JP2834225B2 - Simulated moving bed chromatographic separator - Google Patents

Simulated moving bed chromatographic separator

Info

Publication number
JP2834225B2
JP2834225B2 JP1271732A JP27173289A JP2834225B2 JP 2834225 B2 JP2834225 B2 JP 2834225B2 JP 1271732 A JP1271732 A JP 1271732A JP 27173289 A JP27173289 A JP 27173289A JP 2834225 B2 JP2834225 B2 JP 2834225B2
Authority
JP
Japan
Prior art keywords
raffinate
liquid
solution
eluent
adsorption tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1271732A
Other languages
Japanese (ja)
Other versions
JPH03134562A (en
Inventor
隆之 増田
とおる 園部
文彦 松田
正治 堀江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ORUGANO KK
Original Assignee
ORUGANO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ORUGANO KK filed Critical ORUGANO KK
Priority to JP1271732A priority Critical patent/JP2834225B2/en
Publication of JPH03134562A publication Critical patent/JPH03134562A/en
Application granted granted Critical
Publication of JP2834225B2 publication Critical patent/JP2834225B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Treatment Of Liquids With Adsorbents In General (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明の原液中に含まれる2成分以上の成分中の特定
成分に対して選択的吸着能力を有する吸着剤を充填した
多数の吸着塔を、直列かつ無端に連結した擬似移動層式
クロマト分離装置に関するものであり、たとえばアミノ
酸と塩類の混合液からのアミノ酸の分離、タンパク質と
塩類の混合液からのタンパク質の分離、糖類と塩類の混
合液からの糖類の分離等に用いる事ができる。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] A large number of adsorption towers filled with an adsorbent having a selective adsorption ability for a specific component of two or more components contained in a stock solution of the present invention are prepared. The present invention relates to a simulated moving bed type chromatographic separation apparatus connected in series and endlessly, for example, separation of amino acids from a mixture of amino acids and salts, separation of proteins from a mixture of proteins and salts, and a mixture of sugars and salts Can be used for separation of saccharides from cocoa.

[従来の技術] 固体吸着剤を用いて当該吸着剤に対する吸着特性の差
を利用したクロマト分離手法は、工業的に広く利用され
ており、特に効率的な装置方式として、多数の充填層を
直列循環連結して連続的に分離を行なう擬似移動層方式
が用いられている。従来の当該擬似移動層方式の原理を
原液中のA成分とB成分とを分離する場合を例にして以
下に説明する。
[Prior art] A chromatographic separation method using a solid adsorbent and utilizing a difference in adsorption characteristics with respect to the adsorbent is widely used industrially, and as a particularly efficient apparatus method, a large number of packed beds are connected in series. A simulated moving bed system in which separation is continuously performed by circulation connection is used. The principle of the conventional simulated moving bed system will be described below by taking as an example a case where the A component and the B component in the stock solution are separated.

第3図は原液中のB成分よりA成分の方が吸着力の強
い吸着剤を充填したC1〜C16からなる16塔の吸着塔群を
直列に連結するとともに、最終段の吸着塔C16と最前段
の吸着塔C1とを配管で連結して無端連結の吸着塔群を形
成した従来の擬似移動層における定常状態のある時点の
各成分の吸着帯の形成状態を示した図面である。なお装
置的には各塔間も配管で連結するが、弁も含めて省略し
てある。
FIG. 3 shows that a series of 16 adsorption towers consisting of C1 to C16 packed with an adsorbent in which the component A has a higher adsorption power than the component B in the stock solution are connected in series, 5 is a drawing showing a state of formation of adsorption bands of respective components at a certain point in a steady state in a conventional pseudo moving bed in which an endlessly connected adsorption tower group is formed by connecting an adsorption tower C1 of a preceding stage with a pipe. In addition, although each tower is connected by piping in terms of equipment, it is omitted including valves.

従来の擬似移動層は吸着剤を移動する代りに、原液の
流入位置、B成分の含有量の多い換言すればA成分の含
有量の少ないラフィネート液の流出位置、溶解液の流入
位置、A成分の含有量の多いプロダクト液の流出位置
を、吸着剤を移動させて行なうのと同じ移動速度で、液
の流れの下流側に順次繰下げて行なうものであり、この
様な操作によりA成分の吸着帯およびB成分の吸着帯が
液の流れの下流側に移動する。したがって液中のA成分
の濃度の高い部分にプロダクト液の流出位置が合致する
ように、また液中のB成分の濃度が高い部分にラフィネ
ート液の流出位置が合致するように操作することによ
り、A成分とB成分の連続的な分離が可能となるのであ
る。
In the conventional simulated moving bed, instead of moving the adsorbent, the inflow position of the undiluted solution, the outflow position of the raffinate liquid having a high content of the B component, in other words, the inflow position of the raffinate solution having a low content of the A component, the inflow position of the dissolved liquid, the A component The product liquid containing a large amount of is discharged at the same moving speed as that of moving the adsorbent to the downstream side of the liquid flow, and the operation is performed to absorb the component A. The zone and the adsorption zone for the B component move downstream of the liquid flow. Therefore, by operating so that the outflow position of the product liquid matches the portion where the concentration of the A component in the liquid is high, and the outflow position of the raffinate liquid matches the portion where the concentration of the B component in the liquid is high, The component A and the component B can be continuously separated.

