JPH03100459A - Pseudo moving bed type chromato separation - Google Patents

Pseudo moving bed type chromato separation

Info

Publication number
JPH03100459A
JPH03100459A JP1237214A JP23721489A JPH03100459A JP H03100459 A JPH03100459 A JP H03100459A JP 1237214 A JP1237214 A JP 1237214A JP 23721489 A JP23721489 A JP 23721489A JP H03100459 A JPH03100459 A JP H03100459A
Authority
JP
Japan
Prior art keywords
column
compartment
component
section
shut
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1237214A
Other languages
Japanese (ja)
Inventor
Akira Tanaka
明 田中
Hiroshi Shinya
新屋 洋
Isamu Inoue
勇 井上
Atsushi Nakano
淳 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Envirotech Inc
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Envirotech Inc
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Envirotech Inc, Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Envirotech Inc
Priority to JP1237214A priority Critical patent/JPH03100459A/en
Publication of JPH03100459A publication Critical patent/JPH03100459A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Liquids With Adsorbents In General (AREA)

Abstract

PURPOSE:To allow inexpensive sepn. of products without lowering sepn. performance and without diluting the products by transferring shut off position of shut off valves, the supply position of liquid and the recovery position of fluid by each column to the downstream at every specified time. CONSTITUTION:An endless packed column group is formed by connecting, in an endless state, >=3 pieces of the packed columns each packed with an adsorbent having the selective adsorptive power to a specific component A among >=2 components contained in the raw material fluid as compared to the other component B in series by pipings having the shut off valves. The packed column group is divided to a 1st block to a 3rd block along the flow of the fluid flowing in the inside. The shut off position of shut off valves, the supply position of liquid and the recovery position of fluid are transferred to the downstream side by each one column at every specified time while at least the two stages of the stage for recovering the extract liquid essentially composed of the component A by closing the shut off valve between the 2nd and 3rd blocks, the stage for recovering the extract liquid essentially composed of the component A by closing the shut off valve between the 1st and the 2nd blocks and the stage for recovering the raffinate liquid essentially composed of the component B from the rear end of the 1st block are carried out in arbitrary order.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は各種化学成分を含む原料中の2以上の成分のう
ちの特定成分を吸着剤を用いて擬似移動床方式によりク
ロマト分離する方法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for chromatographically separating a specific component out of two or more components in a raw material containing various chemical components by a simulated moving bed method using an adsorbent. .

〔従来の技術〕[Conventional technology]

従来、異性体混合物のような原料中に含まれる2以上の
成分を分離する方法としてイオン交換樹脂、ゼオライト
等の吸着剤を用い、これら成分の吸着剤に対する吸着性
能の差を利用して分離するクロマトグラフィーの手法が
広く用いられている。この種のクロマト分離法としては
固定床方式及び移動床方式が古くから知られているが、
分離効率、吸着剤の移動等の問題から近年、擬似移動床
方式(例えば連続式では特公昭42−15681号公報
、回分式では特公昭61−41559号公報)が提案さ
れた。また擬似移動床の変形としてC0B、Ching
らは各塔(床)間に遮断弁を連結したものを提案してい
る(例えば、Chem、Eng。
Conventionally, adsorbents such as ion exchange resins and zeolites are used to separate two or more components contained in raw materials such as isomer mixtures, and the separation takes advantage of the difference in adsorption performance of these components to the adsorbent. Chromatographic techniques are widely used. As this type of chromatographic separation method, fixed bed method and moving bed method have been known for a long time.
In recent years, due to problems such as separation efficiency and movement of adsorbent, a pseudo moving bed system (for example, Japanese Patent Publication No. 42-15681 for a continuous system, and Japanese Patent Publication No. 41559 1989 for a batch system) has been proposed in recent years. In addition, as a modification of the pseudo moving bed, C0B, Ching
have proposed a system in which a shutoff valve is connected between each column (bed) (for example, Chem, Eng.

Sci、Vol、40. No6.pp8??−885
,1985)。
Sci, Vol. 40. No.6. pp8? ? -885
, 1985).

