JPH0310241B2 - - Google Patents

Info

Publication number
JPH0310241B2
JPH0310241B2 JP1618385A JP1618385A JPH0310241B2 JP H0310241 B2 JPH0310241 B2 JP H0310241B2 JP 1618385 A JP1618385 A JP 1618385A JP 1618385 A JP1618385 A JP 1618385A JP H0310241 B2 JPH0310241 B2 JP H0310241B2
Authority
JP
Japan
Prior art keywords
radio wave
wave absorber
plate
microstrip line
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1618385A
Other languages
Japanese (ja)
Other versions
JPS61173502A (en
Inventor
Masahiko Kohama
Masato Inoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1618385A priority Critical patent/JPS61173502A/en
Publication of JPS61173502A publication Critical patent/JPS61173502A/en
Publication of JPH0310241B2 publication Critical patent/JPH0310241B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/24Terminating devices
    • H01P1/26Dissipative terminations
    • H01P1/268Strip line terminations

Landscapes

  • Non-Reversible Transmitting Devices (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は同軸線路を伝搬する数十ワツト級以
上のマイクロ波の大電力を吸収する目的に使用す
る無反射終端に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a non-reflection termination used for the purpose of absorbing the large power of microwaves of tens of watts or more propagating through a coaxial line.

〔従来の技術〕[Conventional technology]

従来のこの種の装置の例として、例えば島田理
化社カタログ’82年〜’83年版P85等に示された
ものがあつたがこの外形図を第4図に示す。
An example of a conventional device of this kind is one shown in the Shimada Rikasha Catalog 1982-1983 edition P85, and the outline drawing of this device is shown in FIG.

その側断面形状は第5図、あるいは第6図のよ
うなものである。図において1は同軸接栓部、2
は外壁、3は外壁2上に設けられた放熱フイン、
4は内導体、5は誘電体、6及び7は電波吸収体
である。第7図、及び第8図は電波吸収体6及び
7の外形図である。
Its side cross-sectional shape is as shown in FIG. 5 or 6. In the figure, 1 is a coaxial plug, 2
is an outer wall, 3 is a heat dissipation fin provided on the outer wall 2,
4 is an inner conductor, 5 is a dielectric, and 6 and 7 are radio wave absorbers. 7 and 8 are external views of the radio wave absorbers 6 and 7.

次に動作について説明する。同軸接栓1の入力
端から入射した電波は矢印方向に伝搬するが、内
導体4と外壁5との間に電波吸収体(6あるいは
7)が存在する領域まで来ると電磁エネルギーの
一部が伝搬とともに熱エネルギーに変換されてい
く。即ち電波の減衰現象が起こる。入力される電
波が数十ワツト級以上の大電力の場合は電波の減
衰につれて発生する熱量も大きいが、これを外壁
2に取り付けられた放熱フイン3を介して空間に
放射させることにより電波吸収体6,7の熱上昇
を防いでいる。また電波吸収体6,7へ電波が入
射するときの反射を抑え、さらに発熱を極力均等
に行わせるために電波吸収体の形状は第7図ある
いは第8図に示すような円錐テーパ状にしてあ
る。
Next, the operation will be explained. Radio waves incident from the input end of the coaxial plug 1 propagate in the direction of the arrow, but when they reach the area where the radio wave absorber (6 or 7) exists between the inner conductor 4 and the outer wall 5, part of the electromagnetic energy is lost. As it propagates, it is converted into thermal energy. That is, a radio wave attenuation phenomenon occurs. When the input radio waves have a large power level of several tens of watts or more, the amount of heat generated as the radio waves attenuate is also large, but by radiating this into the space via the heat dissipation fins 3 attached to the outer wall 2, the radio wave absorber 6.7 prevents heat rise. In addition, in order to suppress reflection when radio waves are incident on the radio wave absorbers 6 and 7, and to generate heat as evenly as possible, the shape of the radio wave absorbers is made into a conical taper shape as shown in Fig. 7 or 8. be.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の無反射終端は以上のように放熱を放熱フ
インからの放射によつて行うべく構成されていた
ので、大電力用となると放熱フインが大きくな
り、無反射終端全体の規模が大きくなること、さ
らに同軸形状のため電波吸収体を円錐テーパ形状
にするための加工性に問題があり量産性に欠ける
等の問題点があつた。
Conventional non-reflective terminations are configured to dissipate heat by radiation from the heat dissipation fins as described above, so when used for high power applications, the heat dissipation fins become larger and the overall scale of the non-reflection termination increases. Furthermore, because of the coaxial shape, there were problems in the workability of forming the radio wave absorber into a conical taper shape, which led to problems such as a lack of mass production.