なお第1区画はA成分の吸着ゾーンであり、第2区画
はB成分の吸着ゾーンであり、第3区画はA成分の溶離
ゾーンであり、第4区画はB成分の溶離ゾーンである。
The first section is a component A adsorption zone, the second section is a component B adsorption zone, the third section is a component A elution zone, and the fourth section is a component B elution zone.

すなわち第1区画の最前列で原液を流入し、A成分を
吸着するとともに第1区画の最後列で溶離されたB成分
(ラフィネート液)を取り出し、第3区画の最前列で溶
離液を流入し、第3区画の最後列で吸着剤に吸着されて
いるA成分(プロダクト液)を取り出すものである。
That is, the undiluted solution flows in the front row of the first section, the component A is adsorbed and the B component (raffinate solution) eluted in the last row of the first section is taken out, and the eluent flows in the front row of the third section. A component (product liquid) adsorbed by the adsorbent in the last row of the third section is taken out.

したがって従来の擬似移動層は第1〜第4の四つの帯
域に分割され(第1図では一つの区画が4塔よりな
る)、夫々の機能を果し、各液の流入および流出をロー
タリー弁あるいは各塔に付設した弁によって液の流れの
下流側に順次移動させてA成分とB成分の分離を行なう
のである。
Therefore, the conventional simulated moving bed is divided into first to fourth four zones (one section is composed of four towers in FIG. 1), and performs respective functions, and controls the inflow and outflow of each liquid by a rotary valve. Alternatively, the A component and the B component are separated by sequentially moving them downstream of the liquid flow by a valve attached to each column.

これらの擬似移動層装置は、たとえば果糖(A成分)
とブドウ糖(B成分)の混合液から両者を分離するよう
に、A成分もB成分も共に濃度の高い液の製品として回
収する場合に用いられており、そのために両成分の吸着
ゾーンと溶離ゾーンをそれぞれ有する前述の四つの区画
を必要としていた。
These simulated moving bed apparatuses include, for example, fructose (A component)
Both components A and B are used to recover both high-concentration liquid products so that they are separated from the mixture of glucose and glucose (component B). Therefore, the adsorption zone and the elution zone of both components are used. , Each requiring the four compartments described above.

しかしながらたとえばアミノ酸と塩類の混合液からア
ミノ酸を分離する場合の様に、一方の成分(アミノ酸)
のみを製品として回収し、他方の成分(塩類)を濃度の
高い製品として回収する必要のない時に従来の擬似移動
層装置を適用するとまったく必要でない塩類を吸着する
ための区画を有する事となり、工業装置として不合理で
ある。そこでこの問題を解決する方法として本出願人は
先にラフィネート液の流出位置と溶離液の流入問題との
間の吸着塔群(第1図における第2区画)を削減すると
ともに、ラフィネート液を流出する吸着塔とその直後に
位置する吸着塔を連結する配管に付設した遮断弁を閉じ
る事によって実質的に液の流れを遮断した状態で、その
直後の吸着塔に溶離液を流入する方法を提案(特願昭60
−228806号)した。
However, as in the case of separating amino acids from a mixture of amino acids and salts, for example, one component (amino acid)
When the conventional simulated moving bed apparatus is applied when it is not necessary to collect only the product as a product and the other component (salts) as a product having a high concentration, a compartment for adsorbing salts which are not necessary at all is provided. It is unreasonable as a device. Therefore, as a method for solving this problem, the present applicant has first reduced the number of adsorption towers (second section in FIG. 1) between the outflow position of the raffinate solution and the problem of the inflow of the eluent, and at the same time, discharged the raffinate solution. Proposes a method in which the eluent flows into the adsorption tower immediately after the liquid flow is substantially shut off by closing the shut-off valve attached to the pipe connecting the adsorption tower to the adsorption tower located immediately after it. (Japanese Patent Application No. 60
-228806).

[発明が解決しようとする問題点] しかしながら、この3区画より構成される擬似移動層
式クロマト分離装置ではラフィネート液が溶離液により
希釈されてしまう欠点がある。本発明は、このような従
来の3区画より構成される擬似移動層式クロマト分離装
置において溶離液の回収再利用を可能とし、ラフィネー
ト液の濃度の低下をおさえることができる擬似移動層式
クロマト分離装置を提供することを目的とするものであ
る。
[Problems to be Solved by the Invention] However, the pseudo moving bed type chromatographic separation apparatus composed of these three sections has a drawback that the raffinate solution is diluted by the eluent. The present invention provides a simulated moving bed type chromatographic separation apparatus capable of recovering and reusing an eluent and suppressing a decrease in the concentration of a raffinate solution in such a conventional simulated moving bed type chromatographic separation apparatus composed of three compartments. It is intended to provide a device.

