JPH03100500A - Formation of ruthenium tetraoxide - Google Patents

Formation of ruthenium tetraoxide

Info

Publication number
JPH03100500A
JPH03100500A JP1236971A JP23697189A JPH03100500A JP H03100500 A JPH03100500 A JP H03100500A JP 1236971 A JP1236971 A JP 1236971A JP 23697189 A JP23697189 A JP 23697189A JP H03100500 A JPH03100500 A JP H03100500A
Authority
JP
Japan
Prior art keywords
ruthenium
ozone
gaseous
section
oxidation reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1236971A
Other languages
Japanese (ja)
Other versions
JP2819663B2 (en
Inventor
Tsuneo Ayabe
統夫 綾部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP23697189A priority Critical patent/JP2819663B2/en
Publication of JPH03100500A publication Critical patent/JPH03100500A/en
Application granted granted Critical
Publication of JP2819663B2 publication Critical patent/JP2819663B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Abstract

PURPOSE:To easily form ruthenium tetraoxide from used nuclear fuel by oxidizing ruthenium dioxide by gaseous ozone with gaseous nitrogen as a carrier gas in the state of maintaining the ruthenium dioxide at -25 to 5 deg.C. CONSTITUTION:The gaseous ozone is first generated from the oxygen supplied through an oxygen line 5 in an ozone generating section 1 and is introduced into an ozone thickening container 8 of an ozone thickening section 2. The gaseous ozone is thickened to a high cocn. in this container. The supply of the gaseous ozone is then stopped by a stop valve 22 and the thickened gaseous ozone is supplied by using the gaseous nitrogen fed from a gaseous nitrogen line 15 as the carrier gas into a reaction column 11 where the powder 10 of the ruthenium dioxide in the used nuclear fuel in an oxidation reaction section 3 is housed. The ruthenium tetraoxide formed in the reaction column 11 is transferred into an absorption column 14 in a recovery section 4 and is recovered by coming into contact with an absorbing liquid 13.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は原子炉での反応に供された使用済核燃料中に含
まれているルテニウム、特に、酸化物としての二酸化ル
テニウムから四酸化ルテニウムを回収するための四酸化
ルテニウムの生成方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is a method for converting ruthenium contained in spent nuclear fuel subjected to a reaction in a nuclear reactor, particularly to converting ruthenium tetroxide from ruthenium dioxide as an oxide. The present invention relates to a method for producing ruthenium tetroxide for recovery.

[従来の技術] 原子炉での反応に供された使用済核燃料中には、ルテニ
ウムが多1(1を当り約3 Kg >に含まれているが
、従来は回収されることなく廃棄されていた。
[Prior art] Spent nuclear fuel subjected to a reaction in a nuclear reactor contains a large amount of ruthenium (approximately 3 kg per ruthenium), but conventionally it has been disposed of without being recovered. Ta.

ルテニウムは、電気接点や触媒等に使用されており、天
然には金属とじてのルテニウム(Ru )として存在し
ているが、殆どは酸化物である二酸化ルテニウム(Ru
O2)として存在しているため、この二酸化ルテニウム
をガス化して四酸化ルテニウム(Ruα)の形で回収さ
れている。
Ruthenium is used in electrical contacts, catalysts, etc., and exists naturally as a metal, ruthenium (Ru), but most of it is ruthenium dioxide (Ru), an oxide.
Therefore, this ruthenium dioxide is gasified and recovered in the form of ruthenium tetroxide (Ruα).

二酸化ルテニウムから四酸化ルテニウムを生成する方法
としては、従来、二酸化ルテニウムの粉末を高温で溶か
した後、湿式で酸化させる、いわゆる、湿式プロセスに
よるアルカリ溶融−湿式酸化法が採用されていた。
Conventionally, as a method for producing ruthenium tetroxide from ruthenium dioxide, an alkaline melt-wet oxidation method using a so-called wet process has been adopted, in which ruthenium dioxide powder is melted at high temperature and then oxidized in a wet process.