第1図はこのような遮断弁付擬似移動床装置を用いた分
離方法の説明図で、吸着剤充填塔1〜12は夫々遮断弁
a〜Qを有する配管で直列に、且つ無端状に連結され、
無端の充填塔群を形成している。この充填塔群は内部を
流れる流体の流れ(図では時計回り)に沿って塔1〜5
よりなる第一区画、塔6よりなる第二区画、及び塔7〜
12よりなる第三区画に分割されている。なお充填塔に
充填された吸着剤は原料中に含まれる2以上の成分のう
ち特定成分Aに対して他の成分Bよりも選択的な吸着力
を有するものとする。このような装置において従来は第
一区画と第二区画間の遮断弁e及び第二区画と第三区画
間の遮断弁fを閉じて第一区画の前端の塔1から原料を
供給した後、第一区画後端の塔5から吸着され難いB成
分を主体とするラフィネート液を回収すると共に、第二
区画前端の塔6から溶離液(I)を供給した後、第二区
画後端の塔6の出口から、吸着され易いA成分を主体と
するエキストラクト液を回収し、更に第三区画の前端か
ら再度、溶離液(2)を供給しながら、一定時間毎に遮
断弁の遮断位置、流体の供給位置及び流体の回収位置を
1塔づつ下流側に移行させて、A、B両成分の分離を行
なっている。
FIG. 1 is an explanatory diagram of a separation method using such a simulated moving bed device with a shutoff valve, in which adsorbent packed columns 1 to 12 are connected in series and endlessly through pipes each having a shutoff valve a to Q. is,
It forms an endless group of packed towers. This packed tower group consists of towers 1 to 5 along the flow of fluid flowing inside (clockwise in the figure).
A first section consisting of a tower 6, a second section consisting of a tower 6, and a tower 7~
It is divided into 12 third sections. It is assumed that the adsorbent packed in the packed tower has a selective adsorption power for a specific component A out of two or more components contained in the raw material over the other component B. Conventionally, in such an apparatus, after closing the shutoff valve e between the first and second compartments and the shutoff valve f between the second and third compartments and supplying the raw material from the column 1 at the front end of the first compartment, After collecting the raffinate liquid mainly consisting of the B component that is difficult to adsorb from the column 5 at the rear end of the first section, and supplying the eluent (I) from the column 6 at the front end of the second section, From the outlet of 6, extract liquid mainly composed of component A, which is easily adsorbed, is collected, and while supplying the eluent (2) again from the front end of the third compartment, the cutoff position of the cutoff valve is adjusted at regular intervals. Both the A and B components are separated by moving the fluid supply position and the fluid recovery position to the downstream side one tower at a time.

また溶離液(I)及び(2)が同じ組成のものであれば
、第2図に示すように溶離液(I)の流入位置から溶離
液(I)及び(2)を合わせた量を流入し、第2区画と
第3区画間の遮断弁を開放にして操作することも可能で
ある。
If eluents (I) and (2) have the same composition, the combined amount of eluents (I) and (2) will be injected from the inlet position of eluent (I) as shown in Figure 2. However, it is also possible to operate with the shutoff valve between the second section and the third section open.

これらの方式は遮断弁のない通常の擬似移動床方式と比
較すると、流出液(回収液)側のポンプの流量制御が不
要となり、塔間ポンプも不要となるか、あっても流量制
御が簡単なものですみ、装置が簡便化される。これらの
作用を第2図の方式で説明する。
Compared to the normal simulated moving bed method that does not have a shutoff valve, these methods do not require flow rate control of the pump on the effluent (recovered liquid) side, and do not require an inter-column pump, or even if there is one, flow rate control is easy. This simplifies the device. These effects will be explained using the method shown in FIG.

第2図の方式では第二区画でエキストラクト液を回収す
る際、吸着され難いB成分が含まれていると、エキスト
ラクト液中のA成分の純度が低下する。従ってステップ
(遮断弁の遮断位置流体の供給位置及び流体の回収位置
を下流側に一段、移行させる前の一定時間の操作を云う
In the system shown in FIG. 2, when extract liquid is recovered in the second compartment, if component B, which is difficult to be adsorbed, is contained, the purity of component A in the extract liquid will be reduced. Therefore, it refers to a step (operation for a certain period of time before the shutoff position of the shutoff valve, the fluid supply position and the fluid recovery position are moved further downstream).

