JPH03100451A - Method and device for monitoring environmental crack and method and device for controlling corrosive environment - Google Patents

Method and device for monitoring environmental crack and method and device for controlling corrosive environment

Info

Publication number
JPH03100451A
JPH03100451A JP1237347A JP23734789A JPH03100451A JP H03100451 A JPH03100451 A JP H03100451A JP 1237347 A JP1237347 A JP 1237347A JP 23734789 A JP23734789 A JP 23734789A JP H03100451 A JPH03100451 A JP H03100451A
Authority
JP
Japan
Prior art keywords
gap
corrosive environment
environmental
difference
potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1237347A
Other languages
Japanese (ja)
Other versions
JP2680697B2 (en
Inventor
Hideya Anzai
安斎 英哉
Katsumi Mabuchi
勝美 馬渕
Masanori Sakai
政則 酒井
Takuya Takahashi
卓也 高橋
Yoshinao Urayama
浦山 義直
Eiji Kikuchi
菊池 英二
Jiro Kuniya
国谷 治郎
Michiyoshi Yamamoto
道好 山本
Shigeo Hattori
成雄 服部
Katsumi Osumi
大角 克己
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1237347A priority Critical patent/JP2680697B2/en
Publication of JPH03100451A publication Critical patent/JPH03100451A/en
Application granted granted Critical
Publication of JP2680697B2 publication Critical patent/JP2680697B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

PURPOSE:To easily and accurately monitor the stress corrosion crack and environmental crack of a structure made of a metallic material exposed to corrosive environment by comparing the potential difference between the spacing part of the metallic structure and other part with a preset reference value. CONSTITUTION:The structure 1 of a potential measuring cell has a cylindrical external cell 3 and a cylindrical internal cell 7 disposed apart a prescribed annular spacing part 5 in the external cell 3 and is constituted of the same material as the material of the structure in a light water reactor. Respective electrodes 27, 29 for potential measurement are provided in and out of the spacing part 5 in the corrosive environment. A detector 35 measures the difference in the potential in the two electrodes 27, 29. A comparing means 37 makes comparison between the potential difference and the preset reference value (critical potential difference) concerning the generation and progression of the crack in the corrosive environment. A warning command signal to a warning device 39 is outputted when the potential difference is larger than the reference value. The stress corrosion crack and environmental crack of the structure made of the metallic material exposed to the corrosive environment are easily and accurately monitored in this way.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、原子力プラント、火力プラント、化学プラン
ト等に於ける構造物に於て、応力腐蝕割れ(SCC)の
如き環境割れを監視する方法及び装置、更に腐蝕環境に
曝されている構造物の健全性向上のための環境制御方法
及び装置に係る。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention is applicable to structures in nuclear power plants, thermal power plants, chemical plants, etc., in environments such as stress corrosion cracking (SCC). The present invention relates to a method and apparatus for monitoring cracks, as well as an environmental control method and apparatus for improving the health of structures exposed to corrosive environments.

(従来の技術) 原子力プラント、火力プラント、化学プラントの如く、
比較的大型の構造物を有するプラントに於ては、特に高
温純水に接する軽水炉構造物を有する原子力プラントに
於ては、構造物の健全な状態による長期有効利用のため
に、構造物に損傷を生じることを極力回避させ、その寿
命を可及的に延長せしめることが強く望まれている。
(Conventional technology) Like nuclear power plants, thermal power plants, chemical plants, etc.
In plants with relatively large structures, especially in nuclear power plants with light water reactor structures in contact with high-temperature pure water, it is important to ensure that the structures are in a healthy condition for long-term effective use. It is strongly desired to avoid this occurrence as much as possible and to extend its life as much as possible.

特に炉水等により腐蝕環境に接する構造物に於ては、腐
蝕環境によってその構造物の破壊応力より低い応力にて
構造物に亀裂が発生し、これが進展する環境割れが問題
になる。この環境割れは、外見上、殆ど変化なく徐々に
進行し、破壊に至ることから、これの検知には高度な技
術が必要であり、定期的な検査に際して環境割れが生じ
る虞れがある箇所を一つ一つ調べていたのでは非能率的
である。
Particularly in structures that come into contact with a corrosive environment such as reactor water, cracks occur in the structure at a stress lower than the fracture stress of the structure due to the corrosive environment, and environmental cracking, which progresses, becomes a problem. This environmental cracking progresses gradually with almost no change in appearance and leads to destruction, so advanced technology is required to detect it, and periodic inspections are needed to identify areas where there is a risk of environmental cracking. It would be inefficient to investigate each item one by one.

環境割れは、多くの場合、応力腐蝕割れであり、応力腐
蝕割れは、材料、環境、応力の三つの要因が組合さって
生じる現象である。
Environmental cracking is often stress corrosion cracking, and stress corrosion cracking is a phenomenon caused by a combination of three factors: material, environment, and stress.

従って構造物を構成する材料の変更等の材料因子の除去
、構造変更等による応力の低減によって構造物に於ける
応力腐蝕割れの発生を抑制或いは回避する方策が従来よ
り取られている。現在、原子力プラントに於ては、5U
S304の如きステンレス鋼から応力腐蝕割れを起さな
い池の材料への変更、熱処理による残留応力の除去等が
行われている。しかし、溶接部等に於ける残留応力の除
去は困難であり、また炉内構造物に関しては、他の材質
への変更が殆ど不可能である。またこれらの対策を応力
腐蝕割れが生じる虞れがある箇所の全てに対し行うこと
は膨大な費用を要するようになる。
Therefore, conventional measures have been taken to suppress or avoid the occurrence of stress corrosion cracking in structures by removing material factors such as changing the materials constituting the structure, and reducing stress by changing the structure. Currently, in nuclear power plants, 5U
Changes have been made from stainless steel such as S304 to pond materials that do not cause stress corrosion cracking, and removal of residual stress through heat treatment. However, it is difficult to eliminate residual stress in welded parts and the like, and it is almost impossible to change the material of the reactor internals to other materials. Furthermore, it would be extremely costly to take these measures for all locations where stress corrosion cracking is likely to occur.

これに対し環境自体を応力腐蝕割れの如き環境割れが生
じない状態に制御することが考えられており、これは環
境割れが生じる虞れがある多くの箇所の各々に等しくそ
の効果を発揮することがら、最も合理的な対策である。
In response, it has been considered to control the environment itself to a state where environmental cracking such as stress corrosion cracking does not occur, and this is equally effective at each of the many locations where environmental cracking is likely to occur. However, it is the most rational measure.

このようなことがら環境を環境割れが起きないように制
御する技術、またこの制御のなめに環境割れを監視する
技術を確立することは重要なことである。
In view of this, it is important to establish technology to control the environment so that environmental cracks do not occur, and to monitor environmental cracks as part of this control.

現在、海外のBWR(沸騰水型炉)にて実施されている
腐蝕環境監視システムには、エプリ、エヌ、ビー352
1 (EPRI−NP−3521198415)、エプ
リ、エヌ、ビー3517(EPRI−NP−35171
98415)  、コロ−ジョン−83ペーパーナンバ
122(Corrosion−83PAPERNUMB
ER122)、コロ−ジョン−83ベーパーナンバ12
9 (Corrosion“83  PAPERNUM
BER129)等に記載されている如く、−次系冷却水
(炉水)中に於けるステンレス鋼の@蝕電位を参照電極
を用いて測定することにより環境腐蝕監視、即ち環境割
れ危険度を見出すことが行われている。これによれば、
ステンレス鋼の腐蝕電位が一230mVvsSHE以下
であれば、そのステンレス鋼に応力腐蝕割れは生じない
としている。
Corrosion environment monitoring systems currently being implemented in BWRs (boiling water reactors) overseas include Epri, N, and B352.
1 (EPRI-NP-3521198415), EPRI, N, B 3517 (EPRI-NP-35171
98415), Corrosion-83 PAPER NUMB
ER122), Corrosion-83 Vapor Number 12
9 (Corrosion“83 PAPERNUM
As described in BER129), environmental corrosion monitoring, that is, environmental cracking risk is determined by measuring the corrosion potential of stainless steel in secondary cooling water (reactor water) using a reference electrode. things are being done. According to this,
It is said that if the corrosion potential of stainless steel is 1230 mV vs SHE or less, stress corrosion cracking will not occur in the stainless steel.

また応力腐蝕割れを防ぐために、炉水中に水素を注入し
、−次冷却水中の酸素濃度を規制して応力腐蝕割れを防
ぐ対策が講じられている。この応力腐蝕割れ対策に際し
ては、炉水中に注入する水素量が重要であり、水素注入
量が多すぎると、−次冷却系の機材、部材等に水素脆性
が生じ、水素誘起割れを起す危険があり、また排出ガス
中の水素量が増大するという不具合が生じる。これとは
逆に炉水中に対する注入水素量が少ないと、応力腐蝕割
れを防ぐ効果が低減する。
In order to prevent stress corrosion cracking, measures have been taken to prevent stress corrosion cracking by injecting hydrogen into the reactor water and regulating the oxygen concentration in the secondary cooling water. When dealing with this stress corrosion cracking, the amount of hydrogen injected into the reactor water is important. If the amount of hydrogen injected is too large, hydrogen embrittlement will occur in the sub-cooling system equipment and members, and there is a risk of hydrogen-induced cracking. This also causes the problem that the amount of hydrogen in the exhaust gas increases. On the contrary, if the amount of hydrogen injected into the reactor water is small, the effect of preventing stress corrosion cracking will be reduced.

炉水に対する水素注入量を適正値に保つ方法としては、
特公昭63−19838号公報に記載されている如く、
−次冷却系を構成するステンレス鋼の腐蝕電位、溶有水
素濃度及び溶存水素濃度を測定し、腐蝕電位が一250
mV 〜−600mV、溶有水素濃度が10〜50pp
b、残存水素濃度が150ppb以下になるように水素
注入量を制御する方法が知られている。
As a method to keep the amount of hydrogen injected into the reactor water at an appropriate value,
As described in Japanese Patent Publication No. 63-19838,
-Measure the corrosion potential, dissolved hydrogen concentration, and dissolved hydrogen concentration of the stainless steel that constitutes the secondary cooling system, and
mV ~-600mV, dissolved hydrogen concentration 10-50pp
b. A method is known in which the amount of hydrogen injection is controlled so that the residual hydrogen concentration is 150 ppb or less.