[発明が解決しようとする課題] ところが、上記従来の四酸化ルテニウムの生成方法の場
合には、アルカリ溶融−湿式プロセスを採用しているた
め、高温、高アルカリという苛酷な雰囲気下で行わねば
ならず、しかも設備が大型且つ複雑化する問題がある。
[Problems to be Solved by the Invention] However, in the case of the above-mentioned conventional method for producing ruthenium tetroxide, an alkaline melting-wet process is adopted, so it must be carried out in a harsh atmosphere of high temperature and high alkali. Moreover, there is a problem that the equipment becomes large and complicated.

そこで、本発明は、使用済核燃料あるいは放射性廃棄物
から乾式プロセスにて容易に四酸化ルテニウムを生成さ
せることができるようにしようとするものである。
Therefore, the present invention aims to make it possible to easily generate ruthenium tetroxide from spent nuclear fuel or radioactive waste by a dry process.

[課題を解決するための手段] 本発明は、上記課題を解決するために、使用済核燃料も
しくは放射性廃棄物を、酸化反応部の反応塔に入れ、上
記酸化反応部にて上記二酸化ルテニウムを、窒素ガスを
キャリアガスとして供給されるオゾンガスと一25〜5
℃の温度で酸化反応を行わせ、上記二酸化ルテニウムを
酸化させて四酸化ルテニウムを生成することを特徴とす
る四酸化ルテニウムの生成方法である。
[Means for Solving the Problems] In order to solve the above problems, the present invention introduces spent nuclear fuel or radioactive waste into a reaction tower of an oxidation reaction section, and in the oxidation reaction section, the ruthenium dioxide is ozone gas supplied with nitrogen gas as a carrier gas;
This method of producing ruthenium tetroxide is characterized by carrying out an oxidation reaction at a temperature of 0.degree. C. to oxidize the ruthenium dioxide to produce ruthenium tetroxide.

又、使用済核燃料もしくは放射性廃棄物を、酸化反応部
の反応塔に入れ、上記酸化反応部にて上記金属ルテニウ
ムを、窒素ガスをキャリアガスとして供給されるオゾン
ガスと一5℃から常温の間の温度で酸化反応を行わせ、
上記金属ルテニウムを酸化させて四酸化ルテニウムを生
成するようにしてもよい。
In addition, spent nuclear fuel or radioactive waste is put into the reaction tower of the oxidation reaction section, and in the oxidation reaction section, the metal ruthenium is heated between -5°C and room temperature with ozone gas supplied with nitrogen gas as a carrier gas. The oxidation reaction is carried out at temperature,
The metal ruthenium may be oxidized to produce ruthenium tetroxide.

[作  用] 酸化物としての二酸化ルテニウムを、−25〜5℃の温
度に保持させた状態で窒素ガスをキャリアとするオゾン
ガスによ゛り酸化させると、乾式にて四酸化ルテニウム
を生成することができる。四酸化ルテニウムはガス化さ
れているので、廃棄すべき他の物質と分離し易くなる。
[Function] When ruthenium dioxide as an oxide is oxidized with ozone gas using nitrogen gas as a carrier while being maintained at a temperature of -25 to 5°C, ruthenium tetroxide is produced in a dry process. I can do it. Since ruthenium tetroxide is gasified, it is easier to separate it from other materials to be disposed of.

又、金属ルテニウムを一5℃付近から常温に保持させる
ことにより、同様に四酸化ルテニウムを生成させること
ができる。
Furthermore, by keeping metal ruthenium at room temperature from around -5°C, ruthenium tetroxide can be produced in the same way.

[実 施 例] 以下、本発明の実施例を図面を参照して説明する。[Example] Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の方法を実施するためのルテニウムの乾
式揮発分離プロセスフローを示すもので、オゾン発生部
1で発生させたオゾンガス(α)を、オゾン濃縮部2へ
送って濃縮し、濃縮したオゾンガス(03)を、窒素ガ
ス(N2)をキャリアガスとして酸化反応部3へ送り、
ここで二酸化ルテニウム(RuOz)を酸化させて四酸
化ルテニウム(RuOa>を生成し、生成された四酸化
ルテニウム(Ruα)を回収部4へ移送して回収させる
ようにしである。
Figure 1 shows the process flow for dry volatilization separation of ruthenium for carrying out the method of the present invention, in which ozone gas (α) generated in the ozone generator 1 is sent to the ozone concentrator 2 and concentrated. The ozone gas (03) is sent to the oxidation reaction section 3 using nitrogen gas (N2) as a carrier gas,
Here, ruthenium dioxide (RuOz) is oxidized to generate ruthenium tetroxide (RuOa), and the generated ruthenium tetroxide (Ruα) is transferred to the recovery section 4 and recovered.