この発明は上記のような問題点を解消するため
になされたもので、複雑な形状の部品を用いた
り、全体の規模を大きくすることなしに、効率よ
く放熱を行い得る量産性の高い無反射終端を得る
ことを目的とする。
This invention was made in order to solve the above-mentioned problems, and is a highly mass-producible non-reflective material that can efficiently dissipate heat without using parts with complicated shapes or increasing the overall scale. The purpose is to obtain termination.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る無反射終端は、電波入射側の伝
送線路形式が同軸線路である場合も、これをマイ
クロストリツプ線路に変換し、従来の装置におい
ては同軸線路の内導体と外壁間に円錐テーパ形状
に加工して配置されていた電波吸収体を、片面が
マイクロストリツプ線路上に直接密着しており、
もう片面が他の金属体と面接触を持つような金属
性のフタと密着する板状の電波吸収体で置きかえ
ることにより、放熱フインの必要性をなくしたも
のである。
The non-reflection termination according to the present invention converts a coaxial line into a microstrip line even when the transmission line on the radio wave incidence side is a coaxial line. One side of the radio wave absorber, which had been processed into a tapered shape and placed in close contact with the microstrip line, is now in close contact with the microstrip line.
This eliminates the need for heat dissipation fins by replacing it with a plate-shaped radio wave absorber that is in close contact with a metal lid whose other side has surface contact with another metal body.

〔作用〕[Effect]

この発明における板状の電波吸収体はその片面
がフタを介して熱伝導性の良い金属体と一体化し
ているので、マイクロストリツプ線路上の電波を
吸収することにより発生した熱を伝導により効率
良く、上記金属体に逃がすことが可能であり、温
度上昇は少ない。
One side of the plate-shaped radio wave absorber in this invention is integrated with a metal body with good thermal conductivity through a lid, so the heat generated by absorbing radio waves on the microstrip line is transferred by conduction. It is possible to efficiently release it to the metal body, and the temperature rise is small.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の一実施例を図について説明す
る。
An embodiment of the present invention will be described below with reference to the drawings.

第1図は部品構成図、第2図は側断面図(断面
A−A)、第3図は断面図(断面B−B)である。
図において8は同軸−マイクロストリツプライン
変換接栓、9はマイクロストリツプ線路基板、1
0はマイクロストリツプ線路基板の取付ベース、
11は該マイクロストリツプ線路基板上部にこれ
と密着するように置かれた板状の電波吸収体、1
2は金属性のフタであり、これらは取付金具13
とビス14により金属体15と面接触するように
取り付けられる。
FIG. 1 is a component configuration diagram, FIG. 2 is a side sectional view (cross section AA), and FIG. 3 is a sectional view (cross section BB).
In the figure, 8 is a coaxial-microstrip line conversion connector, 9 is a microstrip line board, 1
0 is the mounting base of the microstrip line board,
Reference numeral 11 denotes a plate-shaped radio wave absorber placed on the top of the microstrip line board in close contact with the microstrip line board;
2 is a metal lid, and these are the mounting brackets 13
It is attached by screws 14 so as to be in surface contact with the metal body 15.

次に動作について説明する。 Next, the operation will be explained.