(発明が解決しようとする課題) 上述の如き従来技術は、−次冷却水中のステンレス鋼の
腐蝕電位、溶有水素濃度、溶存水素濃度を所定値に保つ
べく一次冷却水中の水素濃度を制御し、応力腐蝕割れの
発生を防止することを特徴としているが、応力腐蝕割れ
と腐蝕電位との関係は一次冷却水の導電率の影響を受け
て変動し、このため比較基準値、即ち限界電位があまり
安全側に設定され過ぎると、−次冷却水中に水素が過剰
に注入されることになって、水素誘起割れを生じる危険
や排気ガス中の水素が増大する等の不具合が生じること
になる。上述の如き従来技術では、この限界電位の普遍
的適正値を見出すことが困難であり、実際には適正電位
幅を比較的広く設定しなければならなくなり、最適な水
素注入量を決定することが困難である。
(Problems to be Solved by the Invention) The prior art as described above controls the hydrogen concentration in the primary cooling water in order to maintain the corrosion potential of stainless steel, the dissolved hydrogen concentration, and the dissolved hydrogen concentration in the secondary cooling water at predetermined values. , is characterized by preventing the occurrence of stress corrosion cracking, but the relationship between stress corrosion cracking and corrosion potential fluctuates under the influence of the conductivity of the primary cooling water. If it is set too much on the safe side, excessive hydrogen will be injected into the secondary cooling water, resulting in problems such as the risk of hydrogen-induced cracking and an increase in hydrogen in the exhaust gas. In the conventional technology as described above, it is difficult to find a universally appropriate value for this critical potential, and in reality, the appropriate potential width must be set relatively wide, making it difficult to determine the optimal amount of hydrogen injection. Have difficulty.

また一般に、応力腐蝕割れ等により生じる亀裂内部は一
種の間隙環境であり、これはバルクとは異なった環境に
なり、この亀裂内部の水質が応力腐蝕割れに直接関与し
ている。従って、バルク中の水質に浸漬されたステンレ
ス鋼の腐蝕電位によって水素注入量を制御することは必
ずしも適正ではなく、亀裂内部の水質を充分に把握する
ことが応力腐蝕割れの危険度を信頼性高く見出すために
不可欠である。
Generally, the interior of a crack caused by stress corrosion cracking is a type of pore environment, which is a different environment from the bulk, and the water quality inside this crack is directly involved in stress corrosion cracking. Therefore, it is not necessarily appropriate to control the amount of hydrogen injection based on the corrosion potential of stainless steel immersed in bulk water, and it is important to fully understand the water quality inside cracks to reliably assess the risk of stress corrosion cracking. essential for finding out.

また腐蝕電位の測定には安定性に優れ且つ長寿命型の参
照′r4極が必要であるが、現在のところ、それに適し
た電極はまだ開発されていない。
In addition, a highly stable and long-life reference electrode is required to measure the corrosion potential, but no suitable electrode has been developed at present.

本発明は、上述の如き不具合及び事情に鑑み、信頼性高
く環境割れを監視する方法及び装置、警告装置付き監視
装置、更に環境制御方法及び装置を提供することを目的
としている。
SUMMARY OF THE INVENTION In view of the above-mentioned problems and circumstances, it is an object of the present invention to provide a highly reliable method and device for monitoring environmental cracks, a monitoring device with a warning device, and an environmental control method and device.

[発明の構成] (課題を解決するための手段) 上述の如き目的は、本発明によれば、腐蝕環境に接する
金属製構造物に人工的な間隙部を設け、前記金属製構造
物の前記間隙部と他の部分との電位の差を測定し、この
電位差と前記金属製構造物の割れ発生及び進展に関し予
め設定された基準値とを比較することを特徴とする環境
割れ監視方法、及びこの方法の実施に使用される装置と
して、腐蝕環境中に配設された二重管構造体を有し、該
二重管構造体により人工的な間隙部が形成され、腐蝕環
境中にて前記間隙部内と前記間隙部外とに各々電位測定
用の電極が設けられ、この両電極に於ける電位の差を測
定する電位差測定手段と、前記電位の差と腐蝕環境中の
割れ発生及び進展に関し予め設定された基準値とを比較
する比較装置とを有する如き環境割れ監視装置、或いは
腐蝕環境中に人工的な間隙部を有する電極と間隙部を有
さない電極とが配設され、前記両電極の電位差を測定す
る電位差測定手段と、前記電位差と腐蝕環境中の割れ発
生及び進展に関し予め設定された基準値とを比較する比
較手段とを有する如き環境割れ監視装置によって達成さ
れる。
[Structure of the Invention] (Means for Solving the Problems) According to the present invention, the above object is to provide an artificial gap in a metal structure that is in contact with a corrosive environment, and to An environmental crack monitoring method, comprising: measuring a difference in potential between a gap and other parts; and comparing this potential difference with a preset reference value regarding the occurrence and growth of cracks in the metal structure; The apparatus used to carry out this method includes a double-tube structure disposed in a corrosive environment, with an artificial gap formed by the double-tube structure; Electrodes for potential measurement are provided inside the gap and outside the gap, a potential difference measuring means for measuring the potential difference between the two electrodes, and a potential difference measuring means for measuring the difference in potential between the two electrodes, and a method for measuring the difference in potential and the occurrence and growth of cracks in a corrosive environment. An environmental crack monitoring device having a comparison device for comparing with a preset reference value, or an electrode having an artificial gap and an electrode having no gap in a corrosive environment, This is achieved by an environmental crack monitoring device having a potential difference measuring means for measuring the potential difference of the electrodes, and a comparing means for comparing the potential difference with a preset reference value regarding crack initiation and propagation in a corrosive environment.

前記間隙部と間隙部外との腐蝕電位の差は、前記間隙部
とその他の部分の各々の電位を測定し、この両電位の差
より検出されても、或いは前記間隙部とその他の部分の
電位差の直接的な測定により検出されてもよい。
The difference in corrosion potential between the gap and the outside of the gap can be detected by measuring the potentials of the gap and other parts, or by detecting the difference between the potentials of the gap and other parts. It may also be detected by direct measurement of the potential difference.

前記基準値は、環境割れを感受する部材の材質により決
まる環境割れ感受性、特に硫黄含有量に応じて定められ
てよい。
The reference value may be determined depending on the environmental cracking sensitivity determined by the material of the member sensitive to environmental cracking, particularly the sulfur content.

また腐蝕環境が水溶液に接する場合、この水溶液の水質
を前記間隙部と間隙部外の各々に於て測定し、この水質
差と腐蝕環境中の割れ発生及び進展に関し予め定められ
た基準値との比較を加味して上述の環境割れの監視が行
われてもよい。この場合の水質測定は、溶有水素濃度、
溶融水素濃度、過酸化水素濃度、酸化硫黄濃度、Cl濃
度、pH濃度等について行われればよい。
In addition, when a corrosive environment comes into contact with an aqueous solution, the water quality of this aqueous solution is measured both in the gap and outside the gap, and the difference in water quality is compared with a predetermined reference value regarding the occurrence and propagation of cracks in a corrosive environment. The above-mentioned monitoring of environmental cracks may be performed in consideration of the comparison. In this case, water quality measurements include dissolved hydrogen concentration,
The measurement may be performed for molten hydrogen concentration, hydrogen peroxide concentration, sulfur oxide concentration, Cl concentration, pH concentration, etc.

また、前記間隙部と間隙部外との導電率の差を測定し、
この導電率差と腐蝕環境中の割れ発生及び進展に関し予
め設定された基準値との比較を加味して上述の如き環境
割れの監視が行われてもよい。
Also, measuring the difference in conductivity between the gap and the outside of the gap,
Environmental cracking may be monitored as described above by comparing this conductivity difference with a preset reference value regarding the occurrence and growth of cracks in a corrosive environment.

また本発明の他の一つの目的は、上述の如き環境割れ監
視装置に於て、前記比較手段により前記電位基或いは前
記電位差及び前記水質差と前記導電率の差の少なくとも
一つが基準値以上に達しなと比較された時には警告を発
する警告手段を有している環境割れ監視装置によって達
成される。
Another object of the present invention is to provide an environmental crack monitoring device as described above, in which at least one of the potential group or the potential difference, the water quality difference, and the conductivity difference is greater than a reference value by the comparison means. This is achieved by an environmental crack monitoring device having a warning means for issuing a warning when a comparison is reached.

また本発明のもう一つの目的は、上述の如き環境割れ監
視方法或いは装置にての比較結果に応じて腐蝕環境中に
水素、酸素、酸化窒素の如き腐蝕抑制剤を添加すること
を特徴とする腐蝕環境制御方法、及びこの方法の実施に
用いられる装置として、上述の如き環境割れ監視方法或
いは装置にての比較結果に応じて腐蝕環境中に腐蝕抑制
剤を添加する腐蝕抑制剤添加装置を有する如き腐蝕環境
制御装置によって達成される。
Another object of the present invention is to add a corrosion inhibitor such as hydrogen, oxygen, or nitrogen oxide to a corrosive environment according to the results of comparison using the above-mentioned environmental crack monitoring method or device. A corrosive environment control method and a device used to carry out this method include a corrosion inhibitor addition device that adds a corrosion inhibitor to a corrosive environment according to the results of a comparison using the above-mentioned environmental crack monitoring method or device. This can be achieved by a corrosive environment control device such as

上述の如き環境割れ危険度制御装置は原子力プラント或
いは火力プラント或いは化学プラントに用いられてよい
The environmental crack risk control device as described above may be used in a nuclear power plant, a thermal power plant, or a chemical plant.

(作用) 応力腐蝕割れが生じる原因はステンレス鋼の如き腐蝕環
境に接する金属それ自身の電位が直接関与するのではな
く、間隙部に於ける電位と他の部分との電位勾配に従っ
て水溶液に接する不純イオン、So  −1Cl−が間
隙内に移動して凝縮し、pH低低下力現象をもたらすこ
とによって生じる。
(Function) The cause of stress corrosion cracking is not directly related to the potential of the metal itself in contact with the corrosive environment, such as stainless steel, but due to the impurity that comes into contact with the aqueous solution according to the potential gradient between the potential in the gap and other parts. It is caused by the ion, So-1Cl-, moving into the interstitial space and condensing, resulting in a pH-lowering force phenomenon.