[問題を解決するための手段] 上記問題点は3区画より構成される擬似移動層式クロ
マト分離装置において各流出位置、流入位置および遮断
弁を切り替えた直後には、切り替え前に溶離液を流入さ
せていた吸着塔の出口にラフィネート液流出位置が接続
される事になり切り替え直後のラフィネート液流出口か
らは溶離液のみが流出することによる。
[Means for Solving the Problem] The above problem is caused by the fact that immediately after each outflow position, inflow position and shutoff valve are switched in the simulated moving bed type chromatographic separation device composed of three sections, the eluent flows before switching. The outlet of the raffinate solution is connected to the outlet of the adsorption tower, and only the eluent flows out of the outlet of the raffinate solution immediately after switching.

従って、3区画より構成される擬似移動層式クロマト
分離装置においてラフィネート液の流出位置に新たに流
路を切り替えるための弁を設け、各流出位置、流入位置
および遮断弁を切り替えた直後において前記流路を切り
替える弁を用いて、当該直後に流出するB成分の濃度の
薄いラフィネート液を溶離液として回収再利用し、次い
で流出するB成分の濃度の濃いラフィネート液を系外に
流出させる事により本発明の目的を達成できる。すなわ
ち本発明は、原液中に含まれる2成分以上の成分中の特
定成分に対して選択的吸着能力を有する吸着剤を充填し
た多数の吸着塔を、遮断弁を有する配管で直列に連結す
るとともに、最後部の吸着塔と最前部の吸着塔も遮断弁
を有する配管で連結することによって無端に連結した吸
着塔群を形成し、当該吸着塔群を下流側に向かって第1
区画、第2区画、第3区画に分割し、第1区画の最前列
に位置する吸着塔の入口から原液を流入するとともに第
1区画の最後列に位置する吸着列の出口から前記特定成
分の含有量の少ないラフィネート液を流出させ、さらに
第2区画の最前列に位置する吸着塔の入口から溶離液を
流入するとともに、第2区画の最後列に位置する吸着塔
の出口から前記特定成分の含有量の多いプロダクト液を
流出させ、かつ第1区画におけるラフィネート液を流出
させる吸着塔と第2区画における溶離液を流入する吸着
塔とを連結する配管に有する遮断弁を、前述した各液の
流入および流出をしている間のみ閉じ、また前述した原
液の流入位置、ラフィネート液の流出位置、溶離液の流
入位置、プロダクト液の流出位置を一塔づつ下流側に繰
下げるとともに、前述した閉じるべき遮断弁の位置も各
液の流入および流出の位置の繰り下げに応じて順に繰下
げる擬似移動層式クロマト分離装置において、ラフィネ
ート液の流出口を溶離液回収弁とラフィネート液回収弁
により2方向に切り替え可能に設けて、ラフィネート成
分の濃度の薄い液はラフィネート液回収弁を閉じかつ溶
離液回収弁を開いて溶離液として回収し、ラフィネート
成分の濃度の濃い液はラフィネート液回収弁を開きかつ
溶離液回収弁を閉じてラフィネート液として回収するこ
とを特徴とするものである。
Therefore, a valve for newly switching the flow path to the outflow position of the raffinate liquid is provided in the simulated moving bed type chromatographic separation device composed of three sections, and the flow path is switched immediately after switching the outflow position, the inflow position and the shutoff valve. By using a valve for switching the path, the raffinate liquid having a low concentration of the component B flowing out immediately thereafter is recovered and reused as an eluent, and then the raffinate liquid having a high concentration of the component B flowing out is discharged out of the system. The object of the invention can be achieved. That is, the present invention connects a large number of adsorption towers filled with an adsorbent having a selective adsorption ability to specific components in two or more components contained in a stock solution in series with a pipe having a shutoff valve. The endmost and the foremost adsorption towers are also connected by a pipe having a shutoff valve to form an endlessly connected adsorption tower group, and the first adsorption tower group is connected to the downstream side toward the downstream side.
The first section is divided into a second section and a third section, and the undiluted solution flows in from the inlet of the adsorption tower located in the front row of the first section, and the specific component of the specific component is passed through the outlet of the adsorption row located in the last row of the first section. The raffinate liquid having a small content is allowed to flow out, and further, the eluent flows in from the inlet of the adsorption tower located in the front row of the second compartment, and the specific component of the specific component is passed through the outlet of the adsorption tower located in the last row of the second compartment. A shut-off valve is provided in a pipe connecting the adsorption tower through which the product liquid having a high content flows out and the raffinate liquid in the first section to flow out and the adsorption tower into which the eluent flows in the second section is provided. Close only during the inflow and outflow, and move down the inflow position of the undiluted solution, the outflow position of the raffinate solution, the inflow position of the eluent, and the outflow position of the product solution one by one to the downstream side, In the simulated moving bed type chromatographic separation apparatus in which the position of the shut-off valve to be closed is also sequentially lowered in accordance with the inflow and outflow positions of the respective liquids, the outlet of the raffinate liquid is provided by an eluent recovery valve and a raffinate liquid recovery valve. A liquid having a low concentration of the raffinate component is collected as an eluent by closing the raffinate liquid recovery valve and opening the eluate liquid recovery valve, and a liquid having a high concentration of the raffinate component is supplied to the raffinate liquid recovery valve. It is characterized in that it is opened and the eluate recovery valve is closed to recover as a raffinate solution.