また移行を繰返して最初の位置に戻る迄の操作を1サイ
クルと云う。)が移行(切替)した時点で第二区画には
B成分が残らないよう塔数を増加させる必要がある。同
様に第二区画のステップ終了時に、吸着され易いA成分
が残っていた場合、ステップ移動後にラフィネート液中
にこの残存A成分が不純物として流入する。この場合、
溶離液量を増加させることによりA成分をラフィネート
液から、完全に流出させる(追出す)必要がある。一方
、第一区画後端のラフィネート液にはステップ移行後は
吸着され難いB成分が流入するが、次第に吸着され易い
A成分も流入し始める。この時のタイミングでステップ
移行時間が決定される。またこうして充填塔数及び操作
条件が決定される。
The operation of repeating the transition and returning to the initial position is called one cycle. ) is transferred (switched), it is necessary to increase the number of columns so that no B component remains in the second section. Similarly, if a component A that is easily adsorbed remains at the end of the step in the second section, the remaining component A flows into the raffinate liquid as an impurity after the step movement. in this case,
It is necessary to completely flow out (expel) component A from the raffinate solution by increasing the amount of eluent. On the other hand, after the step transition, the B component, which is difficult to adsorb, flows into the raffinate liquid at the rear end of the first section, but gradually the A component, which is easily adsorbed, also begins to flow into the raffinate liquid. The step transition time is determined at this timing. Also, the number of packed columns and operating conditions are determined in this way.

従って第2図のような遮断弁付擬似移動床方式で分離性
能を向上させるには塔数を増加させるか、溶離液量を増
加させる必要があり、設備費あるいはユーティリティ負
担が増大したり、回収製品が希釈される等の欠点を有し
ている。
Therefore, in order to improve the separation performance using the simulated moving bed system with a shutoff valve as shown in Figure 2, it is necessary to increase the number of columns or increase the amount of eluent, which may increase equipment costs or utility costs, and reduce recovery. It has drawbacks such as dilution of the product.

〔発明が解決しようとする課題〕 本発明の目的は従来技術における以上のような欠点を除
去し、分離性能を低下させずに安価で、且つ簡単な設備
あるいは僅かなユーテイリティ負担で、しかも製品を希
釈することなく分離できる擬似移動床式クロマト分離法
を提供することである。
[Problems to be Solved by the Invention] The purpose of the present invention is to eliminate the above-mentioned drawbacks of the prior art, and to produce a product at low cost without deteriorating separation performance, with simple equipment or with a small utility burden. An object of the present invention is to provide a simulated moving bed chromatographic separation method that allows separation without dilution.

〔課題を解決するための手段〕[Means to solve the problem]