従って、応力腐蝕割れ感受性(SCC感受性)には前記
間隙部と他の部分との電位差との間に相関があり、この
電位差が少なければ応力腐蝕割れは起き難くなる。即ち
、前記電位差はSCC感受性に対する指標となり、該電
位差は間隙部内外の腐蝕過程の差に基づくマクロセルに
より生じる電流よりもたらされるIR損失であり、この
電位差の存在は間隙部内外にて何らかの腐蝕過程の差を
生じているものと考えられる。応力腐蝕割れは間隙内で
の物理的に限られた空間に於ける腐蝕現象であるから、
この電位差と応力腐蝕割れとの間に特定される相関が存
在する。
Therefore, stress corrosion cracking susceptibility (SCC susceptibility) is correlated with the potential difference between the gap and other parts, and the smaller this potential difference, the less likely stress corrosion cracking will occur. That is, the potential difference is an index for SCC susceptibility, and the potential difference is the IR loss caused by the current generated by the macrocell based on the difference between the corrosion process inside and outside the gap, and the existence of this potential difference indicates that some corrosion process is occurring inside and outside the gap. This is thought to be the cause of the difference. Stress corrosion cracking is a corrosion phenomenon in a physically limited space within a gap.
There is an identified correlation between this potential difference and stress corrosion cracking.

従って、間隙部と他の部分との電位差をもとに参照電極
を用いることなく、しかも導電率の影響を受けることな
く、環境割れが監視されることになる。
Therefore, environmental cracks can be monitored based on the potential difference between the gap and other parts without using a reference electrode and without being affected by conductivity.

またその電位差、更には水質差、導電率差に応じて腐蝕
抑制剤の注入量が制御されることにより、構造物に応力
腐蝕割れを発生することが他の障害を生じることなく確
実に回避されるようになる。
In addition, by controlling the amount of corrosion inhibitor injected according to the potential difference, water quality difference, and conductivity difference, stress corrosion cracking in the structure can be reliably avoided without causing other problems. Become so.

(実施例) 以下に添付の図を参照して本発明を実施例について詳細
に説明する。
(Example) The present invention will be described in detail below with reference to the accompanying drawings.

第1図は本発明による環境割れ監視装置の一つの実施例
を示している。第1図に於て、1は環境割れ監視装置の
電位測定セル構造体を示している。
FIG. 1 shows one embodiment of an environmental crack monitoring device according to the present invention. In FIG. 1, reference numeral 1 indicates a potential measuring cell structure of an environmental crack monitoring device.

電位測定セル構造体1は、筒状のタト部セル3と、外部
セル3内に所定の円環状間隙部5をお〜1て西装置され
た筒状の内部セルフとを有し、これらは軽水炉の炉水循
環系中に設けられる場合、軽水炉内構造材と同質材料に
より構成されてνする。この材料としては、低合金鋼、
ステンレス鋼、インコネル600合金等が挙げられる。
The potential measuring cell structure 1 has a cylindrical vertical cell 3 and a cylindrical internal cell having a predetermined annular gap 5 in the external cell 3. When installed in the reactor water circulation system of a light water reactor, it is constructed of the same material as the structural material inside the light water reactor. This material includes low alloy steel,
Examples include stainless steel and Inconel 600 alloy.

内部セルフは、外部セル3の内径より1かに小さい外径
を有する筒状体により構成され・絶縁2ネクタ9によっ
てキャップ部材11と連結され、キャップ部材3が外部
セル3の一端部にねじ止められることにより外部セル3
内にこれと同心に固定配置されて外部セル3との間に前
記円環状間隙部5を構成するようになっている。
The inner self is composed of a cylindrical body having an outer diameter one smaller than the inner diameter of the outer cell 3, and is connected to the cap member 11 by an insulating connector 9, and the cap member 3 is screwed to one end of the outer cell 3. External cell 3
The annular gap portion 5 is fixedly arranged concentrically within the cell and the outer cell 3 to form the annular gap portion 5 therebetween.

外部セル3の他端部には炉水入口13が設けられており
、またキャップ部材11には炉水出口15が設けられて
おり、炉水入口13より外部セル3内に流入した炉水は
間隙部5を含む外部セル3内に充満し且つ内部セルフ及
び絶縁コネクタ9の内部通路15.17を通って炉水出
口15へ向けて流れるようになっている。
A reactor water inlet 13 is provided at the other end of the outer cell 3, and a reactor water outlet 15 is provided in the cap member 11, so that the reactor water flowing into the outer cell 3 from the reactor water inlet 13 is It fills the outer cell 3 including the gap 5 and flows through the inner self and the inner passages 15,17 of the insulating connector 9 towards the reactor water outlet 15.

内部セルフは試材として作用し、これには試材電極線2
1が導通接続されている。また外部セル3には円環状間
隙部5に於ける腐蝕電位を測定するため照合電極ボート
23と、間隙5外の部分に於ける腐蝕電位を測定するた
めの照合電極ボート25とが各々設けられている。これ
ら照合電極ボート23.25には各々照合電極27.2
つが装着されている。照合電極27.29は、外部照合
電極或いは内部照合電極の何れであってもよいが、炉水
の漏洩、長期安定性の観点からは外部照合電極であるこ
とが好ましい。
The internal self acts as a specimen, which includes specimen electrode wire 2.
1 is electrically connected. Further, the external cell 3 is provided with a reference electrode boat 23 for measuring the corrosion potential in the annular gap 5 and a reference electrode boat 25 for measuring the corrosion potential in the area outside the gap 5. ing. Each of these reference electrode boats 23.25 has a reference electrode 27.2.
is installed. The reference electrodes 27 and 29 may be either external reference electrodes or internal reference electrodes, but are preferably external reference electrodes from the viewpoint of leakage of reactor water and long-term stability.

照合型f!27及び29は各々電極線31.33によっ
て試材電極線21と共に電位差検出装置35に導電接続
されている。電位差検出手段35は照合電極27より取
出される円環状間隙部7に於ける電位ともう一つの照合
電極2つより取出される間隙部外の電位とを各々取込み
、この両電位の電位差を算出し、これを比較手段37へ
出力するようになっている。
Collation type f! 27 and 29 are conductively connected to the potential difference detection device 35 together with the sample electrode wire 21 by electrode wires 31 and 33, respectively. The potential difference detection means 35 takes in the potential at the annular gap 7 taken out from the reference electrode 27 and the potential outside the gap taken out from two other reference electrodes, and calculates the potential difference between these two potentials. Then, this is output to the comparing means 37.

比較手段37は前記電位差と腐蝕環境中の割れ発生及び
進展に関し予め設定された基準値(限界電位差)との比
較を行い、前記電位差が前記基準値より大きい時には警
告装置39へ警告指令信号を出力するようになっている
The comparison means 37 compares the potential difference with a preset reference value (limit potential difference) regarding the occurrence and growth of cracks in a corrosive environment, and outputs a warning command signal to the warning device 39 when the potential difference is larger than the reference value. It is supposed to be done.

これにより警告装置39は前記電位差が前記基準値より
大きい時には警告、表示等により環境割れの発生の虞れ
があることを警告するようになる。
As a result, the warning device 39 issues a warning, display, etc. when the potential difference is larger than the reference value to warn that there is a risk of environmental cracking occurring.

第2図及び第3図は上述の如く算出される如き間隙部内
外の電位差と応力腐蝕割れ破面率、即ち環境割れ危険度
との関係を示している。
FIGS. 2 and 3 show the relationship between the potential difference inside and outside the gap and the stress corrosion cracking fracture rate, that is, the environmental cracking risk, as calculated as described above.

第2図は圧力容器用低合金a(0,004wt%S)の
288℃の高温純水中に於ける間隙部内外の電位差と間
隙を付与した平滑試験片を低ひずみ速度10−68−1
にて引張り試験(SSRT試験)することにより得られ
た前記関係、即ちSCC感受性を示している。第3図は
同様の試験片をクロム炭化物析出等による鋭敏化ステン
レス鋼(304ステンレス鋼)にて作成した場合の試験
結果を示している。
Figure 2 shows the potential difference between the inside and outside of the gap in low alloy a (0,004 wt% S) for pressure vessels in high-temperature pure water at 288°C, and the smooth test piece with the gap applied at a low strain rate of 10-68-1.
The above relationship, that is, SCC susceptibility, obtained by conducting a tensile test (SSRT test) is shown. FIG. 3 shows the test results when a similar test piece was made of stainless steel (304 stainless steel) sensitized by chromium carbide precipitation.

これらの何れの試験からも、間隙部内外の電位差とSC
C感受性との間には特定な相関性があることが理解され
よう。
From any of these tests, the potential difference inside and outside the gap and the SC
It will be appreciated that there is a specific correlation between C sensitivity.

第4図は第1図に示されている如きセル構造体を圧力容
器用低合金にて製作し、第2図或いは第3図に示された
ものと同様な5SRT試験をその合金鋼中の硫黄含有量
を0.014重量%〜0゜004重量%まで変化させて
行うことにより得られた応力腐蝕割れ発生限界の電位差
と合金鋼中の硫黄含有量との関係を示したものである。
Figure 4 shows a cell structure as shown in Figure 1 made of a low alloy for pressure vessels, and a 5SRT test similar to that shown in Figures 2 or 3 carried out on the alloy steel. This figure shows the relationship between the potential difference at the stress corrosion cracking limit obtained by varying the sulfur content from 0.014% by weight to 0°004% by weight and the sulfur content in the alloy steel.

第4図に於てOは環境割れがないことを、・は環境割れ
があることを示し、また括弧内の数値は環境助長破面率
を示している。
In FIG. 4, O indicates the absence of environmental cracking, . indicates the presence of environmental cracking, and the numerical value in parentheses indicates the environmentally promoted fracture surface ratio.

従って、各種プラントに於ける圧力容器用合金鋼の硫黄
含有量によって第4図に示されている如く定まる環境割
れ発生限界値と実際のプラントにて上述の如き電位差検
出手段35により検出される電位差とを比較し、この電
位差が限界電位差を超えた場合には警告装置39を作動
させて警告が発せられればよい。
Therefore, the environmental crack occurrence limit value determined by the sulfur content of alloy steel for pressure vessels in various plants as shown in FIG. 4 and the potential difference detected by the potential difference detection means 35 as described above in an actual plant. If this potential difference exceeds the limit potential difference, the warning device 39 may be activated to issue a warning.