[実施例] 次に本発明を実施例により更に具体的に説明するが、
本発明はその要旨を逸脱しない限り以下の実施例に限定
されるものではない。
[Examples] Next, the present invention will be described more specifically with reference to Examples.
The present invention is not limited to the following embodiments without departing from the gist thereof.

実施例1(アミノ酸水溶液の脱塩) 第1図は実施例に使用した装置のフローを示す説明図
である。
Example 1 (desalting of amino acid aqueous solution) FIG. 1 is an explanatory diagram showing the flow of the apparatus used in the example.

内径1.5cm、長さ17.5cmの吸着塔C(C1‥‥C12)12本
のそれぞれの末端を次の吸着塔の頂部に遮断弁V(V1‥
‥V12)を介して配管Hで無端連結し、各遮断弁Vの上
流側の配管Hにラフィネート液流出管r(r1‥‥r12)
とプロダクト液流出管e(e1‥‥e12)を分岐して連通
し、各遮断弁Vの下流側の配管Hに原液流入管f(f1‥
‥f12)と溶離液流入管d(d1‥‥d12)を分岐して連通
した実験装置を用いた。なお各吸着塔にはアンバーライ
ト(登録商標)XAD−1を充填した。吸着塔C1の頂部か
ら原液流入管f1を用いて原液としてフェニルアラニンと
塩化ナトリウムの混合液を導入し、吸着塔C4の末尾から
はラフィネート流出管r4を用いて吸着性の乏しい塩化ナ
トリウム液(ラフィネート液)を取り出し、吸着塔C5の
頂部からは溶離液流入管d5を用いて溶離液として水を導
入し、吸着塔C8(図示せず)の末尾からはプロダクト液
流出管e8(図示せず)を用いて吸着性に富むフェニルア
ラニン液(プロダクト液)を取り出した。なお吸着塔C4
と吸着塔C5の間の遮断弁V4を閉じて液の流れを遮断し
た。
The end of each of twelve adsorption towers C (C112C12) having an inner diameter of 1.5 cm and a length of 17.5 cm is placed at the top of the next adsorption tower with a shutoff valve V (V1 ‥).
‥ V12) and endlessly connected by a pipe H, and a raffinate liquid outlet pipe r (r1 ‥‥ r12) is connected to the pipe H on the upstream side of each shutoff valve V.
And the product liquid outflow pipe e (e1 ‥‥ e12) is branched and communicated, and the undiluted liquid inflow pipe f (f1 ‥ e) is connected to the pipe H downstream of each shutoff valve V.
An experimental apparatus was used in which the eluent inflow pipe d (d1 ‥‥ d12) was branched and communicated. Each adsorption tower was filled with Amberlite (registered trademark) XAD-1. A mixture of phenylalanine and sodium chloride is introduced as a stock solution from the top of the adsorption tower C1 using a stock solution inflow tube f1, and a poorly adsorbed sodium chloride solution (raffinate solution) is used from the end of the adsorption tower C4 using a raffinate outflow tube r4. ), Water is introduced as an eluent from the top of the adsorption tower C5 using an eluent inflow pipe d5, and a product liquid outflow pipe e8 (not shown) is connected from the end of the adsorption tower C8 (not shown). A phenylalanine liquid (product liquid) having a high adsorptivity was taken out using this method. Adsorption tower C4
The shutoff valve V4 between the and the adsorption tower C5 was closed to shut off the liquid flow.

あらかじめ定めた時間を経過した後、原液の流入口を
f1からf2へ、ラフィネート液の流出口をr4から吸着塔r5
へ、溶離液流入口をd5からd6(図示せず)へ、プロダク
ト液の流出口をe8(図示せず)からe9へ移動させるとと
もに閉じるべき遮断弁も吸着塔C5と吸着塔C6の間にある
遮断弁V5(図示せず)とした。
After the elapse of the predetermined time, connect the undiluted solution inlet
From f1 to f2, the outlet of the raffinate solution is moved from r4 to the adsorption tower r5.
The eluent inlet is moved from d5 to d6 (not shown), the product liquid outlet is moved from e8 (not shown) to e9, and the shut-off valve to be closed is also located between the adsorption towers C5 and C6. A certain shutoff valve V5 (not shown) was used.