前記目的は原料流体中に含まれる2以上の成分のうち特
定成分Aに対し他の成分Bに比べて選択的な吸着力を有
する吸着剤を充填した3個以上の充填塔を遮断弁を有す
る配管で直列に、且つ無端状に連結して無端の充填塔群
を形成し、この充填塔群を、内部を流れる流体の流れに
沿って第一区画、第二区画及び第三区画に分割した上、
(I)第二区画と第三区画間の遮断弁を閉じて第一区画
前端の塔から原料を供給し、及び/又は第二区画前端の
塔から溶離液を供給した後、第二区画後端の塔からA成
分を主体とするエキストラクト液を回収する工程、(I
I)第一区画と第二区画間の遮断弁を閉じて第一区画前
端の塔から原料を供給すると共に、第二区画前端の塔か
ら溶離液を供給した後、第一区画後端の塔からB成分を
主体とするラフィネート液を回収すると共に、第二区画
後端の塔がらA成分を主体とするエキストセクト液を回
収する工程、及び(m)第一区画と第二区画間の遮断弁
を閉じで第一区画前端の塔から原料を供給し、及び/又
は第二区画前端の塔から溶離液を供給した後、第一区画
後端の塔からB成分を主体とするラフィネート液を回収
する工程の少くとも2つの工程を任意の順序で行ないな
がら、一定時間毎に遮断弁の遮断位置、液体の供給位置
及び流体の回収位置を1塔づつ下流側に移行させること
を特徴とする擬似移動床式クロマト分離法によって達成
できる。なお(II)の工程自体は第2図の方式に相当
するものである。
The purpose is to provide three or more packed towers each filled with an adsorbent having a selective adsorption power for a specific component A among two or more components contained in the raw material fluid compared to other components B, each having a cutoff valve. They were connected in series and endlessly with piping to form an endless group of packed towers, and this group of packed towers was divided into a first section, a second section, and a third section along the flow of the fluid flowing inside. Up,
(I) After closing the shutoff valve between the second compartment and the third compartment and supplying the raw material from the column at the front end of the first compartment and/or supplying the eluent from the column at the front end of the second compartment, after the second compartment A step of recovering extract liquid mainly consisting of component A from the end tower, (I
I) After closing the shutoff valve between the first compartment and the second compartment, supplying the raw material from the column at the front end of the first compartment, and supplying the eluent from the column at the front end of the second compartment, the column at the rear end of the first compartment a step of recovering a raffinate liquid mainly consisting of component B from the column, and recovering an extruded liquid mainly consisting of component A from the column at the rear end of the second section, and (m) blocking between the first section and the second section. After the valve is closed and the raw material is supplied from the column at the front end of the first section and/or the eluent is supplied from the column at the front end of the second section, the raffinate liquid mainly containing component B is supplied from the column at the rear end of the first section. It is characterized by moving the shutoff position of the shutoff valve, the liquid supply position, and the fluid recovery position to the downstream side one tower at a time at regular intervals while performing at least two recovery steps in an arbitrary order. This can be achieved by a simulated moving bed chromatographic separation method. Note that the step (II) itself corresponds to the method shown in FIG.

このように従来の方法では1ステツプの間、流体の供給
又は、回収位置及び遮断弁の遮断位置は固定されている
のに対し、本発明では1ステツプの間に前記複数の工程
を含むことを特徴としている。なお各工程で用いられる
原料及び溶離液の量は夫々同一に設定してもよいし、或
いは個別に異なって設定してもよい。
In this way, in the conventional method, the fluid supply or recovery position and the shutoff position of the shutoff valve are fixed during one step, whereas the present invention includes the above-mentioned plurality of steps during one step. It is a feature. Note that the amounts of raw materials and eluent used in each step may be set to be the same, or may be set to be individually different.

〔作  用〕[For production]

本発明で塔数を増加させずに分離性能を向上させるには
特に(II)の工程をベースに(I)及び/又は(m)
の工程を加えて操作することが好ましい。これを遮断弁
を有する4塔式擬似移動床装置(第一区画は第1〜2塔
、第二区画は第3塔、第三区画は第4塔)を用いて具体
的に説明する。
In order to improve the separation performance without increasing the number of columns in the present invention, in particular, based on the step (II), (I) and/or (m)
It is preferable to perform the operation by adding the step of. This will be specifically explained using a four-column simulated moving bed apparatus (the first section is the first and second columns, the second section is the third column, and the third section is the fourth column) having a shutoff valve.

本装置を用いて吸着剤に吸着され易いA成分と吸着され
難いB成分とを分離するために、(It)の工程サイク
ルを繰返すと、第3図〔図中、原料、溶離液、ラフィネ
ート液、エキストラクト液を夫々F、W、R,Eと表わ
し、A成分を実線、B成分を破線で示す。塔を表示する
マスの縦軸は濃度、横軸は位置(上流→下流)を表わす
。又遮断弁の閉じる位置はXで示す。〕に示すような4
塔の濃度パターンが生じる。この状態から次ステツプに
移行すると、前述のようにラフィネート液にA成分が、
又エキストラクト液にB成分が流入し、夫々の純度が低
下する。そこでステップ移行前後にこの(II)の工程
に(I)及び/又は(m)の工程を追加する。
In order to separate component A, which is easily adsorbed by the adsorbent, and component B, which is difficult to adsorb to the adsorbent, using this device, the process cycle of (It) is repeated. , the extract liquids are represented by F, W, R, and E, respectively, and the A component is shown by a solid line, and the B component is shown by a broken line. The vertical axis of the square representing the tower represents the concentration, and the horizontal axis represents the position (upstream → downstream). The closed position of the shutoff valve is indicated by X. 4 as shown in ]
A tower concentration pattern results. When moving from this state to the next step, component A is added to the raffinate solution as described above.
In addition, component B flows into the extract liquid, reducing the purity of each component. Therefore, the steps (I) and/or (m) are added to the step (II) before and after the step transition.

この状態の一例を第4図(a)、(b)及び(C)に示
す、即ちステップ移行中に第3図のような状態になった
時、第4図(a)に示す(ffl)の工程に移行し濃度
のうすいエキストラクト液の回収を停止して、第3塔の
A成分を第4塔に流入させる。この時、同時に第4塔の
B成分も第1塔に流入させることができる。次に第4図
(b)の状態になった時点でステップを移行させると、
第4図(c)に示すようにエキストラクト液及びラフィ
ネート液への不純物成分の流入は防止される。その後は
第3図の状態になった時点で第4図(a)の(m)の工
程を繰返す操作を続けてもよいが、ステップ移行直後は
ラフィネート液からA成分を含まない溶離液が回収され
るので、ラフィネート液の濃度低下を防止すると共にA
成分の移動を早めるために、前記(I)の工程に移行さ
せてもよい。この場合の状態を第4図(d)及び(e)
に示す。即ち(I)の工程に移行させることにより、第
4図(b)の状態から第4図(d)の状態になる。
An example of this state is shown in FIGS. 4(a), (b), and (C). That is, when the state as shown in FIG. 3 occurs during step transition, the (ffl) shown in FIG. 4(a) The process moves on to step 2, stopping the recovery of the extract liquid with a low concentration, and causing the component A in the third column to flow into the fourth column. At this time, component B from the fourth column can also be allowed to flow into the first column. Next, when the step is shifted to the state shown in Figure 4(b),
As shown in FIG. 4(c), impurity components are prevented from flowing into the extract liquid and raffinate liquid. After that, when the state shown in Fig. 3 is reached, the operation of repeating the step (m) of Fig. 4 (a) may be continued, but immediately after the step transition, the eluent containing no component A is recovered from the raffinate solution. This prevents a decrease in the concentration of the raffinate solution and
In order to speed up the movement of the components, the process may proceed to step (I) above. The situation in this case is shown in Figure 4 (d) and (e).
Shown below. That is, by moving to the step (I), the state shown in FIG. 4(b) changes to the state shown in FIG. 4(d).

この時ラフィネート液の回収を停止してエキストラクト
液だけを回収する。こうして第4図(e)の状態になっ
た時に(II)の工程に移行させることにより、第4図
(C)の状態に戻る。
At this time, collection of the raffinate solution is stopped and only the extract solution is collected. When the state shown in FIG. 4(e) is reached, the state shown in FIG. 4(C) is returned by moving to step (II).

従って(II)の工程に(I)及び(m)の工程を追加
すれば夫々純度が向上することが容易に理解できる。
Therefore, it can be easily understood that adding steps (I) and (m) to step (II) improves the purity of each.

以上は(II)及び(m)の工程の繰返し、又は(I)
、(II)及び(m)の工程の繰返しの方法について説
明したが、(I)及び(II)の工程や(I)及び(m
)の工程の繰返しでも同様の性能向上効果は認められる
The above is a repetition of steps (II) and (m), or (I)
, (II) and (m).
) Similar performance improvement effects are observed by repeating the process.

〔実施例〕〔Example〕

以下に本発明を実施例によって説明する。 The present invention will be explained below by way of examples.

実施例1 各塔が内径1.5cm、長さ50cmの4塔式遮断弁は
擬似移動床装置(第一区画は第1〜2塔、第二区画は第
3塔、第三区画は第4塔)の各塔に吸着剤としてHPI
MG(ダイアイオン)を充填し、原料としてカフェイン
(CAF) 5 wt%及びエピガロカテキンガレート
(EgCg) 15wt%を含む15wt%エタノール
溶液を、また溶離液として15%エタノールを用いて分
離操作を行なった。この操作は1つのステップの間、(
I)、(II)及び(II[)の工程をこの順に行なっ
てステップを繰返した。
Example 1 A four-column shutoff valve in which each column has an inner diameter of 1.5 cm and a length of 50 cm is a pseudo moving bed device (the first section is the first to second column, the second section is the third column, and the third section is the fourth column). HPI as an adsorbent in each column of
Filled with MG (Diaion), a 15 wt% ethanol solution containing 5 wt% of caffeine (CAF) and 15 wt% of epigallocatechin gallate (EgCg) was used as a raw material, and a separation operation was performed using 15% ethanol as an eluent. I did it. This operation lasts for one step (
The steps were repeated by performing steps I), (II) and (II[) in this order.