第5図は上述の如き構造よりなるセル構造体を304ス
テンレス鋼を用いて作製し、第2図或いは第3図に示さ
れたものと同様な5SRT試験を、材料の環境腐蝕割れ
に対する鋭敏化度を変化させて実施した結果を示してい
る。尚、鋭敏化度はストラウス試験実施後の最大粒界侵
食深さをパラメータとしな、この試験結果から鋭敏化度
が大きくなるに従って限界電位差が小さくなる傾向が見
られる。従って、各プラントの対象部に於ける鋭敏化度
が認知されれば、その鋭敏化度により第5図によって定
められる如き限界電位差と実際のプラントにて上述の如
き電位差検出手段35により検出される電位差とを比較
し、この電位差が前記限界電位差を上回われば、警告を
発するようになっていてもよい。
Figure 5 shows a cell structure having the above-mentioned structure made of 304 stainless steel, and a 5SRT test similar to that shown in Figures 2 or 3 conducted to increase the sensitivity of the material to environmental corrosion cracking. The results shown are the results obtained by varying the intensity. Note that the degree of sensitization uses the maximum grain boundary erosion depth after Strauss test as a parameter, and the test results show that as the degree of sensitization increases, the limit potential difference tends to decrease. Therefore, if the degree of sensitization in the target part of each plant is recognized, the limit potential difference as defined in FIG. The potential difference may be compared with the potential difference, and if this potential difference exceeds the limit potential difference, a warning may be issued.

上述の如く、本発明に於ては、間隙部内外の電位差をも
とに環境割れの監視が行われるから、炉水の導電率が変
化しても応力腐蝕割れが生じる虞れがある比較基準値の
適正値が変動することがない。
As mentioned above, in the present invention, environmental cracking is monitored based on the potential difference between the inside and outside of the gap, so even if the conductivity of the reactor water changes, stress corrosion cracking may occur as a comparison standard. The appropriate value does not change.

第6図は単純な腐蝕電位と炉水の導電率との関係に於け
る応力腐蝕割れの発生状況を示している。
Figure 6 shows the occurrence of stress corrosion cracking in the simple relationship between corrosion potential and conductivity of reactor water.

第8図に於て○印は応力腐蝕割れが生じないことを、・
印は応力腐蝕割れが生じたことを示している。このグラ
フからも明らかな如く、単純な腐蝕電位だけではその応
力腐蝕割れの限界電位が導電率に応じて大きく変化する
ことが理解されよう。
In Figure 8, the ○ marks indicate that stress corrosion cracking does not occur.
The mark indicates that stress corrosion cracking has occurred. As is clear from this graph, it will be understood that with only a simple corrosion potential, the critical potential for stress corrosion cracking changes greatly depending on the conductivity.

第7図は上述の如き間隙部内外の電位差と炉水の導電率
との関係に於ける応力腐蝕割れの発生状況を示している
。尚、第7図に於てもO印は応力腐蝕割れが発生しない
ことを、・印は応力腐蝕割れが生じることを示している
。この場合には、応力腐蝕割れの限界電位差は導電率に
拘らずほぼ一定になる。即ち、前記比較基準値の適正値
が導電率によって変化することがなく、一義的に定めら
れ得るようになる。
FIG. 7 shows the occurrence of stress corrosion cracking in the relationship between the potential difference inside and outside the gap and the conductivity of the reactor water as described above. Also in FIG. 7, the O mark indicates that stress corrosion cracking does not occur, and the * mark indicates that stress corrosion cracking occurs. In this case, the critical potential difference for stress corrosion cracking becomes approximately constant regardless of the conductivity. That is, the appropriate value of the comparison reference value does not change depending on the conductivity, and can be uniquely determined.

第8図は、軽水炉原子力プラントに本発明による環境割
れ監視装置を組込んだ一つの実施例を示している。第6
図に於て、符号41は軽水炉圧力容器を、符号43は炉
水再循環系配管を各々示しており、炉水は炉水ポンプ4
5によって炉水再循環系配管43を流れて軽水炉圧力容
器41内に再循環供給されるようになっている。
FIG. 8 shows one embodiment in which the environmental crack monitoring device according to the present invention is incorporated into a light water reactor nuclear power plant. 6th
In the figure, numeral 41 indicates the light water reactor pressure vessel, numeral 43 indicates the reactor water recirculation system piping, and the reactor water is supplied to the reactor water pump 4.
5, the reactor water flows through the reactor water recirculation system piping 43 and is recirculated and supplied into the light water reactor pressure vessel 41.

炉水循環系配管10にはその途中よりバイパス炉水循環
配管46が分岐して設けられており、この配管46内に
ダブルチエツクのなめに二つの電位測定セル構造体1が
互いに並列に等価に設けられている。
A bypass reactor water circulation pipe 46 is branched from the middle of the reactor water circulation system pipe 10, and two potential measurement cell structures 1 are equally installed in parallel with each other in this pipe 46 for double check. ing.

この実施例に於ては、電位測定セル構造体1の各々より
取出される電位信号は一般的構造のマイクロコンピュー
タを含む電子制御装置47に取込まれるようになってい
る。を子制御装置47は、電位検出用セル構造体1より
の電位信号をもとに間隙部内外の電位差を検出し、これ
と上述の如く腐蝕環境中の割れ発生及び進展に関し予め
設定された限界電位差、即ち基準値と比較し、前記電位
差が基準値を上回おる場合には警告装置49に対し作動
指令を出力するようになる。従って電位差が前記基準値
を超えて上昇すれば、警告装置49が警告を発するよう
になる。
In this embodiment, the potential signals taken out from each of the potential measuring cell structures 1 are taken in by an electronic control unit 47 including a microcomputer having a general structure. The slave control device 47 detects the potential difference between the inside and outside of the gap based on the potential signal from the potential detection cell structure 1, and detects the potential difference between the inside and outside of the gap and the preset limit regarding crack occurrence and propagation in a corrosive environment as described above. The potential difference is compared with a reference value, and if the potential difference exceeds the reference value, an activation command is output to the warning device 49. Therefore, if the potential difference rises above the reference value, the warning device 49 will issue a warning.

上述の如く配管中に接続される電位測定セル構造体1を
構成する金属は、軽合金鋼、ステンレス鋼、ニッケル基
台金鋼等、炉壁、炉心に用いられる金属と同一金属にて
構成されることが好ましいが、セル構成金属のSCC感
受性と対象となる金属のSCC感受性との相関性が解っ
ていれば、セル構造体1は他の金属材料により構成され
ていてもよい。
As mentioned above, the metal constituting the potential measurement cell structure 1 connected to the piping is made of the same metal used for the reactor wall and core, such as light alloy steel, stainless steel, and nickel-based metal steel. However, if the correlation between the SCC susceptibility of the cell constituent metal and the SCC susceptibility of the target metal is known, the cell structure 1 may be made of other metal materials.

セル構造#1に流す炉水の流量は特には規定されないが
、しかし、この炉水流速があまり速すぎると、間隙部内
の電位に外乱影響を及ぼす可能性があるから、実際には
3〜10リットル/時間程度が好適であろう。
The flow rate of reactor water flowing into cell structure #1 is not particularly specified, but if the flow rate of reactor water is too fast, it may have a disturbance effect on the potential in the gap, so in reality it is 3 to 10%. A value of the order of liters/hour would be suitable.

第9図は本発明による環境割れの腐蝕環境制御装置の一
つの実施例を示している。尚、第9図に於て第8図に対
応する部分は第8図に付した符号と同一の符号により示
されている。
FIG. 9 shows one embodiment of the corrosive environment control device for environmental cracking according to the present invention. In FIG. 9, parts corresponding to those in FIG. 8 are indicated by the same reference numerals as in FIG.

環境制御装置に於ては、水素注入配管51をもって軽水
炉圧力容器41に対する給水配管53中に水素を注入す
る水素注入装置55が設けられている。水素注入装置5
5は電子制御装置47より制御信号を与えられ、電位測
定用セル構造体1より検出される電位をもとに求められ
る間隙部内外の電位差が前記基準値を超えて上昇した時
には水素を給水配管53中に注入するようになっている
The environmental control device is provided with a hydrogen injection device 55 that injects hydrogen into a water supply pipe 53 to the light water reactor pressure vessel 41 using a hydrogen injection pipe 51. Hydrogen injection device 5
5 receives a control signal from the electronic control device 47, and when the potential difference between the inside and outside of the gap, determined based on the potential detected by the potential measurement cell structure 1, rises above the reference value, the hydrogen is supplied to the water supply pipe. It is designed to be injected into 53.

これにより、水素注入制御が間隙部内外の電位差より見
出される環境割れ危険度に応じて過不遇なく適切に行わ
れるようになる。
As a result, hydrogen injection control can be carried out appropriately depending on the risk of environmental cracking found from the potential difference between the inside and outside of the gap.

尚、第9図に於て、57は主蒸気配管を示している。In addition, in FIG. 9, 57 indicates the main steam piping.

第10図は本発明による腐蝕環境制御装置を備えた原子
力プラントの他の一つの実施例を示している。第10図
に於て、61は軽水炉圧力容器を、63は軽水炉圧力容
器61に設けられた炉内計装管を、65は途中にポンプ
67を有する炉水再循環系配管を、β9は給水配管を、
71は途中にボングア3及び炉水浄化用脱塩器75を有
する炉水浄化系配管を各々示している。軽水炉圧力容器
61には炉内計装管63によって電位差測定用の電極組
合せ構造木81が設けられており、また炉水再循環系配
管65と給水配管6つと炉水浄化系配管71の各々に電
位差測定用電極組合せ構造体91が設けられている。
FIG. 10 shows another embodiment of a nuclear power plant equipped with a corrosive environment control device according to the present invention. In Fig. 10, 61 is the light water reactor pressure vessel, 63 is the in-core instrumentation pipe installed in the light water reactor pressure vessel 61, 65 is the reactor water recirculation system piping with a pump 67 in the middle, and β9 is the water supply water supply pipe. plumbing,
Reference numeral 71 indicates a reactor water purification system piping having a bongua 3 and a demineralizer 75 for purifying reactor water in the middle. The light water reactor pressure vessel 61 is provided with an electrode combination structure tree 81 for potential difference measurement through the in-core instrumentation pipe 63, and each of the reactor water recirculation system pipe 65, six water supply pipes, and reactor water purification system pipe 71 is provided with an electrode assembly structure tree 81 for measuring potential difference. An electrode combination structure 91 for potential difference measurement is provided.