入射電波は変換接栓8通過後マイクロストリツ
プ線路基板9をTEMモードで伝搬するが、電波
吸収体11が近傍に存在する領域まで来ると徐々
に減衰をはじめる。電波吸収体11の形状はテー
パ形状になつており、基板9上を伝搬する電波に
対する減衰定数は電波の進行方向に徐々に増大す
る傾向を持つ。したがつて電波の吸収による発熱
は均一性を有することになる。さらに電波吸収体
11は平板上であり、片面が基板9に接すると同
時にもう片面が金属性のフタ12を介して金属体
15と面接触しているため、発生した熱は伝導に
よつて効率良く金属体15に逃げることになり、
電波吸収体11の温度上昇及びこれによつてもた
らされる基板9の温度上昇を防ぐことができる。
After passing through the conversion plug 8, the incident radio wave propagates through the microstrip line board 9 in the TEM mode, but when it reaches a region where the radio wave absorber 11 is present, it gradually begins to attenuate. The radio wave absorber 11 has a tapered shape, and the attenuation constant for radio waves propagating on the substrate 9 tends to gradually increase in the direction of propagation of the radio waves. Therefore, heat generation due to absorption of radio waves is uniform. Furthermore, since the radio wave absorber 11 is a flat plate, and one side is in contact with the substrate 9 and the other side is in surface contact with the metal body 15 via the metal lid 12, the generated heat is efficiently dissipated by conduction. It ends up escaping into the metal body 15,
It is possible to prevent the temperature rise of the radio wave absorber 11 and the resulting temperature rise of the substrate 9.

なお上記実施例では同軸線路からの入射電波を
マイクロストリツプ線路モードに変換してから吸
収する場合について説明したが、類似の形状によ
り平衡型ストリツプ線路(トリプレート線路)モ
ードに変換しても同様の作用が得られる。
In the above example, the case where the incident radio wave from the coaxial line is converted into the microstrip line mode and then absorbed is explained, but it is also possible to convert it into the balanced strip line (triplate line) mode using a similar shape. A similar effect can be obtained.

また電波入射側の線路がマイクロストリツプ線
路あるいは平衡型ストリツプ線路の場合にはモー
ド変換用接栓を介さず直接上記実施例の構成に電
波を導くことができるため構造はいつそう簡単に
なる。
Furthermore, if the line on the radio wave incidence side is a microstrip line or a balanced strip line, the structure becomes much simpler because the radio waves can be guided directly to the configuration of the above embodiment without going through a mode conversion plug. .

第1図における電波吸収体、取付ベース、フタ
第A形状は一例として示したものであり、これに
限らなくても上記実施例と同様の効果を奏する場
合がある。もた基板、電波吸収体、フタ、金属体
間の接触部の熱抵抗を減らし、放熱性を向上させ
るために、これらの接触面に熱伝導性の接着剤等
を用いることもさらに効果を上げる働きをする可
能性がある。
The radio wave absorber, the mounting base, and the shape A of the lid in FIG. 1 are shown as an example, and the same effects as the above embodiments may be obtained even if the present invention is not limited thereto. In order to reduce the thermal resistance and improve heat dissipation at the contact points between the base board, radio wave absorber, lid, and metal body, it is also more effective to use thermally conductive adhesives, etc. on these contact surfaces. There is a possibility that it will work.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、無反射終端
の電波吸収作用をする部分をストリツプ線路で構
成し、また板状の電波吸収体を金属板に密着させ
て放熱を放熱フインによる放射によつてではなく
両接触による伝導によつて行わせるようにしたの
で、小型、軽量化、及び構造の簡素化を図ること
ができ、安価で量産性の優れたものが得られる効
果がある。
As described above, according to the present invention, the part of the non-reflection termination that functions to absorb radio waves is constructed of a strip line, and the plate-shaped radio wave absorber is closely attached to the metal plate, and heat is radiated by the heat radiation fin. Since the conduction is carried out through both contacts rather than through a single contact, it is possible to achieve a smaller size, lighter weight, and simpler structure, which has the effect of providing an inexpensive product that is suitable for mass production.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による無反射終端
の部品構成図、第2図は第1図の側断面図、第3
図は第1図の縦断面図、第4図は従来の無反射終
端の外形図、第5図第6図は従来の無反射終端の
側断面図、第7図、第8図は従来の無反射終端に
使用される電波吸収体の外形図である。 図において、1は同軸接栓、2は外壁、3は放
熱フイン、4は内導体、5は誘電体、6,7は電
波吸収体、8は変換接栓、9は基板、10は取付
ベース、11は電波吸収体、12はフタ、13は
取付金具、14はビス、15は金属体である。各
図中の同一符号は同一又は相当部分を示す。
FIG. 1 is a component configuration diagram of a non-reflection termination according to an embodiment of the present invention, FIG. 2 is a side sectional view of FIG. 1, and FIG.
The figure is a longitudinal sectional view of Fig. 1, Fig. 4 is an external view of a conventional non-reflection termination, Fig. 5, Fig. 6 is a side sectional view of a conventional non-reflection termination, and Figs. 7 and 8 are conventional non-reflection termination. FIG. 3 is an outline diagram of a radio wave absorber used for non-reflection termination. In the figure, 1 is a coaxial connector, 2 is an outer wall, 3 is a heat dissipation fin, 4 is an inner conductor, 5 is a dielectric, 6 and 7 are radio wave absorbers, 8 is a conversion connector, 9 is a board, and 10 is a mounting base. , 11 is a radio wave absorber, 12 is a lid, 13 is a mounting bracket, 14 is a screw, and 15 is a metal body. The same reference numerals in each figure indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 1 伝送線線部をストリツプ線路基板で構成し、
その上部に板状の電波吸収体を、入力端からの距
離とともに電波の減衰量が増加するように密着さ
せて装着し、さらにその上部の金属板を介して外
部の金属体と接触させたことを特徴とするマイク
ロ波大電力用無反射終端装置。
1 The transmission line section is composed of a strip line board,
A plate-shaped radio wave absorber is attached closely to the top so that the amount of radio wave attenuation increases with the distance from the input end, and is further contacted with an external metal body through the metal plate on top of the plate. A non-reflection termination device for microwave high power, featuring:
JP1618385A 1985-01-28 1985-01-28 Resistive terminator Granted JPS61173502A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1618385A JPS61173502A (en) 1985-01-28 1985-01-28 Resistive terminator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1618385A JPS61173502A (en) 1985-01-28 1985-01-28 Resistive terminator