詳述すると、上記オゾン発生部1は、酸素ライン5を通
して供給された酸素(02)からオゾンガス(03)を
発生させるようにしたパルスストリーマ放電型のオゾン
発生器6を備えてなり、又、上記オゾン濃縮部2は、高
純度シリカゲル7を充填したオゾン濃縮容器8と、該オ
ゾン濃縮容器8をドライアイス・メタノール冷却するよ
うにしであるドライアイストラップ9とを備えてなり、
上記酸化反応部3は、二酸化ルテニウム(RLIα→の
粉末10を収納した固定床型の反応塔11と、該反応塔
11を所定の冷却温度に保持できるようにしである恒温
槽12とを備えてなり、更に、上記回収部4は、3N−
8915%エチルアルコールを吸収液13とする吸収塔
14を備えてなり、上記オゾン発生器6からオゾン濃縮
容器8の底部に、窒素ガスライン15を接続したオゾン
ガス導入ライン16を導設し、上記オゾン濃縮容器8の
上部から反応塔11の底部にオゾンガス供給ライン17
を導設し、上記反応塔11の上部から吸収塔14の底部
に生成ガス移送ライン18を導設し、上記吸収塔14°
の上品に排ガスライン19を接続し、上記オゾンガス供
給ライン17の途中にフローライン20を接続する。な
お、21゜22.23.24はそれぞれ開閉弁を示す。
To be more specific, the ozone generator 1 includes a pulse streamer discharge type ozone generator 6 that generates ozone gas (03) from oxygen (02) supplied through the oxygen line 5, and The ozone concentration section 2 includes an ozone concentration container 8 filled with high-purity silica gel 7, and a dry ice trap 9 configured to cool the ozone concentration container 8 with dry ice or methanol.
The oxidation reaction section 3 includes a fixed bed type reaction tower 11 containing a powder 10 of ruthenium dioxide (RLIα→), and a constant temperature bath 12 capable of maintaining the reaction tower 11 at a predetermined cooling temperature. Furthermore, the recovery section 4 is 3N-
It is equipped with an absorption tower 14 that uses 8915% ethyl alcohol as an absorption liquid 13, and an ozone gas introduction line 16 connected to a nitrogen gas line 15 is installed from the ozone generator 6 to the bottom of the ozone concentration container 8. An ozone gas supply line 17 is connected from the top of the concentration container 8 to the bottom of the reaction tower 11.
A product gas transfer line 18 is introduced from the top of the reaction tower 11 to the bottom of the absorption tower 14, and the absorption tower 14°
An exhaust gas line 19 is connected to the ozone gas supply line 17, and a flow line 20 is connected to the middle of the ozone gas supply line 17. Note that 21°, 22, 23, and 24 indicate on-off valves, respectively.