電位差測定用電極組合せm遺体81は、第11図に良く
示されている如く、切欠部による間lll13!部85
を備えた矩形状の電極部材83と、切欠部を有さない矩
形状の電極部材87とを互いに近接して有している。を
極部材83及び87は軽水炉圧力容器61の炉壁を構成
する金属と同一材質の金属により構成され、電極部材8
3は、第12図に良く示されている如く、切欠による間
隙部85の部分を除く他の炉内露呈部分を電気絶縁層8
つにより絶縁被覆されている。電気絶縁層89は、CV
D法によるZ r O2のコーティング層により構成さ
れている。尚、この電気絶縁層89はCVD法によるZ
 r O2のコーティング層以外に、溶射法、PVD法
、電気泳動法、クラスタイオンビーム法、イオンミキシ
ング法等により形成されてもよく、また電気絶縁材とし
ては、ZrO□以外に、Al2O2,5i02の如き酸
化物が用いられてもよい。
As clearly shown in FIG. 11, the electrode combination m body 81 for potential difference measurement has a gap between llll13! Part 85
A rectangular electrode member 83 having a cutout and a rectangular electrode member 87 having no notch are provided close to each other. The electrode members 83 and 87 are made of the same metal as the metal that constitutes the reactor wall of the light water reactor pressure vessel 61.
3, as shown in FIG. 12, the other exposed parts of the furnace except for the gap 85 formed by the notch are covered with an electrically insulating layer 8.
It is insulated by two layers. The electrical insulating layer 89 is a CV
It is composed of a coating layer of Z r O2 by method D. Note that this electrical insulating layer 89 is formed by Z
r In addition to the O2 coating layer, it may be formed by a thermal spraying method, PVD method, electrophoresis method, cluster ion beam method, ion mixing method, etc. Also, as the electrical insulating material, in addition to ZrO□, Al2O2, 5i02 Other oxides may also be used.

上述の如く、電極部材83は間隙部85を除く他の部分
の外表面を電気絶縁されていることから、この電極部材
83に於ては間隙部85に於ける電位のみが取出され、
この電極部材より取出される電位が間隙部85以外の部
分の電位を含む混成電位となることが回避される0間隙
部85の面積は電極部材83に於ける他の部分の面積と
比較して非常に小さいため、この電極部材83より取出
される電位が前記混成電位であると、この電極部材83
より取出される電位は間隙部85を有さない電極部材8
7により取出される電位とほぼ同じになり、間隙部85
の電位を実質的に検出することが不可能になる。この様
なことから本発明装置に於ては、上述の如く間隙部85
に於ける電位のみを取出すために電極部材83は間隙部
85を除く他の部分を電気絶縁被覆されている。
As described above, since the outer surface of the electrode member 83 except for the gap 85 is electrically insulated, only the potential at the gap 85 is extracted from the electrode member 83.
The area of the 0-gap portion 85, which prevents the potential taken out from this electrode member from becoming a mixed potential including the potential of portions other than the gap portion 85, is larger than the area of other portions of the electrode member 83. Since the potential taken out from this electrode member 83 is the mixed potential, this electrode member 83
The potential extracted from the electrode member 8 having no gap 85
7, the potential is almost the same as the potential extracted by 7, and the gap 85
becomes virtually impossible to detect. For this reason, in the device of the present invention, the gap 85 is
In order to extract only the potential at the gap 85, the electrode member 83 is coated with an electrically insulating coating except for the gap 85.

電極部材83及び87には各々電極線101が接続され
ており、この電極線は炉内計装管63によって炉外へ取
出され、エレクトロメータ103に接続されている。エ
レクトロメータ103は、高内部抵抗を有する電位差測
定手段であり、電極部材83と87との間の電位差を検
出するようになっている。
Electrode wires 101 are connected to each of the electrode members 83 and 87, and the electrode wires are taken out of the furnace through an in-furnace instrumentation tube 63 and connected to an electrometer 103. The electrometer 103 is a potential difference measuring means having a high internal resistance, and is adapted to detect the potential difference between the electrode members 83 and 87.

各種配管系に組込まれる電位差測定用電極組合せ構造体
91は、第13図に良く示されている如く、切欠による
間隙部95を有する矩形状の電極部材93と、間隙部を
有さない矩形状の電極部材97とを互いに近接して有し
、これら電極部材は上述の電位差測定用電極組合せ構造
体81の電極部材と同様に構成されている。即ち、電極
部材93と97は各々軽水炉圧力容器61の炉壁を構成
する金属と同一金属により構成され、電極部材93は間
隙部95を除く他の外表面を電気絶縁被覆されている。
As clearly shown in FIG. 13, the electrode combination structure 91 for potential difference measurement that is incorporated into various piping systems includes a rectangular electrode member 93 having a gap 95 formed by a notch, and a rectangular electrode member 93 having a gap 95 formed by a notch. These electrode members are constructed in the same manner as the electrode members of the electrode combination structure 81 for potential difference measurement described above. That is, the electrode members 93 and 97 are each made of the same metal as the metal that constitutes the reactor wall of the light water reactor pressure vessel 61, and the outer surface of the electrode member 93 except for the gap 95 is coated with electrical insulation.

電極部材93と97には各々電極線105が接続されて
おり、電f!線105は配管用管部材107を貫通して
その外部に取出され、各々エレクトロメータ103と同
一のエレクトロメータ109に接続されている。エレク
トロメータ109は各々各配管系に組込まれた電位差測
定用電極組合せ構造体91の電極部材93と97との間
の電位差を検出するようになっている。
Electrode wires 105 are connected to the electrode members 93 and 97, respectively, and the electric f! The wires 105 pass through the piping member 107 and are taken out to the outside, and are each connected to an electrometer 109 that is the same as the electrometer 103. The electrometers 109 are configured to detect the potential difference between the electrode members 93 and 97 of the potential difference measuring electrode combination structure 91 that is incorporated in each piping system.

エレクトロメータ103及び109により検出された電
極部材83と87との間或いは電極部材93と97との
間の電位差は間隙部85内外の電位差或いは間隙部95
内外の電位差であり、この電位差に関する情報はマイク
ロコンピュータを含む中央処理制御装置111に送られ
るようになっている。
The potential difference between the electrode members 83 and 87 or between the electrode members 93 and 97 detected by the electrometers 103 and 109 is the potential difference between the inside and outside of the gap 85 or the gap 95.
This is a potential difference between inside and outside, and information regarding this potential difference is sent to a central processing control unit 111 including a microcomputer.

中央処理制御装置111は腐蝕環境中の割れ発生及び進
展に関し予め定められた基準値と各エレクトロメータ1
03或いは109よりの電位差とを比較し、電位差が前
記基準値を超える場合或いは統計処理、学習制御により
電位差が前記基準値を超える虞れがあると推定される場
合には、警告装置113へ警告指令信号を出力するよう
になっている。これにより警告装置113は環境割れの
危険度が増大すれば、その箇所を表示すると共に警告を
発するようになる。
The central processing control unit 111 uses predetermined reference values regarding the occurrence and growth of cracks in a corrosive environment and each electrometer 1.
03 or 109, and if the potential difference exceeds the reference value, or if it is estimated that there is a risk of the potential difference exceeding the reference value through statistical processing or learning control, a warning is sent to the warning device 113. It is designed to output a command signal. As a result, if the risk of environmental cracking increases, the warning device 113 will display the location and issue a warning.

また本発明に於ては、上述の如き間隙部内外の電位差に
加えて間隙部内外の水質差及び導電率の変化に応じて環
境割れの監視が行われてよく、第14図は水質差及び導
電率差の測定手段の一例を示している。
Furthermore, in the present invention, in addition to the potential difference between the inside and outside of the gap as described above, environmental cracks may be monitored according to the water quality difference inside and outside the gap and changes in conductivity. An example of a means for measuring conductivity difference is shown.

この実施例に於ては、原子力プラントの配管系内に切欠
間隙部121aを有する試験片121が配設され、この
切欠間隙部121と通常の管内とに各々、SO4−イオ
ン濃度センサ123a、123bと、C1イオン濃度セ
ンサ125a、125bと、H2O2−02−H2同時
分析センサ127a、127bと、pH滴度センサ12
9a、129bと導電率計131a、131bとが各々
配置されている。
In this embodiment, a test piece 121 having a notch gap 121a is provided in the piping system of a nuclear power plant, and SO4-ion concentration sensors 123a and 123b are installed in the notch gap 121 and in the normal pipe, respectively. , C1 ion concentration sensors 125a, 125b, H2O2-02-H2 simultaneous analysis sensors 127a, 127b, and pH droplet level sensor 12.
9a, 129b and conductivity meters 131a, 131b are respectively arranged.

試験片121は軽水炉圧力容器の壁面を構成する金属或
いは炉水配管を構成する金属と同一金属により構成され
ている。504−イオン濃度センサ123a、123b
はAgSO4を極により構成されていてよい、Cl−イ
オン濃度センサ125a、125bは内部液を用いない
AgC19極により構成されていてよい、 H2020
2−H2同時分析センサ127a、127bは、半径が
数十μm以下の白金製ミクロ電極を用い、パルスポルタ
ンメトリが行われることによりH2O2とH2と02の
濃度の同時定量分析を行うようになっていてよい、この
分析センサに関しては白金電極と参照電極及び白金対極
を組合せた三電極系が適している。
The test piece 121 is made of the same metal as the wall of the light water reactor pressure vessel or the metal forming the reactor water piping. 504-Ion concentration sensor 123a, 123b
The Cl- ion concentration sensors 125a and 125b may be composed of AgC19 electrodes that do not use an internal liquid.H2020
The 2-H2 simultaneous analysis sensors 127a and 127b perform simultaneous quantitative analysis of the concentrations of H2O2, H2, and 02 by performing pulse portammetry using platinum microelectrodes with a radius of several tens of μm or less. For this analytical sensor, a three-electrode system combining a platinum electrode, a reference electrode, and a platinum counter electrode is suitable.

PHセンサ129a、129bは、TlO2半導体電極
、参照電極及び白金電極を組合せな三電極系が適してい
る。
For the PH sensors 129a and 129b, a three-electrode system combining a TlO2 semiconductor electrode, a reference electrode, and a platinum electrode is suitable.