Publications (2)

Publication Number Publication Date
JPS61173502A JPS61173502A (en) 1986-08-05
JPH0310241B2 true JPH0310241B2 (en) 1991-02-13

Family

ID=11909397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1618385A Granted JPS61173502A (en) 1985-01-28 1985-01-28 Resistive terminator

Country Status (1)

Country Link
JP (1) JPS61173502A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4238136C1 (en) * 1992-11-12 1994-02-17 Ant Nachrichtentech Waveguide absorber
US20040119552A1 (en) * 2002-12-20 2004-06-24 Com Dev Ltd. Electromagnetic termination with a ferrite absorber
US7042305B2 (en) 2002-12-20 2006-05-09 Com Dev Ltd. Transmission line termination
WO2005062414A1 (en) * 2003-12-24 2005-07-07 Adelaide Research & Innovation Pty Ltd Thin film impedance termination
JP2007038572A (en) * 2005-08-04 2007-02-15 Nakayama Tekko Kk Travelling rail for sidewall cutting device

Also Published As

Publication number Publication date
JPS61173502A (en) 1986-08-05

Similar Documents

Publication Publication Date Title
US3187226A (en) Miniaturized electrical apparatus with combined heat dissipating and insulating structure
JPH01155702A (en) Support structure of anntena
JPH0310241B2 (en)
JPH1041678A (en) Optical receiver
TWM460508U (en) Heat-dissipating structure of electrical shielding cover
JP2006093546A (en) Heat sink sheet, heat radiating cylinder and heat radiating structure employing it
JP2000165995A (en) Ultrasonic wave probe
CN111246709B (en) Heat radiator
CN113286418B (en) High-performance electromagnetic radiation suppression structure
US2804598A (en) Wave guide termination
CN111902019B (en) Thermal control device of satellite-borne phased array radar
CN210005996U (en) shielding and heat dissipation structure
CN112928412A (en) Compact matching load
JP2003060141A (en) Super heat conductor and cooling unit using the same
JPS584243Y2 (en) Dielectric support device for waveguide
JPH0677347A (en) Substrate
CN214589191U (en) Compact matching load
CN215345630U (en) Heat dissipation resistance mechanical structure of space electronic device
KR102444136B1 (en) Millimeter wave transceiver with improved heat dissipation
CN214477407U (en) Memory with ceramic radiating fin
JP2807415B2 (en) Heat dissipation structure of heat generating components in electronic equipment
CN109561641A (en) Shielding case, printed circuit board and electronic equipment
CN218071925U (en) Combined heat dissipation shielding structure and electronic component
JPS5869101A (en) Consuming device of microwave
CN212062652U (en) Ultra-wideband phased array system