528367B2 (en) Heating equipment for polycrystalline silicon
JP4231283B2 (en) High purity magnesium oxide fine powder production apparatus and high purity magnesium oxide fine powder production method using the same
JP2011184243A (en) Apparatus for producing chlorosilane
JPH03150327A (en) Manufacture of metallic ti
US4666684A (en) Process for producing uranium dioxide
WO2004001078A1 (en) Method and device for purifying a steam of molten metal
JPH0641618A (en) Method and device for continuously producing active metal powder
JP2934864B2 (en) Method for producing silica glass filter
JPH0755813B2 (en) Method for removing impurities from silicon
AU2003300311A8 (en) Improved fine pore media and method of making same
JP2010076951A (en) Method for producing silicon
JPS55136552A (en) Production of broad amorphous metal tape and producing apparatus thereof
JPH08224462A (en) Reactor
JPH0476331B2 (en)