上述の如き各種センサ及び導電率計よりの情報信号はポ
テンシオスタット133或いはエレクトロメータ135
等の測定計器に接続されている。
Information signals from various sensors and conductivity meters as described above are sent to a potentiostat 133 or an electrometer 135.
etc. are connected to measuring instruments such as

ポテンシオスタット133に取込まれた各種センサより
の情報信号は周波数応答変換器137或いは任意関数発
生器139に送られ、これらにて適当な信号変換処理が
行われ、マイクロコンピュータ140へ送られようにな
っている。マイクロコンピュータ140及びエレクトロ
メータ135よりの各種情報信号は各々統計処理装置1
41に送られる。
Information signals from various sensors taken into the potentiostat 133 are sent to a frequency response converter 137 or an arbitrary function generator 139, where appropriate signal conversion processing is performed, and the signals are sent to the microcomputer 140. It has become. Various information signals from the microcomputer 140 and the electrometer 135 are sent to the statistical processing device 1.
Sent to 41.

統計処理装置141は、上述の各種情報信号及び前述の
如く検出される電位差に関する情報を与えられ、これら
の過去のデータとの照合、各データの時間変化状況、こ
れらデータの各基準値との比較等の統計的な処理を行い
、この処理によりデータ値の一つでも基準値を超える場
合或いは超える虞れがある場合には警告指令信号を警告
発生装置143へ出力するようになっている。警告装置
143は統計処理装置141よりの指令信号により危険
表示及び警報を発するように構成されている。
The statistical processing device 141 is given the various information signals described above and information regarding the potential difference detected as described above, and compares these data with past data, changes over time of each data, and compares these data with each reference value. A warning command signal is output to the warning generating device 143 if even one of the data values exceeds or is likely to exceed the reference value. The warning device 143 is configured to issue a danger display and alarm in response to a command signal from the statistical processing device 141.

第15図乃至第17図は間隙部内外の炉水の水質差と応
力腐蝕割れ破面率との関係を示している。
FIGS. 15 to 17 show the relationship between the water quality difference in the reactor water inside and outside the gap and the stress corrosion cracking fracture rate.

これらは掻く微少量のCl−イオンと804−イオン及
びN O2−の不純物を含む288℃の高温水中にて低
ひずみ速度での引張り試験によるSCC感受性を示すも
のであり、これらより間隙部内外の水質差が大きくなれ
ば応力腐蝕割れが生じ易くなることが理解されよう。
These exhibit SCC susceptibility through a tensile test at a low strain rate in high-temperature water at 288°C containing minute amounts of Cl- ions, 804- ions, and N O2- impurities. It will be understood that the greater the difference in water quality, the more likely stress corrosion cracking will occur.

従って、上述の如く、これらの水質差を常に検出するこ
とにより構造物のSCC感受性を監視することが可能に
なる。上述の如き各種水質差は互いに関連し合っている
から、これらの一つでもが基準値を超えれば、或いは大
きい変動を生じればSCC感受性が増大すると判断され
ればよい。
Therefore, as described above, by constantly detecting these water quality differences, it becomes possible to monitor the SCC susceptibility of the structure. Since the various water quality differences described above are interrelated, if any one of them exceeds the reference value or if a large variation occurs, it may be determined that SCC susceptibility increases.

第18図は第10図及び第14図に示された環境割れ監
視装置と腐蝕抑制剤注入装置との組合せよりなる腐蝕環
境制御装置を原子力プラントの配管系に適用した一実施
例を示している。尚、第18図に於て第10図と対応す
る部分は第10図に付した符号と同一の符号により示さ
れている。第18図に於て、151は各配管系に組込ま
れた測定セル構造体を示しており、これは第13図に示
されている如き電位差測定用t f!組合せ構造体81
或いは91と第14図に示されている水質及び導電率測
定用のセンサ組合体との複合構造体として構成され、こ
れらよりの情報信号は上述の如き各種測定計器、信号変
換装置、マイクロコンピュータ、統計処理装置を含むデ
ータ解析装置153に個別に取込まれ、これより統計処
理装置141に送られるようになっている。統計処理装
置141は上述の実施例のそれと同一のものであってよ
く、これは警告発生装置143へ指令信号を出力すると
共にH2注入装置155.0□注入装置157、NOx
注入装置159等の腐蝕抑制剤注入装置に対し指令信号
を出力するようになっている。
FIG. 18 shows an example in which a corrosion environment control device consisting of a combination of the environmental crack monitoring device and the corrosion inhibitor injection device shown in FIGS. 10 and 14 is applied to the piping system of a nuclear power plant. . In FIG. 18, parts corresponding to those in FIG. 10 are designated by the same reference numerals as in FIG. 10. In FIG. 18, reference numeral 151 designates a measuring cell structure incorporated in each piping system, which is used for potential difference measurement tf! as shown in FIG. Combination structure 81
Alternatively, it may be configured as a composite structure of 91 and the sensor assembly for water quality and conductivity measurement shown in FIG. The data are individually taken into a data analysis device 153 including a statistical processing device, and sent from there to the statistical processing device 141. The statistical processing device 141 may be the same as that in the embodiment described above, and it outputs a command signal to the warning generating device 143 and also outputs a command signal to the H2 injection device 155.0□ injection device 157, NOx injection device 157.
A command signal is output to a corrosion inhibitor injection device such as the injection device 159.

これら腐蝕注入剤注入装置は各配管系に対しH2,0□
、NOxの如き腐蝕抑制剤を注入するようになっている
These corrosive injection devices are equipped with H2,0□ for each piping system.
, to inject corrosion inhibitors such as NOx.

従って、間隙部内外の電位差、各種水質、導電率の少な
くとも一つが基準値を超えれば、或いは超える虞れがあ
る場合にはその箇所に対し各腐蝕抑制剤が自動的に注入
され、応力腐蝕割れの発生の危険度が低下されるように
なる。
Therefore, if at least one of the potential difference between the inside and outside of the gap, various types of water quality, and electrical conductivity exceeds the standard value, or if there is a risk of exceeding the standard value, each corrosion inhibitor is automatically injected into that location to prevent stress corrosion cracking. The risk of occurrence of this will be reduced.

第19図と第20図は第18図に示された環境制御装置
の有効性を確認するための間隙部内外の電位差と水素注
入量との経時的変化試験の結果を示している。尚、第1
9図に於て・印は警告発生を示している。この二つのグ
ラフから、電位差が基準値を超えた段階にて警告が発せ
られて水素の注入が開始され、その水素注入量は電位差
の大きさに応じて変化し、電位差が最大になっている時
期に於て水素注入量が最大となっている。そしてその後
に電位差が小さくなるに従って水素注入量も減少してお
り、400時間以降の運転に於ては安定したプラント運
転となっている。この時の水素注入量は応力腐蝕割れ発
生の臨界電位差にある安全率を掛けた値に電位差がなる
ようにフィードバック制御により定量的に制御されれば
よい、このことから水素の過剰注入による水素脆性割れ
を起こすことなく応力腐蝕割れの発生が生じないよう炉
水の水質制御が適切に行われるようになる。
FIGS. 19 and 20 show the results of a test on changes over time in the potential difference inside and outside the gap and the amount of hydrogen injected to confirm the effectiveness of the environment control device shown in FIG. 18. Furthermore, the first
In Figure 9, the mark indicates the occurrence of a warning. From these two graphs, a warning is issued and hydrogen injection begins when the potential difference exceeds the reference value, and the amount of hydrogen injection changes depending on the size of the potential difference, reaching the maximum potential difference. The amount of hydrogen injection is at its maximum during this period. Thereafter, as the potential difference became smaller, the amount of hydrogen injection also decreased, and the plant operated stably after 400 hours. The amount of hydrogen injection at this time should be quantitatively controlled by feedback control so that the potential difference is equal to the critical potential difference for stress corrosion cracking multiplied by a certain safety factor. The water quality of the reactor water will be appropriately controlled to prevent cracking and stress corrosion cracking.

尚、本発明による上述の如き方法及び装置は原子力プラ
ントに限られず、火力プラント或いは化学プラント等環
境割れが生じる虞れがある構造物に対して広く適用され
得るものである。
The above-described method and apparatus according to the present invention are not limited to nuclear power plants, but can be widely applied to structures where there is a risk of environmental cracking, such as thermal power plants or chemical plants.

以上に於ては、本発明を特定の実施例について詳細に説
明したが、本発明はこれらに限定されるものではなく、
本発明の範囲内にて種々の実施例が可能であることは当
業者にとって明らかであろう。
Although the present invention has been described in detail with respect to specific embodiments above, the present invention is not limited thereto.
It will be apparent to those skilled in the art that various embodiments are possible within the scope of the invention.