原子炉で反応に供された使用済核燃料(又は放射性廃棄
物)中の二酸化ルテニウム(RuO2>から四酸化ルテ
ニウム(RLJα)を生成する場合には、先ず、オゾン
発生部1において、オゾン発生器6により、酸素ライン
5を通して供給された酸素(α)からオゾンガス(03
)を発生させ、該オゾンガス(03)を、オゾンガス導
入ライン16によりオゾン濃縮部2のオゾン濃縮容器8
に導入する。オゾン濃縮容器8内には高濃度シリカゲル
7が充填されているため、上記オゾンガス(03)はこ
こで高81度に濃縮されることになる。次に、開閉弁2
2によって、α102ガスの供給を停止し、窒素ガスラ
イン15から送給される窒素ガス(N2)をキャリアガ
スとして、濃縮されたオゾンガス(03)をオゾンガス
供給ライン17を通して酸化反応部3における使用済核
燃料中の二酸化ルテニウム(RuOz>の粉末10が収
納されている反応塔11内に供給する。このとき、上記
反応塔11は恒温槽12によって所定の温度に冷却され
ているため、反応塔11内にて、Ruα+203 →R
uO4+20z の反応が効率よく行われて四酸化ルテニウム(RUα)
が生成されることになる。反応塔11内にて生成された
四酸化ルテニウム(Ruα)は、反応塔11内に連続的
に供給されるオゾンガス(α)と窒素ガス(N2)をキ
ャリアガスとして、生成ガス移送ライン18を介し回収
部4の吸収塔14内に移送され、吸収液13と接するこ
とにより・回収される。
When producing ruthenium tetroxide (RLJα) from ruthenium dioxide (RuO2) in spent nuclear fuel (or radioactive waste) subjected to a reaction in a nuclear reactor, first, in the ozone generator 1, the ozone generator 6 Ozone gas (03
), and the ozone gas (03) is sent to the ozone concentration container 8 of the ozone concentration section 2 through the ozone gas introduction line 16.
to be introduced. Since the ozone concentration container 8 is filled with highly concentrated silica gel 7, the ozone gas (03) is concentrated here to a high temperature of 81 degrees. Next, on-off valve 2
2, the supply of α102 gas is stopped, and the concentrated ozone gas (03) is passed through the ozone gas supply line 17 using the nitrogen gas (N2) supplied from the nitrogen gas line 15 as a carrier gas to supply the used gas to the oxidation reaction section 3. The powder 10 of ruthenium dioxide (RuOz> contained in the nuclear fuel is supplied into the reaction tower 11 in which the powder 10 is stored. At this time, since the reaction tower 11 is cooled to a predetermined temperature by the constant temperature bath 12, the inside of the reaction tower 11 is At, Ruα+203 →R
The reaction of uO4+20z is carried out efficiently to produce ruthenium tetroxide (RUα).
will be generated. Ruthenium tetroxide (Ruα) produced in the reaction tower 11 is passed through the produced gas transfer line 18 using ozone gas (α) and nitrogen gas (N2), which are continuously supplied into the reaction tower 11, as carrier gases. It is transferred into the absorption tower 14 of the recovery section 4 and is recovered by coming into contact with the absorption liquid 13.

上記において、反応塔11での二酸化ルテニウム(Ru
O2)を対象とする酸化反応の実験を行ったところ、四
酸化ルテニウム(Ruα)の生成率として第2図におい
て○印に示す如き結果が得られた。すなわち、四酸化ル
テニウム(Ruα)の生成率は、常温付近では極めて低
いが、反応温度が下がるにつれて上昇し、特に、−5℃
付近では最高となつ°た。又、−25℃以下では再び生
成率が低下する傾向にあった。したがって、良好な生成
率を保持するためには、25〜5℃位の領域に冷却温度
を維持することが望ましい。
In the above, ruthenium dioxide (Ru
When an experiment was conducted on an oxidation reaction targeting 02), the production rate of ruthenium tetroxide (Ruα) was as shown by the circle in FIG. 2. In other words, the production rate of ruthenium tetroxide (Ruα) is extremely low near room temperature, but increases as the reaction temperature decreases, especially at -5°C.
It was the highest in the area. Moreover, below -25°C, the production rate tended to decrease again. Therefore, in order to maintain a good production rate, it is desirable to maintain the cooling temperature in the range of about 25 to 5°C.

なお、上記の実施例では、酸化物としての二酸化ルテニ
ウム(RuO2>から四酸化ルテニウム(Ruα)を生
成する場合について示したが、金属としてのルテニウム
(Ru )から同様なプロセスで四酸化ルテニウム(R
LJα)を生成するようにすることもできる。この場合
、第2図において・印に示す如く、常温から一5℃付近
までの領域で極めて良好なRuαの生成率が(qられた
In addition, in the above example, a case was shown in which ruthenium tetroxide (Ruα) was produced from ruthenium dioxide (RuO2> as an oxide, but ruthenium tetroxide (R
LJα) can also be generated. In this case, as shown by the * mark in FIG. 2, an extremely good production rate of Ruα was obtained (q) in the range from room temperature to around -5°C.