また、これらの流出入口の移動を行なかった直後から
ラフィネート液流出管r1‥‥r12が連通する母管Rに設
けた溶離液回収弁aを開としラフィネート液回収弁bを
閉とし、塩化ナトリウム濃度の低いラフィネート液を回
収し、塩化ナトリウム液が溶解液により希釈される事を
防ぎ、かつ回収した当該ラフィネート液を溶離液として
再利用した。また塩化ナトリウム濃度の低いラフィネー
ト液を回収した後、流出入口の移動を行なう迄溶離液回
収弁aを閉としラフィネート液回収弁bを開とし塩化ナ
トリウム濃度の高いラフィネート液を系外に取り出し
た。以下同様に液の出入口は順次液の流れ方向に沿って
移動するが、これらの液の出入口の切り替えはロータリ
ーバルブによって行なった。原液、溶離液の供給とプロ
ダクト液の抜き出しの3ケ所にそれぞれ原液供給ポンプ
P1,溶離液供給ポンプP2,プロダクト流出ポンプP3を用い
たが、塔間には循環ポンプは用いなかった。また、ラフ
ィネート液の流出位置に設けた溶離液回収弁aおよびラ
フィネート液回収弁bには電磁弁を使用した。
Immediately after the movement of these outflow / inlet ports, the eluate recovery valve a provided in the mother pipe R communicating with the raffinate liquid outflow pipe r1 ‥‥ r12 is opened, the raffinate liquid recovery valve b is closed, and sodium chloride is removed. The raffinate solution having a low concentration was recovered, the sodium chloride solution was prevented from being diluted with the dissolving solution, and the collected raffinate solution was reused as an eluent. After the raffinate solution having a low sodium chloride concentration was recovered, the eluent solution recovery valve a was closed and the raffinate solution recovery valve b was opened until the outflow port was moved, and the raffinate solution having a high sodium chloride concentration was taken out of the system. Similarly, the liquid inlet and outlet sequentially move along the flow direction of the liquid, and the switching of the liquid inlet and outlet is performed by a rotary valve. Undiluted solution supply pumps at three locations: supply of undiluted solution and eluent, and withdrawal of product liquid
P1, eluent supply pump P2 and product outlet pump P3 were used, but no circulation pump was used between the columns. Electromagnetic valves were used for the eluent liquid recovery valve a and the raffinate liquid recovery valve b provided at the outflow position of the raffinate liquid.

原液組成、運転条件を下に記す。 The composition of the stock solution and the operating conditions are described below.

原液 L−フェニルアラニン; 0.1mol/l 塩化ナトリウム ; 1.4 〃 移動周期 ;12.04min 溶離液(水)流入量 ; 4.10ml/min プロダクト液流出量 ; 2.33 〃 原液流入量 ; 1.40 〃 ラフィネート液流出量 ; 3.17 〃 溶離液(水)回収時間 ; 3.5min/12.04min 溶離液(水)回収量 ;11.1 ml/12.04min 溶離液の平均使用量 ; 3.18ml/min 液出入口の位置に対しての装置内の両成分の濃度分布
が定常になった時の流出液の成分は次の通りであった。
Stock solution L-phenylalanine; 0.1 mol / l sodium chloride; 1.4; Transfer cycle; 12.04 min Eluent (water) inflow; 4.10 ml / min Product solution outflow; 2.33 〃 Stock solution inflow; 1.40 〃 Raffinate solution outflow; 3.17回収 Recovery time of eluent (water); 3.5min / 12.04min Recovery amount of eluent (water); 11.1ml / 12.04min Average usage amount of eluent; 3.18ml / min The components of the effluent when the concentration distribution of the components became steady were as follows.

プロダクト液 フェニルアラニン;0.060mol/l 塩化ナトリウム ;0.005mol/l以下 ラフィネート液 フェニルアラニン;0.001mol/l以下 塩化ナトリウム ;0.864mol/l 実施例2(ショ糖水溶液の脱塩) 第2図は本実施例に使用した装置のフローを示す説明
図である。
Product solution Phenylalanine; 0.060 mol / l Sodium chloride; 0.005 mol / l or less Raffinate solution Phenylalanine; 0.001 mol / l or less Sodium chloride; 0.864 mol / l Example 2 (desalting of sucrose aqueous solution) FIG. 2 shows this example. FIG. 4 is an explanatory diagram showing a flow of the device used in FIG.

吸着塔に充填した吸着剤は強酸性カチオン交換樹脂ア
ンバーライト(登録商標)XT−1016のNa型であり、原液
としてショ糖と塩化ナトリウムの混合液を用いた。
The adsorbent packed in the adsorption tower was a strong acid cation exchange resin, Amberlite (registered trademark) XT-1016, of the Na type, and a mixed solution of sucrose and sodium chloride was used as a stock solution.