操作条件は表1の通りである。The operating conditions are shown in Table 1.

麦l IOプサイル経過後、定常状態に達した時点でエキスト
ラクト液よりEgCglQO%ラフィネート液よりCA
F100%の純度及び回収率が得られた。
After reaching a steady state after passing through the barley IO psi, CA from the extract solution to EgCglQO% from the raffinate solution.
A purity and recovery of 100% F was obtained.

比較例1 実施例1と同じ操作を、1つのステップの間合て(II
)工程の状態で実施した。但しステップ移動時間は表■
の(I)、(ff)及び(III)工程の状態保持時間
を合計した103分に設定した。 10サイクル経過後
、エキストラクト液よりEgCg純度90%、回収率9
6%、ラフィネート液よりCAF純度85%、回収率6
8%が得られた。
Comparative Example 1 The same operation as in Example 1 was performed with one step interval (II
) carried out in the state of the process. However, the step movement time is shown in the table.
The state retention time of steps (I), (ff), and (III) was set to a total of 103 minutes. After 10 cycles, EgCg purity was 90% and recovery rate was 9 from the extract liquid.
6%, CAF purity 85% from raffinate solution, recovery rate 6
8% was obtained.

比較例2 比較例1と同じ操作を6塔式遮断弁付擬似移動床装置(
第一区画は第1〜2塔、第二区画は第3〜4塔、第三区
画は第5〜6塔)を用いて実施した。10サイクル経過
後、エキストラクト液よりEgCg100%、ラフィネ
ート液よりCAF100%の純度及び回収率が得られた
Comparative Example 2 The same operation as Comparative Example 1 was performed using a 6-column type shutoff valve equipped pseudo moving bed device (
The first section was carried out using the 1st and 2nd columns, the second section was carried out using the 3rd and 4th columns, and the third section was carried out using the 5th and 6th columns). After 10 cycles, a purity and recovery rate of 100% EgCg was obtained from the extract solution and 100% CAF from the raffinate solution.

比較例1から明らかなようにベース工程(II)だけの
操作では純度が低いが、実施例1の本発明方法によれば
、原料処理量は90%程度に低下するものの、溶離液使
用量は80%と更に少なくなり、しかも分離性能は向上
することがわかる又、実施例1及び比較例2よりベース
工程(II)だけの操作を用いた6塔式の純度と1本発
明方法により4塔式の純度とが同じである。
As is clear from Comparative Example 1, the purity is low when only the base step (II) is operated, but according to the method of the present invention in Example 1, although the raw material throughput is reduced to about 90%, the amount of eluent used is It can be seen that the purity is further reduced to 80%, and the separation performance is improved. Also, from Example 1 and Comparative Example 2, the purity of the 6-column type using only the base step (II) and the purity of the 4-column type using the method of the present invention are shown. The purity of the formula is the same.

このこ七は充填量を66%使用して原料処理量を90%
に減じたことになり、充填剤の負荷は向上し、しかも設
備費が低減できることから本発明の優位性を示すもので
ある。
This seven uses 66% of the filling amount and 90% of the raw material processing amount.
This shows the superiority of the present invention because the load on the filler is improved and equipment costs can be reduced.

〔発明の効果〕〔Effect of the invention〕

本発明方法は従来の遮断弁付擬似移動床装置を用いて工
程(I)、 (II)及び(m)の少くとも2つを組合
せて操作するだけで分離性能を低下させずに、安価で、
且つ簡単な設備あるいは僅かなユーティリティ負担で、
しかも製品を希釈することなく、従って高純度、高回収
率で原料中から所望成分を分離できるという効果がある
The method of the present invention uses a conventional simulated moving bed device with a shutoff valve and operates at least two of steps (I), (II), and (m) in combination, without reducing separation performance and at low cost. ,
And with simple equipment or a small utility burden,
Moreover, the desired component can be separated from the raw material with high purity and high recovery rate without diluting the product.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は遮断弁付擬似移動床装置を用いた従来法の説明
図、第2図は第1図の変形図、第3図は4塔式遮断弁付
擬似移動床装置を用いて本発明の(It)の工程サイク
ルを繰返して分離操作を行なった場合の各塔における濃
度パターンを表わし、第4図(a)、(b)及び(c)
は前記(II)の工程に本発明の(III)の工程を加
えて本発明方法を行なった場合の各塔における濃度パタ
ーンを表わし、また第4図(d)及び(e)は前記(I
[)及び(m)の工程に更に本発明の(I)の工程を加
えて本発明方法を行なった場合の各塔における濃度パタ
ーンを表わす。 1〜12・・・充填塔    ayQ・・・遮断弁F・
・・原 料      W・・・溶離液R・・・ラフィ
ネート液  E・・・エキストラクト液実線・・・A成
分     破線・・・B成分第2図 第3図
Fig. 1 is an explanatory diagram of the conventional method using a pseudo moving bed device with a shutoff valve, Fig. 2 is a modification of Fig. 1, and Fig. 3 is an explanatory diagram of the conventional method using a pseudo moving bed device with a four-column shutoff valve. Figures 4 (a), (b), and (c) represent the concentration patterns in each column when the separation operation was performed by repeating the process cycle of (It).
4 represents the concentration pattern in each column when the method of the present invention is carried out by adding the step (III) of the present invention to the step (II), and FIGS. 4(d) and (e)
The concentration pattern in each column is shown when the method of the present invention is carried out by adding the step (I) of the present invention to the steps [) and (m). 1 to 12... Packed tower ayQ... Shutoff valve F.
...Raw material W...Eluent R...Raffinate solution E...Extract liquid Solid line...Component A Broken line...Component B Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 1、原料流体中に含まれる2以上の成分のうち特定成分
Aに対し他の成分Bよりも選択的な吸着力を有する吸着
剤を充填した3個以上の充填塔を遮断弁を有する配管で
直列に、且つ無端状に連結して無端の充填塔群を形成し
、この充填塔群を、内部を流れる流体の流れに沿って第
一区画、第二区画及び第三区画に分割した上、( I )
第二区画と第三区画間の遮断弁を閉じて第一区画前端の
塔から原料を供給し、及び/又は第二区画前端の塔から
溶離液を供給した後、第二区画後端の塔から成分Aを主
体とするエキストラクト液を回収する工程、(II)第一
区画と第二区画間の遮断弁を閉じて第一区画前端の塔か
ら原料を供給すると共に、第二区画前端の塔から溶離液
を供給した後、第一区画後端の塔からB成分を主体とす
るラフィネート液を回収すると共に、第二区画後端の塔
からA成分を主体とするエキストラクト液を回収する工
程、及び(III)第一区画と第二区画間の遮断弁を閉じ
て第一区画前端の塔から原料を供給し、及び/又は第二
区画前端の塔から溶離液を供給した後、第一区画後端の
塔からB成分を主体とするラティネート液を回収する工
程の少くとも2つの工程を任意の順序で行ないながら、
一定時間毎に遮断弁の遮断位置、液体の供給位置及び流
体の回収位置を1塔づつ下流側に移行させることを特徴
とする擬似移動床式クロマト分離法。
1. Three or more packed towers filled with an adsorbent that has a selective adsorption power for a specific component A out of two or more components contained in the raw material fluid than other components B are installed in piping with a shutoff valve. Connecting in series and endlessly to form an endless group of packed columns, dividing this group of packed columns into a first section, a second section, and a third section along the flow of the fluid flowing inside, (I)
After closing the shutoff valve between the second compartment and the third compartment, supplying the raw material from the column at the front end of the first compartment, and/or supplying the eluent from the column at the front end of the second compartment, the column at the rear end of the second compartment (II) Close the shutoff valve between the first compartment and the second compartment to supply the raw material from the column at the front end of the first compartment, and After supplying the eluent from the column, a raffinate liquid mainly consisting of component B is recovered from the column at the rear end of the first section, and an extract liquid mainly consisting of component A is recovered from the column at the rear end of the second section. and (III) after closing the shutoff valve between the first compartment and the second compartment and supplying the raw material from the column at the front end of the first compartment and/or supplying the eluent from the column at the front end of the second compartment, While performing at least two steps in any order of the step of recovering the latinate liquid mainly containing component B from the column at the rear end of one section,
A pseudo moving bed chromatography separation method characterized by shifting the shutoff position of a shutoff valve, the liquid supply position, and the fluid recovery position to the downstream side one tower at a time at regular intervals.
JP1237214A 1989-09-14 1989-09-14 Pseudo moving bed type chromato separation Pending JPH03100459A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1237214A JPH03100459A (en) 1989-09-14 1989-09-14 Pseudo moving bed type chromato separation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1237214A JPH03100459A (en) 1989-09-14 1989-09-14 Pseudo moving bed type chromato separation