[発明の効果] 以上の説明より明らかなように、本発明による方法及び
装置によれば、腐蝕環境に曝された金属材料製の構造物
の応力腐蝕割れ、換言すれば環境割れが簡便に精度良く
監視されるようになり、これに基づいて腐蝕環境中に対
する腐蝕抑制剤の注入制御が行われることにより腐蝕環
境の水質等の最適制御が行われ得るようになり、構造物
の健全性向上が図られるようになる。
[Effects of the Invention] As is clear from the above explanation, according to the method and apparatus of the present invention, stress corrosion cracking of a structure made of a metal material exposed to a corrosive environment, or in other words, environmental cracking, can be easily and precisely corrected. By controlling the injection of corrosion inhibitors into the corrosive environment based on this information, it becomes possible to optimally control the water quality of the corrosive environment and improve the integrity of the structure. Become a figurehead.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による環境割れ監視装置に用いられる電
位測定セル構造体の一つの実施例を示す縦断面図、第2
図及び第3図は各々間隙部内外の電位差と環境割れの感
受性としての応力腐蝕割れ破面率との関係を示すグラフ
、第4図は金属の硫黄含有量と間隙内外の電位差との関
係に於て応力腐蝕割れ発生状況を示すグラフ、第5図は
ステンレス鋼の鋭敏化度としての粒界侵食深さと間隙部
内外の電位差との関係に於て応力腐蝕割れの発生状況を
示すグラフ、第6図は導電率とrfl蝕電位との関係を
示すグラフ、第7図は導電率と間隙部内外の電位差との
関係を示すグラフ、第8図は本発明による環境割れ監視
装置を原子力プラントに組込んだ一つの実施例を示す概
略構成図、第9図は本発明による腐蝕環境制御装置を原
子力プラントに組込んだ一つの実施例を示す概略構成図
、第10図は本発明による腐蝕環境制御装置を原子力プ
ラントに組込んだ他の一つの実施例を示す概略構成図、
第11図は炉内に設けられる電位差測定用電極組合せ構
造体の一実施例を示す概略構成図、第12図は間隙部電
極の間隙部を拡大して示す縦断面図、第13図は配管系
に組込まれる電位差測定用電極組合体の一実施例を示す
概略構成図、第14図は本発明によるrrJ蝕環境制御
装置εこ於ける水質差及び導電率差を測定する測定手段
の一実施例を示す概略構成図、第15図はCl−と50
4−との合計のイオン濃度差と応力腐蝕割れ破面率との
関係を示すグラフ、第16図は間隙部内外のpH:a度
差と応力腐蝕割れ破面率との関係を示すグラフ、第17
図は間隙部内外の溶有水素濃度と応力腐蝕割れとの関係
を示すグラフ、第18図は本発明による腐蝕環境制御装
置を原子力プラントに組込んだ他の一つの実施例を示す
概略構成図、第19図は模擬原子力プラントに於ける間
隙部内外の電位差の経時的変化を示すグラフ、第20図
は第19図に示された電位差経時変化下に於ける水素注
入量の経時的変化を示すグラフである。 1・・・電位測定セル構造体 5・・・円環状間隙部 27.29・・・照合電極 41・・・軽水r圧力容器 43・・・炉水再循環系配管 47・・・電子制御装置  49・・・警告装置55・
・・水素注入装置  61・・・軽水炉圧力容器81.
91・・・電位差測定用電極組合せ構造体83・・・電
極部材    85・・・間隙部7・・・電極部材  
  93・・・電極部材5・・・間隙部     97
・・・電極部材03.109・・・エレクトロメータ 11・・・中央処理制御装置 13・・・警告装! 23a〜129a・・・各種センサ 23a〜129b・・・各種センサ 39a、139 b =・・導電率計 51・・・測定セル構造体 出 願 人  株式会社日立製作所
FIG. 1 is a vertical cross-sectional view showing one embodiment of a potential measuring cell structure used in an environmental crack monitoring device according to the present invention, and FIG.
Figures 3 and 3 are graphs showing the relationship between the potential difference inside and outside the gap and the stress corrosion cracking fracture rate as a susceptibility to environmental cracking, and Figure 4 shows the relationship between the sulfur content of the metal and the potential difference inside and outside the gap. Figure 5 is a graph showing the occurrence of stress corrosion cracking in relation to the grain boundary erosion depth as the degree of sensitization of stainless steel and the potential difference inside and outside the gap. Figure 6 is a graph showing the relationship between electrical conductivity and RFL corrosion potential, Figure 7 is a graph showing the relationship between electrical conductivity and the potential difference inside and outside the gap, and Figure 8 is a graph showing the relationship between electrical conductivity and the potential difference inside and outside the gap. FIG. 9 is a schematic configuration diagram showing an example of incorporating the corrosive environment control device according to the present invention into a nuclear power plant. FIG. A schematic configuration diagram showing another example in which a control device is incorporated into a nuclear power plant,
Fig. 11 is a schematic configuration diagram showing an example of an electrode combination structure for potential difference measurement provided in a furnace, Fig. 12 is a vertical sectional view showing an enlarged gap of the gap electrode, and Fig. 13 is a piping FIG. 14 is a schematic configuration diagram showing an embodiment of an electrode assembly for measuring a potential difference that is incorporated into a system, and FIG. A schematic configuration diagram showing an example, FIG. 15 shows Cl- and 50
4- is a graph showing the relationship between the total ion concentration difference and the stress corrosion cracking fracture surface ratio, and FIG. 17th
The figure is a graph showing the relationship between the dissolved hydrogen concentration inside and outside the gap and stress corrosion cracking, and Figure 18 is a schematic diagram showing another embodiment in which the corrosion environment control device according to the present invention is incorporated into a nuclear power plant. , Fig. 19 is a graph showing the temporal change in the potential difference inside and outside the gap in a simulated nuclear power plant, and Fig. 20 is a graph showing the temporal change in the amount of hydrogen injection under the temporal change in the potential difference shown in Fig. 19. This is a graph showing. 1... Potential measurement cell structure 5... Annular gap 27, 29... Reference electrode 41... Light water r pressure vessel 43... Reactor water recirculation system piping 47... Electronic control device 49...Warning device 55.
...Hydrogen injection device 61...Light water reactor pressure vessel 81.
91... Electrode combination structure for potential difference measurement 83... Electrode member 85... Gap portion 7... Electrode member
93... Electrode member 5... Gap portion 97
... Electrode member 03.109 ... Electrometer 11 ... Central processing control unit 13 ... Warning device! 23a to 129a...Various sensors 23a to 129b...Various sensors 39a, 139b =...Conductivity meter 51...Measurement cell structure Applicant: Hitachi, Ltd.

Claims (19)

【特許請求の範囲】[Claims] (1)腐蝕環境に接する金属製構造物に人工的な間隙部
を設け、前記金属製構造物の前記間隙部と他の部分との
電位の差を測定し、この電位差と前記金属製構造物の割
れ発生及び進展に関し予め設定された基準値とを比較す
ることを特徴とする環境割れ監視方法。
(1) An artificial gap is provided in a metal structure that is in contact with a corrosive environment, and the difference in potential between the gap and other parts of the metal structure is measured, and this potential difference and the An environmental crack monitoring method characterized by comparing crack occurrence and progression with preset reference values.
(2)請求項1に記載の環境割れ監視方法に於て、環境
割れ作用を感受する部材の材質により決まる環境割れ感
受性に応じて前記基準値を決定することを特徴とする環
境割れ監視方法。
(2) The environmental crack monitoring method according to claim 1, wherein the reference value is determined in accordance with the environmental crack sensitivity determined by the material of the member that is sensitive to the environmental crack action.
(3)請求項2記載の環境割れ監視方法に於て、前記環
境割れ感受性は前記部材の硫黄含有量により決まること
を特徴とする環境割れ監視方法。
(3) The environmental crack monitoring method according to claim 2, wherein the environmental crack sensitivity is determined by the sulfur content of the member.
(4)請求項1乃至3の何れかに記載の環境割れ監視方
法に於て、腐蝕環境は水溶液中に存在し、この水溶液の
水質を前記間隙部とその他の部分に於て各々測定し、こ
の水質差と前記金属製構造物の割れ発生及び進展に関し
予め設定された基準値とを更に比較することを特徴とす
る環境割れ監視方法。
(4) In the environmental crack monitoring method according to any one of claims 1 to 3, the corrosive environment exists in an aqueous solution, and the water quality of the aqueous solution is measured in the gap and other parts, respectively; An environmental crack monitoring method characterized by further comparing this water quality difference with a preset reference value regarding the occurrence and progression of cracks in the metal structure.
(5)請求項4記載の環境割れ監視方法に於て、前記水
質の測定は溶存酸素濃度、溶有水素濃度、過酸化水素濃
度、酸化硫黄濃度、Cl濃度、pH濃度の少なくとも一
つについて行われることを特徴とする環境割れ監視方法
(5) In the environmental crack monitoring method according to claim 4, the water quality is measured for at least one of dissolved oxygen concentration, dissolved hydrogen concentration, hydrogen peroxide concentration, sulfur oxide concentration, Cl concentration, and pH concentration. An environmental crack monitoring method characterized by:
(6)請求項1乃至5の何れかに記載の環境割れ監視方
法に於て、前記間隙部とその他の部分との導電率の差を
測定し、この導電率差と前記金属製構造物の割れ発生及
び進展に関し予め設定された基準値とを更に比較するこ
とを特徴とする環境割れ監視方法。
(6) In the environmental crack monitoring method according to any one of claims 1 to 5, a difference in electrical conductivity between the gap and other parts is measured, and this electrical conductivity difference and the difference in electrical conductivity of the metal structure are measured. An environmental crack monitoring method characterized by further comparing crack occurrence and progression with preset reference values.
(7)腐蝕環境中に配設された二重管構造体を有し、該
二重管構造体により人工的な間隙部が形成され、腐蝕環
境中にて前記間隙部内と前記間隙部外とに各々電位測定
用の電極が設けられ、この両電極に於ける電位の差を測
定する電位差測定手段と、前記電位の差と腐蝕環境中の
割れ発生及び進展に関し予め設定された基準値とを比較
する比較手段とを有することを特徴とする環境割れ監視
装置。
(7) It has a double pipe structure disposed in a corrosive environment, and an artificial gap is formed by the double pipe structure, and in the corrosive environment, an artificial gap is formed between the inside of the gap and the outside of the gap. are each provided with an electrode for potential measurement, a potential difference measuring means for measuring the difference in potential between the two electrodes, and a reference value set in advance regarding the difference in potential and the occurrence and growth of cracks in a corrosive environment. An environmental crack monitoring device characterized by having a comparison means for comparison.
(8)腐蝕環境中に人工的な間隙部を有する電極と間隙
部を有さない電極とが配置され、前記両電極の電位差を
測定する電位差測定手段と、前記電位差と腐蝕環境中の
割れ発生及び進展に関し予め設定された基準値とを比較
する比較手段とを有することを特徴とする環境割れ監視
装置。
(8) An electrode having an artificial gap and an electrode having no gap are arranged in a corrosive environment, a potential difference measuring means for measuring the potential difference between the two electrodes, and cracking occurring between the potential difference and the corrosive environment. and a comparison means for comparing the progress with a preset reference value.
(9)請求項8記載の環境割れ監視装置に於て、前記間
隙部を有する電極は間隙部以外の部分を電気絶縁被覆さ
れていることを特徴とする環境割れ監視装置。
(9) The environmental crack monitoring device according to claim 8, wherein the electrode having the gap has a portion other than the gap covered with an electrically insulating coating.
(10)請求項7乃至9の何れかに記載の環境割れ監視
装置に於て、前記間隙部と間隙部外の各々に設けられた
水質検出手段と、前記水質検出手段の各々より検出され
る水質の差と腐蝕環境中の割れ発生及び進展に関し予め
設定された基準値とを比較する比較手段とを有すること
を特徴とする環境割れ監視装置。
(10) In the environmental crack monitoring device according to any one of claims 7 to 9, the water quality is detected by each of the water quality detection means provided in the gap and outside the gap, and the water quality detection means. An environmental crack monitoring device characterized by having a comparison means for comparing a difference in water quality with a preset reference value regarding the occurrence and progression of cracks in a corrosive environment.
(11)請求項10記載の環境割れ監視装置に於て、前
記水質検出手段は、O_2センサ、H_2センサ、H_
2Oセンサ、SO_4^−イオンセンサ、Cl^−イオ
ンセンサ、pHセンサの少なくとも一つを含んでいるこ
とを特徴とする環境割れ監視装置。
(11) In the environmental crack monitoring device according to claim 10, the water quality detection means includes an O_2 sensor, an H_2 sensor, an H_
An environmental crack monitoring device comprising at least one of a 2O sensor, a SO_4^-ion sensor, a Cl^-ion sensor, and a pH sensor.
(12)請求項7乃至11の何れかに記載の環境割れ監
視装置に於て、前記間隙部と間隙部外の各々に設けられ
た導電率検出手段と、前記導電率検出手段の各々より検
出される導電率の差と腐蝕環境中の割れ発生及び進展に
関し予め設定された基準値とを比較する比較手段とを有
することを特徴とする環境割れ監視装置。
(12) In the environmental crack monitoring device according to any one of claims 7 to 11, the detection is performed by each of the conductivity detection means provided in the gap and outside the gap, and the conductivity detection means. 1. An environmental crack monitoring device, comprising comparison means for comparing the difference in electrical conductivity between the conductivity and a preset reference value regarding the occurrence and propagation of cracks in a corrosive environment.
(13)請求項7乃至11の何れかに記載の環境割れ監
視装置に於て、前記比較手段により前記電位差或いは前
記電位差及び前記水質差と前記導電率の差の少なくとも
一つが基準値以上に達したと比較された時には警告を発
する警告発生手段を有することを特徴とする環境割れ監
視装置。
(13) In the environmental crack monitoring device according to any one of claims 7 to 11, at least one of the potential difference, the potential difference, the water quality difference, and the conductivity difference reaches a reference value or more by the comparison means. An environmental crack monitoring device characterized by having a warning generating means for issuing a warning when a comparison is made between the two.
(14)請求項1乃至13の何れかに記載の環境割れ監
視方法或いは装置にての比較結果に応じて腐蝕環境中に
腐蝕抑制剤を添加することを特徴とする腐蝕環境制御方
法。
(14) A method for controlling a corrosive environment, which comprises adding a corrosion inhibitor to a corrosive environment according to a comparison result using the environmental crack monitoring method or device according to any one of claims 1 to 13.
(15)請求項1乃至13の何れかに記載の環境割れ監
視方法或いは装置にて測定される前記電位差或いは前記
電位差及び前記水質差と前記導電率の差との少なくとも
一つ以上が基準値以下になるように腐蝕環境中に対する
腐蝕抑制剤の添加量を制御することを特徴とする腐蝕環
境制御方法。
(15) At least one of the potential difference, the water quality difference, and the conductivity difference measured by the environmental crack monitoring method or device according to any one of claims 1 to 13 is below a reference value. 1. A method for controlling a corrosive environment, comprising controlling the amount of a corrosion inhibitor added to a corrosive environment so that
(16)請求項14或いは15の何れかに記載の腐蝕環
境制御方法に於て、前記腐蝕抑制剤は、水素、酸素、酸
化窒素の少なくとも何れか一つであることを特徴とする
腐蝕環境制御方法。
(16) The method for controlling a corrosive environment according to claim 14 or 15, wherein the corrosion inhibitor is at least one of hydrogen, oxygen, and nitrogen oxide. Method.
(17)請求項1乃至13の何れかに記載の環境割れ監
視方法或いは装置にて測定される環境割れ危険度に応じ
て腐蝕環境中に腐蝕抑制剤を添加する腐蝕抑制剤添加装
置を有することを特徴とする腐蝕環境制御装置。
(17) It has a corrosion inhibitor addition device that adds a corrosion inhibitor to a corrosive environment according to the environmental cracking risk measured by the environmental cracking monitoring method or device according to any one of claims 1 to 13. A corrosive environment control device featuring:
(18)請求項7乃至13の何れかに記載の環境割れ監
視装置を炉内及び配管系の少なくとも一箇所に有し、該
環境割れ監視装置にての比較結果に応じて炉水中に腐蝕
抑制剤を添加する腐蝕抑制剤添加装置を設けられている
ことを特徴とする原子力プラント。
(18) The environmental crack monitoring device according to any one of claims 7 to 13 is provided in at least one location within the reactor and in the piping system, and corrosion is suppressed in the reactor water according to the comparison result of the environmental crack monitoring device. A nuclear power plant characterized in that it is provided with a corrosion inhibitor addition device for adding a corrosion inhibitor.
(19)請求項17記載の腐蝕環境制御装置を有するこ
とを特徴とする原子力プラント或いは火力プラント或い
は化学プラント。
(19) A nuclear power plant, a thermal power plant, or a chemical plant, comprising the corrosive environment control device according to claim 17.
JP1237347A 1989-09-14 1989-09-14 Environmental crack monitoring method and apparatus and corrosion environment control method and apparatus Expired - Lifetime JP2680697B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1237347A JP2680697B2 (en) 1989-09-14 1989-09-14 Environmental crack monitoring method and apparatus and corrosion environment control method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1237347A JP2680697B2 (en) 1989-09-14 1989-09-14 Environmental crack monitoring method and apparatus and corrosion environment control method and apparatus