運転方法は実施例1と同様に、吸着塔4本で1区画を
形成させる3区画方式であるが実施例1の装置のラフィ
ネート液流出管r1‥‥r12が連通する母管Rに濃度検出
器Bを取付け、その下流側に溶離液回収弁aとラフィネ
ート液回収弁bを設けた。なおその他は第1図と同様で
ある。第2図において流出入口の移動を行なった直後か
ら、ラフィネート液の塩化ナトリウムの濃度のあらかじ
め設定とした濃度に達する時点まで溶離液回収弁aを開
としラフィネート液回収弁bを閉としてラフィネート成
分の薄い液を溶離液として回収し、またラフィネート液
の塩化ナトリウム濃度があらかじめ設定した濃度以上に
なった時点より溶離液回収弁aを閉としラフィネート液
回収弁bを開として塩化ナトリウム濃度が高いラフィネ
ート液として系外に取り出した。
The operation method is a three-compartment system in which one adsorption compartment is formed by four adsorption towers in the same manner as in the first embodiment, but the concentration detector is connected to the main pipe R of the apparatus of the first embodiment to which the raffinate liquid outlet pipes r1 to r12 communicate. B was attached, and an eluent liquid recovery valve a and a raffinate liquid recovery valve b were provided on the downstream side. The rest is the same as FIG. In FIG. 2, the eluate recovery valve a is opened and the raffinate liquid recovery valve b is closed until the concentration of sodium chloride in the raffinate solution reaches a preset concentration from immediately after the movement of the outflow / inlet port. A thin solution is collected as an eluent, and when the sodium chloride concentration of the raffinate solution becomes equal to or higher than a preset concentration, the eluent solution collection valve a is closed and the raffinate solution collection valve b is opened to increase the raffinate solution having a high sodium chloride concentration. And taken out of the system.

原液組成、運転条件を下に記す。 The composition of the stock solution and the operating conditions are described below.

原液 ショ糖 ; 0.63mol/l 塩化ナトリウム; 2.56mol/l 移動周期 ;10.0min 溶離液(水)流入量 ; 2.15ml/min プロダクト液流出量 ; 0.60 〃 原液流入量 ; 0.40 〃 ラフィネート液流出量; 1.95 〃 濃度検出器設定値 ; 1.0wt% 溶離液(水)回収量 ;10.3ml/10.0min 溶離液の平均使用量 ; 1.12ml/10.0min 液出入口の位置に対しての装置内の両成分の濃度分布
が定常になった時の流出液の成分は次の通りであった。
Stock solution sucrose; 0.63 mol / l sodium chloride; 2.56 mol / l transfer cycle; 10.0 min eluent (water) inflow; 2.15 ml / min product solution outflow; 0.60 〃 stock solution inflow; 0.40 〃 raffinate solution outflow 1.95 設定 Concentration detector setting value; 1.0wt% Eluent (water) recovery volume; 10.3ml / 10.0min Average usage of eluent; 1.12ml / 10.0min Both components in the device with respect to the position of the liquid inlet and outlet The components of the effluent when the concentration distribution became steady were as follows.

プロダクト液 ショ糖 ;0.40mol/l 塩化ナトリウム;0.04mol/l以下 ラフィネート ショ糖 ;0.01mol/l以下 塩化ナトリウム;1.10mol/l 比較例(ショ糖水溶液の脱塩) 実施例2に対応して、従来の3区画の擬似移動層式ク
ロマト分離装置にてショ糖水溶液の脱塩を行なった。
Product liquid sucrose; 0.40 mol / l sodium chloride; 0.04 mol / l or less raffinate sucrose; 0.01 mol / l or less sodium chloride; 1.10 mol / l Comparative example (desalting of sucrose aqueous solution) Corresponding to Example 2 The sucrose aqueous solution was desalted using a conventional three-zone simulated moving bed type chromatograph.

すなわち実施例2と同一の装置を用い、ラフィネート
液流出管r1‥‥r12が連通する母管Rに設けた溶離液回
収弁aを閉のままとし溶離液の回収を行なわず、その他
の運転条件は同一条件にて実験を行なった。
That is, using the same apparatus as in the second embodiment, the eluent recovery valve a provided in the mother pipe R communicating with the raffinate liquid outlet pipe r1 ‥‥ r12 is kept closed, and the eluent is not recovered, and other operating conditions are not used. Performed the experiment under the same conditions.

この時溶離液の使用量は2.15ml/minであり実施例2の
約1.9倍であった。液出入口の位置に対しての装置内の
両成分の濃度分布が定常になった時の流出液の成分は次
の通りであった。
At this time, the amount of the eluent used was 2.15 ml / min, which was about 1.9 times that of Example 2. The components of the effluent when the concentration distribution of both components in the apparatus with respect to the position of the liquid inlet and outlet became steady were as follows.

プロダクト液 ショ糖 ;0.40mol/l 塩化ナトリウム;0.04mol/l以下 ラフィネート液 ショ糖 ;0.01mol/l以下 塩化ナトリウム;0.52mol/l ラフィネート液中の塩化ナトリウム濃度は、実施例2
の約0.47倍であった。
Product liquid sucrose; 0.40 mol / l sodium chloride; 0.04 mol / l or less raffinate liquid Sucrose; 0.01 mol / l or less sodium chloride; 0.52 mol / l
It was about 0.47 times of.

以上のように実施例2と比較例とではプロダクト液の
組成はまったく同様であり、ショ糖と塩類の混合液から
ショ糖溶液と塩類溶液の2成分に分離する場合、ラフィ
ネート液の濃度の低下をおさえ、かつ溶離液の回収再利
用により溶離液の使用量を低減できる本発明の分離方式
の有効性が立証された。
As described above, the composition of the product liquid is exactly the same between Example 2 and Comparative Example, and when the mixture of sucrose and salts is separated into two components, a sucrose solution and a salt solution, the concentration of the raffinate solution decreases. Thus, the effectiveness of the separation method of the present invention, which can reduce the amount of eluent used by collecting and reusing the eluent, has been proved.

[発明の効果] 本発明によれば、プロダクト液の組成を同じく得なが
ら、ラフィネート液の濃度低下を防止することができ、
また溶離液を回収再利用することでその使用量を低減で
きるという効果が奏される。
[Effects of the Invention] According to the present invention, it is possible to prevent the concentration of the raffinate solution from decreasing while obtaining the same composition of the product solution.
Further, there is an effect that the used amount can be reduced by collecting and reusing the eluent.

【図面の簡単な説明】[Brief description of the drawings]

第1図、第2図ともに本発明の実施態様を示す図面で、
第1図は実施例1に用いた吸着塔群のフローに示す説明
図であり、第2図は実施例2に用いた吸着塔群のフロー
を示す説明図である。 第3図は従来の擬似移動層装置の定常状態におけるある
時点の各成分の吸着帯の形勢状態を示した説明図であ
る。 C;吸着塔 V;遮断弁 f1〜12;原液流入管 d1〜12;溶離液流入管 e1〜12;プロダクト液流出管 r1〜12;ラフィネート液流出管 a;溶離液回収弁 b;ラフィネート液回収弁 P1;原液供給ポンプ P2;溶離液供給ポンプ P3;プロダクト液流出ポンプ B;濃度検出器 H;配管 R;母管
1 and 2 are drawings showing an embodiment of the present invention.
FIG. 1 is an explanatory diagram showing a flow of the adsorption tower group used in Example 1, and FIG. 2 is an explanatory diagram showing a flow of the adsorption tower group used in Example 2. FIG. 3 is an explanatory view showing the state of formation of the adsorption band of each component at a certain point in the steady state of the conventional simulated moving bed apparatus. C; adsorption tower V; shut-off valve f1-12; undiluted liquid inflow pipe d1-12; eluent inflow pipe e1-12; product liquid outflow pipe r1-12; raffinate liquid outflow pipe a; eluent liquid recovery valve b; raffinate liquid recovery Valve P1; stock solution supply pump P2; eluent supply pump P3; product liquid outflow pump B; concentration detector H; piping R; mother pipe

───────────────────────────────────────────────────── フロントページの続き (72)発明者 堀江 正治 東京都文京区本郷5丁目5番16号 オル ガノ株式会社内 (56)参考文献 特開 平3−100459(JP,A) (58)調査した分野(Int.Cl.6,DB名) G01N 30/46──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Shoji Horie 5-6-1 Hongo, Bunkyo-ku, Tokyo Organo Co., Ltd. (56) References JP-A-3-100459 (JP, A) (58) Survey Field (Int.Cl. 6 , DB name) G01N 30/46

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】原液中に含まれる2成分以上の成分中の特
定成分に対して選択的吸着能力を有する吸着剤を充填し
た多数の吸着塔を、遮断弁を有する配管で直列に連結す
るとともに、最後部の吸着塔と最前部の吸着塔も遮断弁
を有する配管で連結することによって無端に連結した吸
着塔群を形成し、当該吸着塔群を下流側に向かって第1
区画、第2区画、第3区画に分割し、第1区画の最前列
に位置する吸着塔の入口から原液を流入するとともに第
1区画の最後列に位置する吸着列の出口から前記特定成
分の含有量の少ないラフィネート液を流出させ、さらに
第2区画の最前列に位置する吸着塔の入口から溶離液を
流入するとともに、第2区画の最後列に位置する吸着塔
の出口から前記特定成分の含有量の多いプロダクト液を
流出させ、かつ第1区画におけるラフィネート液を流出
させる吸着塔と第2区画における溶離液を流入する吸着
塔とを連結する配管に有する遮断弁を、前述した各液の
流入および流出をしている間のみ閉じ、また前述した原
液の流入位置、ラフィネート液の流出位置、溶離液の流
入位置、プロダクト液の流出位置を一塔づつ下流側に繰
り下げるとともに、前述した閉じるべき遮断弁の位置も
各液の流入および流出の位置の繰り下げに応じて順に繰
下げる擬似移動層式クロマト分離装置において、ラフィ
ネート液の流出口を溶離液回収弁とラフィネート液回収
弁により2方向に切り替え可能に設けて、ラフィネート
成分の濃度の薄い液はラフィネート液回収弁を閉じかつ
溶離液回収弁を開いて溶離液として回収し、ラフィネー
ト成分の濃度の濃い液はラフィネート液回収弁を開きか
つ溶離液回収弁を閉じてラフィネート液として回収する
ことを特徴とする擬似移動層式クロマト分離装置。
1. A large number of adsorption towers filled with an adsorbent having a selective adsorption ability for a specific component of two or more components contained in a stock solution are connected in series by a pipe having a shutoff valve. The endmost and the foremost adsorption towers are also connected by a pipe having a shutoff valve to form an endlessly connected adsorption tower group, and the first adsorption tower group is connected to the downstream side toward the downstream side.
The first section is divided into a second section and a third section, and the undiluted solution flows in from the inlet of the adsorption tower located in the front row of the first section, and the specific component of the specific component is passed through the outlet of the adsorption row located in the last row of the first section. The raffinate liquid having a small content is allowed to flow out, and further, the eluent flows in from the inlet of the adsorption tower located in the front row of the second compartment, and the specific component of the specific component is passed through the outlet of the adsorption tower located in the last row of the second compartment. A shut-off valve is provided in a pipe connecting the adsorption tower through which the product liquid having a high content flows out and the raffinate liquid in the first section to flow out and the adsorption tower into which the eluent flows in the second section is provided. Close only during inflow and outflow, and move down the inflow position of the undiluted solution, the outflow position of the raffinate solution, the inflow position of the eluent, and the outflow position of the product solution one by one to the downstream side. In the simulated moving bed type chromatographic separation apparatus in which the position of the shutoff valve to be closed is also sequentially lowered in accordance with the lowering of the inflow and outflow positions of the respective liquids, the outlet of the raffinate liquid is provided by an eluent recovery valve and a raffinate liquid recovery valve. A liquid having a low concentration of the raffinate component is collected as an eluent by closing the raffinate liquid recovery valve and opening the eluate liquid recovery valve, and a liquid having a high concentration of the raffinate component is supplied to the raffinate liquid recovery valve. A simulated moving bed type chromatograph, wherein the apparatus is opened and the eluate recovery valve is closed to recover as a raffinate liquid.
【請求項2】ラフィネート液の流出位置に設けた濃度検
出器によりラフィネート液の出口をラフィネート液流出
側および溶離液回収側の2方向に切り替えることを特徴
とする請求項1に記載した擬似移動層式クロマト分離装
置。
2. A pseudo moving bed according to claim 1, wherein the outlet of the raffinate solution is switched between a raffinate solution outflow side and an eluate solution recovery side by a concentration detector provided at a raffinate solution outflow position. Type chromatographic separation equipment.
JP1271732A 1989-10-20 1989-10-20 Simulated moving bed chromatographic separator Expired - Lifetime JP2834225B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1271732A JP2834225B2 (en) 1989-10-20 1989-10-20 Simulated moving bed chromatographic separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1271732A JP2834225B2 (en) 1989-10-20 1989-10-20 Simulated moving bed chromatographic separator

Publications (2)

Publication Number Publication Date
JPH03134562A JPH03134562A (en) 1991-06-07
JP2834225B2 true JP2834225B2 (en) 1998-12-09

Family

ID=17504065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1271732A Expired - Lifetime JP2834225B2 (en) 1989-10-20 1989-10-20 Simulated moving bed chromatographic separator

Country Status (1)

Country Link
JP (1) JP2834225B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07285889A (en) * 1994-04-20 1995-10-31 Daicel Chem Ind Ltd Separation of optical isomer
WO2001033210A1 (en) * 1999-11-02 2001-05-10 Daicel Chemical Industries, Ltd Simulated moving bed device
EP1716900A1 (en) * 2005-04-29 2006-11-02 Eidgenössische Technische Hochschule Zürich Method and device for chromatographic purification
EP1775001A1 (en) 2005-10-13 2007-04-18 Xendo Holding B.V. Device for chromatographic separations

Also Published As

Publication number Publication date
JPH03134562A (en) 1991-06-07

Similar Documents

Publication Publication Date Title
JP4627841B2 (en) Psicose separation method
JPH03170051A (en) Method and apparatus for continuing chromatographic separation of three-time- refined-effluent-like mixture composed of at least three components by two solvents
WO1999033784A1 (en) Process for recovering betaine
JP3453516B2 (en) Chromatographic separation method
JP2834225B2 (en) Simulated moving bed chromatographic separator
JP4945364B2 (en) Separation method of sugar alcohol
US6409922B1 (en) Chromatographic separation process and chromatographic separator
AU566829B2 (en) Method for preventing compaction in sorbent beds
EP0960641A1 (en) Method and equipment for chromatographic separation
JP2740780B2 (en) Simulated moving bed equipment
JP3783756B2 (en) Desalination method
JPH0724725B2 (en) Liquid chromatographic separation device for three-component separation
JPH0639206A (en) Pseudo moving-bed liquid chromatographic separator
JP4606092B2 (en) Pseudo moving bed type chromatographic separation method and apparatus
JP2012098052A (en) Method and apparatus for chromatographic separation
JP4603114B2 (en) Method and apparatus for separating a plurality of components contained in a liquid
JP3256349B2 (en) Separation method and apparatus using simulated moving bed
JP3359762B2 (en) How to separate multiple components
JP2968107B2 (en) Chromatographic separation method
JP3256390B2 (en) How to separate multiple components
JP2962593B2 (en) How to separate multiple components
JP3991434B2 (en) Chromatographic separation method
JPH0383991A (en) Separation of glucose
JPS621762B2 (en)
PL47827B1 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071002

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081002

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091002

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101002

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101002

Year of fee payment: 12