Publications (1)

Publication Number Publication Date
JPH03100459A true JPH03100459A (en) 1991-04-25

Family

ID=17012073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1237214A Pending JPH03100459A (en) 1989-09-14 1989-09-14 Pseudo moving bed type chromato separation

Country Status (1)

Country Link
JP (1) JPH03100459A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995023125A1 (en) * 1994-02-25 1995-08-31 Daicel Chemical Industries, Ltd. Process for producing optically active mevalonolactone compound
WO1995029142A1 (en) * 1994-04-20 1995-11-02 Daicel Chemical Industries, Ltd. Method of separating optical isomers
JP2001334103A (en) * 2000-05-26 2001-12-04 Japan Organo Co Ltd Chromatograph type separation device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995023125A1 (en) * 1994-02-25 1995-08-31 Daicel Chemical Industries, Ltd. Process for producing optically active mevalonolactone compound
WO1995029142A1 (en) * 1994-04-20 1995-11-02 Daicel Chemical Industries, Ltd. Method of separating optical isomers
JP2001334103A (en) * 2000-05-26 2001-12-04 Japan Organo Co Ltd Chromatograph type separation device
JP4632327B2 (en) * 2000-05-26 2011-02-16 オルガノ株式会社 Chromatographic separation device

Similar Documents

Publication Publication Date Title
CA1317887C (en) Method of chromatographic separation
JP4627841B2 (en) Psicose separation method
JP6900378B2 (en) Method for Purifying Polyether Block Copolymers
JP2002528738A (en) Separation method and apparatus using chromatographic zones of variable length
KR100261750B1 (en) Simulated moving bed separation system
JP2962594B2 (en) How to separate multiple components
JP2007064944A (en) Chromatography
WO2005097286A1 (en) Chromatographic separation equipment
JP4945364B2 (en) Separation method of sugar alcohol
JPH03100459A (en) Pseudo moving bed type chromato separation
JPH11344481A (en) Chromatographic separation method
KR101226844B1 (en) Recycling Partial-Discard strategy for improving the separation efficiency in the simulated moving bed chromatography
JP3277575B2 (en) Chromatographic separation method
JP2740780B2 (en) Simulated moving bed equipment
JPH11183459A (en) Method and apparatus for chromatographic separation
CA2272562A1 (en) Chromatographic separation process and separator
JP4603114B2 (en) Method and apparatus for separating a plurality of components contained in a liquid
JP2012098052A (en) Method and apparatus for chromatographic separation
JPH0639205A (en) Liquid chromatographic separator for three components
EP1140315A1 (en) Method of substantially continuously separating two compounds using a moving bed or a simulated moving bed
CN103787821B (en) The method and apparatus that the simulation convection current being made up of two series connection absorbers that total bed number is 22 or less produces paraxylene
JP2834225B2 (en) Simulated moving bed chromatographic separator
JPH0639206A (en) Pseudo moving-bed liquid chromatographic separator
JP3256349B2 (en) Separation method and apparatus using simulated moving bed
JP4395222B2 (en) Method and apparatus for separating a plurality of components contained in a liquid