なお、本発明は上述した第1図の実施例に基づく酸化反
応部3での酸化反応の実験において、キャリアガスとし
て窒素ガス(N2)を用いた場合に、上述した如きRu
αの発生が見られたが、因に、キャリアガスとして酸素
(02)を用いて反応させた場合は、αが多過ぎるため
、前記反応式が成立せずにRUαの発生はRuαの場合
もRuの場合もともに認められなかった。
In addition, in the experiment of the oxidation reaction in the oxidation reaction section 3 based on the embodiment shown in FIG.
The generation of α was observed, but when the reaction was carried out using oxygen (02) as a carrier gas, there was too much α, so the reaction equation did not hold, and RUα was generated even in the case of Ruα. Neither was observed in the case of Ru.

[発明の効果] 以上述べた如く、本発明の四酸化ルテニウムの生成方法
によれば、酸化反応部にて一25〜5℃、望ましくは一
5℃付近の温度に保持させておいた二酸化ルテニウムに
、窒素ガスをキャリアガスとしてオゾンガスを供給する
ことにより、四酸化ルテニウムを乾式にて簡単に生成す
ることができて使用済核燃料からのルテニウムの回収を
行うことができる。又、二酸化ルテニウムに代えて金属
ルテニウムを用い、且つ該金属ルテニウムを酸化反応部
にて一5℃付近から常温の温度領域に保持させることに
よっても、四酸化ルテニウムを乾式にて容易に生成する
ことができる、という優れた効果を発揮する。
[Effects of the Invention] As described above, according to the method for producing ruthenium tetroxide of the present invention, ruthenium dioxide is kept at a temperature of -25 to 5°C, preferably around -5°C in the oxidation reaction section. Furthermore, by supplying ozone gas using nitrogen gas as a carrier gas, ruthenium tetroxide can be easily produced in a dry process, and ruthenium can be recovered from spent nuclear fuel. Furthermore, ruthenium tetroxide can be easily produced in a dry process by using metal ruthenium instead of ruthenium dioxide and by maintaining the metal ruthenium in the oxidation reaction section at a temperature range from around -5°C to room temperature. It has the excellent effect of being able to

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の四酸化ルテニウムの生成方法の実施に
用いる乾式揮発分離プロセスフローの一例を示す概要図
、第2図は反応温度と四酸化ルテニウム生成率との関′
係を示す実験結果のグラフである。 1・・・オゾン発生部、2・・・オゾン濃縮部、3・・
・酸化反応部、4・・・回収部、10・・・二酸化ルテ
ニウムの粉末、11・・・反応塔、15・・・窒素ガス
ライン、17・・・オゾンガス供給ライン、18・・・
生成ガス移送ライン。
Figure 1 is a schematic diagram showing an example of the dry volatilization separation process flow used to implement the ruthenium tetroxide production method of the present invention, and Figure 2 shows the relationship between reaction temperature and ruthenium tetroxide production rate.
It is a graph of experimental results showing the relationship between 1... Ozone generation section, 2... Ozone concentration section, 3...
- Oxidation reaction section, 4... Recovery section, 10... Ruthenium dioxide powder, 11... Reaction tower, 15... Nitrogen gas line, 17... Ozone gas supply line, 18...
Product gas transfer line.

Claims (2)

【特許請求の範囲】[Claims] (1)二酸化ルテニウムを含む使用済核燃料もしくは放
射性廃棄物を、酸化反応部の反応塔に入れ、上記酸化反
応部にて上記二酸化ルテニウムを、窒素ガスをキャリア
ガスとして供給されるオゾンガスと−25〜5℃の温度
で酸化反応を行わせ、上記二酸化ルテニウムを酸化させ
て四酸化ルテニウムを生成することを特徴とする四酸化
ルテニウムの生成方法。
(1) Spent nuclear fuel or radioactive waste containing ruthenium dioxide is put into a reaction tower of an oxidation reaction section, and in the oxidation reaction section, the ruthenium dioxide is mixed with ozone gas supplied with nitrogen gas as a carrier gas and -25~ A method for producing ruthenium tetroxide, comprising carrying out an oxidation reaction at a temperature of 5° C. to oxidize the ruthenium dioxide to produce ruthenium tetroxide.
(2)金属ルテニウムを含む使用済核燃料もしくは放射
性廃棄物を、酸化反応部の反応塔に入れ、上記酸化反応
部にて上記金属ルテニウムを、窒素ガスをキャリアガス
として供給されるオゾンガスと−5℃から常温の間の温
度で酸化反応を行わせ、上記金属ルテニウムを酸化させ
て四酸化ルテニウムを生成することを特徴とする四酸化
ルテニウムの生成方法。
(2) Spent nuclear fuel or radioactive waste containing metal ruthenium is put into a reaction tower of an oxidation reaction section, and in the oxidation reaction section, the metal ruthenium is mixed with ozone gas supplied with nitrogen gas as a carrier gas at -5°C. 1. A method for producing ruthenium tetroxide, which comprises carrying out an oxidation reaction at a temperature between 200 and room temperature to oxidize the metal ruthenium to produce ruthenium tetroxide.
JP23697189A 1989-09-14 1989-09-14 Method for producing ruthenium tetroxide Expired - Fee Related JP2819663B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23697189A JP2819663B2 (en) 1989-09-14 1989-09-14 Method for producing ruthenium tetroxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23697189A JP2819663B2 (en) 1989-09-14 1989-09-14 Method for producing ruthenium tetroxide