Publications (2)

Publication Number Publication Date
JPH03100451A true JPH03100451A (en) 1991-04-25
JP2680697B2 JP2680697B2 (en) 1997-11-19

Family

ID=17014045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1237347A Expired - Lifetime JP2680697B2 (en) 1989-09-14 1989-09-14 Environmental crack monitoring method and apparatus and corrosion environment control method and apparatus

Country Status (1)

Country Link
JP (1) JP2680697B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1093637C (en) * 1997-12-26 2002-10-30 北京科技大学 High resistance lining layer crack test analyser
JP2008051500A (en) * 2006-07-26 2008-03-06 Yasoji Tsukagami Method and apparatus for evaluating local corrosion developing process
JP2012127953A (en) * 2010-12-15 2012-07-05 Ge-Hitachi Nuclear Energy Americas Llc Chemistry probe assemblies and methods of using the same in nuclear reactors
CN108387506A (en) * 2018-02-12 2018-08-10 青岛钢研纳克检测防护技术有限公司 Probe and method for monitoring titanium alloy pipeline crevice corrosion in flowing seawater

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS576350A (en) * 1980-06-13 1982-01-13 Hitachi Ltd Early indicating and alarming device for crevice corrosion
JPS57190261A (en) * 1981-05-19 1982-11-22 Toshiba Corp Electrochemical electrode composing body for detecting gap corrosiveness

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS576350A (en) * 1980-06-13 1982-01-13 Hitachi Ltd Early indicating and alarming device for crevice corrosion
JPS57190261A (en) * 1981-05-19 1982-11-22 Toshiba Corp Electrochemical electrode composing body for detecting gap corrosiveness

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1093637C (en) * 1997-12-26 2002-10-30 北京科技大学 High resistance lining layer crack test analyser
JP2008051500A (en) * 2006-07-26 2008-03-06 Yasoji Tsukagami Method and apparatus for evaluating local corrosion developing process
JP4544635B2 (en) * 2006-07-26 2010-09-15 八十治 塚上 Local corrosion progress evaluation method and local corrosion progress evaluation device
JP2012127953A (en) * 2010-12-15 2012-07-05 Ge-Hitachi Nuclear Energy Americas Llc Chemistry probe assemblies and methods of using the same in nuclear reactors
US9001957B2 (en) 2010-12-15 2015-04-07 Ge-Hitachi Nuclear Energy Americas Llc Chemistry probe assemblies and methods of using the same in nuclear reactors
CN108387506A (en) * 2018-02-12 2018-08-10 青岛钢研纳克检测防护技术有限公司 Probe and method for monitoring titanium alloy pipeline crevice corrosion in flowing seawater

Also Published As

Publication number Publication date
JP2680697B2 (en) 1997-11-19

Similar Documents

Publication Publication Date Title
US5323429A (en) Electrochemical monitoring of vessel penetrations
Macdonald et al. Corrosion potential measurements on type 304 SS and alloy 182 in simulated BWR environments
EP1685275B1 (en) Method of inhibiting corrosion in hot water systems
JPH03179246A (en) Operating condition monitoring system for plant and electrochemical electrode used therefor
US5571394A (en) Monolithic sensor switch for detecting presence of stoichiometric H2 /O2 ratio in boiling water reactor circuit
US4937038A (en) Solution quantitative analysis apparatus, quantitative analysis methods, and nuclear reactor water quality control system
US4181882A (en) Corrosion monitoring apparatus
JP6445945B2 (en) Corrosion environment sensor
Hurst et al. Slow strain rate stress corrosion tests on A508-III and A533B steel in de-ionized and PWR water at 56K
JPH03146900A (en) Sensor for water quality control of atomic reactor and its control method
JP2015114251A (en) Dissolved hydrogen concentration measuring method, dissolved hydrogen concentration measuring apparatus, and nuclear power plant operation method
JPH03100451A (en) Method and device for monitoring environmental crack and method and device for controlling corrosive environment
Bennett et al. In-core corrosion monitoring in the Halden test reactor
JP2008008750A (en) Corrosive environment determination method of nuclear reactor cooling water, and device therefor
JP6100643B2 (en) Noble metal coverage monitoring method, noble metal coverage monitoring device and nuclear power plant operating method
JPS5838746B2 (en) Measuring device and reference electrode for measuring the amount of dissolved oxygen in liquid
JP5226975B2 (en) Stress corrosion cracking monitoring method and monitoring device therefor
JPH0658903A (en) Crack tip potential measuring method and water quality controlling method
JPH06323984A (en) Method and apparatus for monitoring corrosion, and atomic power plant using them
CN110095404B (en) Method and device for monitoring corrosion state of stainless steel in aqueous medium
JP2001166082A (en) Method for detecting corrosive environment and method for operating nuclear power plant using it
US5186798A (en) Solution quantitative analysis apparatus, quantitative analysis methods, and nuclear reactor water quality control system
Bosch et al. Introduction to different electrochemical corrosion monitoring techniques
JPH07117514B2 (en) Corrosion detection system
Yue et al. Monitoring and Simulated Experiments of Oxidation-Reduction Potential of Boiler Feedwater at High Temperatures