Publications (2)

Publication Number Publication Date
JPH03100500A true JPH03100500A (en) 1991-04-25
JP2819663B2 JP2819663B2 (en) 1998-10-30

Family

ID=17008478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23697189A Expired - Fee Related JP2819663B2 (en) 1989-09-14 1989-09-14 Method for producing ruthenium tetroxide

Country Status (1)

Country Link
JP (1) JP2819663B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100209598A1 (en) * 2009-02-13 2010-08-19 Advanced Technology Materials, Inc. IN SITU GENERATION OF RuO4 FOR ALD OF Ru AND Ru RELATED MATERIALS

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100209598A1 (en) * 2009-02-13 2010-08-19 Advanced Technology Materials, Inc. IN SITU GENERATION OF RuO4 FOR ALD OF Ru AND Ru RELATED MATERIALS
US8663735B2 (en) * 2009-02-13 2014-03-04 Advanced Technology Materials, Inc. In situ generation of RuO4 for ALD of Ru and Ru related materials

Also Published As

Publication number Publication date
JP2819663B2 (en) 1998-10-30

Similar Documents

Publication Publication Date Title
PL341933A1 (en) Method of obtaining aqueous solution of hydrogen peroxide directly from elementary oxygen and hydrogen and apparatus therefor
JP6678194B2 (en) Method and apparatus for generating hydrogen gas
WO1990013514A1 (en) Gaseous generator system for preparing chlorine dioxide
US4024219A (en) Process for removing nitrogen oxide from a waste gas
US4826740A (en) Process for generating electrical energy by oxidation of a solid fuel in liquid metal
US5047127A (en) Ozone generating method
US3761575A (en) Process for the cracking of ammonium sulfate
JPH03100500A (en) Formation of ruthenium tetraoxide
CN1128096C (en) Process for preparing stable ClO2 solution based on hydrochloric acid
EP0342169B1 (en) Electrolytic ozonizer and method of decomposing ozone-containing waste gas using said ozonizer
CN114622223B (en) Method for synthesizing ammonia by electrocatalytic denitration
JPH0643244B2 (en) Method for producing silicon tetrachloride
TW200301316A (en) Apparatus for generating fluorine gas and method for generating fluorine gas, and fluorine gas
JP2722711B2 (en) Ozone supply device
JPS60255620A (en) Production of basic zinc carbonate and fine powder of zinc oxide
SU878774A1 (en) Method of gasifisation of solid carbon-containing fueld
US4541997A (en) Process of reducing the oxygen content in gas mixtures
WO2018180878A1 (en) Hydrogen production device and hydrogen production method
US3856927A (en) Acceleration of oxidation processes over vanadia catalysts
CA1153883A (en) Method for the production of nuclear fuel oxides
WO2004020330A1 (en) Method of thermochemical decomposition of water
JP3292311B2 (en) Purification method of methanol
JPS5542267A (en) Production of high purity glass
KR100345737B1 (en) Purification method of flue gas containing h2s
JPS581617B2 (en) Water↓-hydrogen isotope exchange reactor with economizer

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070828

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070828

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080828

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080828

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090828

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees