JP2001166082A - Method for detecting corrosive environment and method for operating nuclear power plant using it - Google Patents

Method for detecting corrosive environment and method for operating nuclear power plant using it

Info

Publication number
JP2001166082A
JP2001166082A JP35273099A JP35273099A JP2001166082A JP 2001166082 A JP2001166082 A JP 2001166082A JP 35273099 A JP35273099 A JP 35273099A JP 35273099 A JP35273099 A JP 35273099A JP 2001166082 A JP2001166082 A JP 2001166082A
Authority
JP
Japan
Prior art keywords
test piece
corrosive environment
detecting
change
potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35273099A
Other languages
Japanese (ja)
Inventor
Yumiko Abe
由美子 阿部
Yoshihisa Saito
宣久 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP35273099A priority Critical patent/JP2001166082A/en
Publication of JP2001166082A publication Critical patent/JP2001166082A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

PROBLEM TO BE SOLVED: To more surely suppress corrosion of a component by detecting electrochemical phenomena of the component with excellent precision in a nuclear reactor component and a piping contacting to reactor water or cooling water. SOLUTION: An electrochemical sensor according to this method consists of a reference electrode and a test specimen, and reference electrodes 9 and test specimens 10 made of the same material to the component are arranged in a reactor core part 2, a primary loop recirculation system, and a feed water line. Potential difference between the reference electrode 9 and the test specimen 10 is measured to detect the corrosive environment based on excessive voltage change in the test specimen 10.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は原子力発電プラント
に係り、特に、炉水または冷却水と接する原子炉構造
物、配管における構成材料の健全性を保持するのに好適
な腐食環境検知方法および原子力発電プラントの運転方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nuclear power plant, and more particularly to a method of detecting a corrosive environment and a nuclear power plant suitable for maintaining the integrity of constituent materials in a reactor structure and piping in contact with reactor water or cooling water. The present invention relates to an operation method of a power plant.

【0002】[0002]

【従来の技術】一般に、沸騰水型原子力発電プラント
(以下、BWRプラントと称する)においては原子炉で
発生した蒸気は主蒸気配管を通してタービンに送られ、
そこで仕事を終える。この蒸気は復水器において復水と
なり、復水配管および給水配管を通して原子炉に戻され
る。通常、原子炉にかけて給水が戻されるとき、そして
原子炉に戻された炉水が炉内を流動するとき、給水およ
び炉水が接する機器、配管などの設備条件が給水および
炉水の水質を損ねないように最大限の配慮がなされてい
るが、これらの機器、配管からの各種の物質で給水およ
び炉水の水質は基準として定められたレベルよりも低下
することが避けられない。
2. Description of the Related Art Generally, in a boiling water nuclear power plant (hereinafter, referred to as a BWR plant), steam generated in a nuclear reactor is sent to a turbine through a main steam pipe.
So I finish my work. This steam is condensed in the condenser and returned to the reactor through the condensing pipe and the water supply pipe. Normally, when water is returned to the reactor, and when the reactor water returned to the reactor flows through the reactor, equipment conditions such as equipment and piping that the water and reactor water come into contact with impair the quality of the water and reactor water. Every effort has been made to ensure that the quality of the water supply and reactor water is reduced below the standards set by the standards.

【0003】給水および炉水の水質を維持する主要な目
的の一つはこれと接する材料を腐食から保護することで
ある。このためには導電率、pH、溶存酸素濃度および
溶存水素濃度がどのような値であるかを検出し、水質の
低下を抑えねばならない。通常、腐食挙動は温度によっ
て左右されるために温度も重要な測定項目となる。
[0003] One of the main purposes of maintaining the quality of feedwater and reactor water is to protect the materials in contact with it from corrosion. For this purpose, it is necessary to detect the values of the electric conductivity, pH, dissolved oxygen concentration and dissolved hydrogen concentration, and to suppress a decrease in water quality. Usually, the corrosion behavior is influenced by the temperature, so the temperature is also an important measurement item.

【0004】[0004]

【発明が解決しようとする課題】上記のように構成材料
の腐食抑制を可能とするには給水および炉水の導電率、
pH、溶存酸素濃度および溶存水素濃度を適切に維持す
ることが重要なかぎとなる。しかし、こうした水質の影
響を受ける構成材料自身が給水および炉水と接したとき
に実際にどのような電気化学的現象を呈するかは定かで
はなく、腐食抑制の実効を確認することができない。た
とえば、実験室で得たデータによれば、不純物の除去に
よる導電率の低下は明瞭であり、水素注入および貴金属
注入等による水質の向上も疑いのない結果を示してい
る。しかし、構成材料の形状および材質は実に様々であ
り、プラント運転中に構成材料に実際に起きている現象
を水質データと材料試験データだけを頼りに推測するの
は適切とはいえない。
As described above, the conductivity of the feed water and the reactor water must be reduced to enable the corrosion of the constituent materials to be suppressed.
It is important to properly maintain the pH, dissolved oxygen concentration and dissolved hydrogen concentration. However, it is not clear what kind of electrochemical phenomena actually occurs when the constituent material itself affected by water quality comes into contact with water supply and reactor water, and it is not possible to confirm the effectiveness of corrosion suppression. For example, according to data obtained in the laboratory, the decrease in conductivity due to the removal of impurities is clear, and the improvement in water quality due to hydrogen injection, noble metal injection, and the like also shows no doubt. However, the shapes and materials of the constituent materials are quite various, and it cannot be said that it is appropriate to estimate only the phenomena actually occurring in the constituent materials during the operation of the plant based only on the water quality data and the material test data.

【0005】そこで、本発明の目的は炉水または冷却水
と接する原子炉内構造物、配管における構成材料の電気
化学的現象を精度よく検出し、より確実に構成材料の腐
食を抑制することを可能にした腐食環境検知方法および
それを用いた原子力発電プラントの運転方法を提供する
ことにある。
Accordingly, an object of the present invention is to accurately detect an electrochemical phenomenon of a constituent material in a reactor internal structure or piping in contact with reactor water or cooling water, and to more reliably suppress corrosion of the constituent material. An object of the present invention is to provide a method for detecting a corrosive environment and a method for operating a nuclear power plant using the method.

【0006】[0006]

【課題を解決するための手段】本発明に係る腐食環境検
知方法は原子炉内構造物、機器周囲または配管内の炉水
または冷却水流動域に基準電極と構成材料と同一材質の
試験片とからなる電気化学センサを設け、基準電極と試
験片との間の電位差を測定し、試験片の過大な電位変化
に基づき腐食環境を検知することを特徴とする。
According to the method for detecting a corrosive environment according to the present invention, a reference electrode and a test piece of the same material as a constituent material are formed in a reactor water or cooling water flow area around a reactor internal structure, equipment or piping. The sensor is characterized by measuring a potential difference between a reference electrode and a test piece, and detecting a corrosive environment based on an excessive change in potential of the test piece.

【0007】本発明方法においては電気化学センサによ
り電位変化を容易に検出することができ、過大な電位変
化から腐食が進行し易い環境に陥ったことを確実に検知
することが可能になる。
[0007] In the method of the present invention, a potential change can be easily detected by an electrochemical sensor, and it is possible to reliably detect that an excessive potential change leads to an environment where corrosion is likely to proceed.

【0008】また、上記と異なる腐食環境検知方法は原
子炉内構造物、機器周囲、または配管内の炉水または冷
却水流動域に基準試験片と構成材料と同一材質の試験片
とからなる電気化学センサを設け、基準試験片と試験片
との間に流れる電流を測定し、試験片の過大な電流値変
化に基づき腐食環境を検知することを特徴とする。
Another method of detecting a corrosive environment differs from that described above in that an electrical test is performed by using a reference test piece and a test piece of the same material as a constituent material in a reactor water or cooling water flow area around a reactor structure, equipment, or piping. A chemical sensor is provided, a current flowing between the reference test piece and the test piece is measured, and a corrosive environment is detected based on an excessive current value change of the test piece.

【0009】本発明方法においては電気化学センサによ
り電流変化を容易に検出することができ、過大な電流変
化から亀裂が進展し易い環境に陥ったことを確実に検知
することが可能になる。
In the method of the present invention, a change in current can be easily detected by an electrochemical sensor, and it is possible to reliably detect that an environment in which a crack easily develops from an excessive current change.

【0010】さらに、別の腐食環境検知方法は原子炉内
構造物、機器周囲、または配管内の炉水または冷却水流
動域に基準電極および基準試験片と構成材料と同一材質
の試験片とからなる電気化学センサを設け、基準電極と
試験片との間の電位差および基準試験片と試験片との間
に流れる電流を測定し、試験片の過大な電位変化および
電流値変化の双方に基づき腐食環境を検知することを特
徴とする。
Further, another method for detecting a corrosive environment is to apply a reference electrode, a reference test piece, and a test piece of the same material as a constituent material to a reactor water or cooling water flow area inside a reactor structure, equipment, or piping. An electrochemical sensor is installed to measure the potential difference between the reference electrode and the test piece and the current flowing between the reference test piece and the test piece. It is characterized by detecting an environment.

【0011】本発明方法においては電気化学センサによ
り電位変化および電流変化を容易に検出することがで
き、過大な電位変化および電流変化から腐食が進行し易
く、さらに亀裂が進展し易い環境に陥ったことを確実に
検知することが可能になる。
In the method of the present invention, the change in potential and the change in current can be easily detected by the electrochemical sensor, so that the corrosion and the crack easily progress due to the excessive change in potential and current. Can be reliably detected.

【0012】また、本発明方法は、望ましくは、試験片
に予めクラックが刻まれ、応力が負荷されている。
In the method of the present invention, a crack is desirably formed in the test piece in advance and a stress is applied.

【0013】さらに、本発明方法は、望ましくは、試験
片が貴金属処理されている。また、本発明に係る原子力
プラントの運転方法は上記した腐食環境検知方法で過大
な電位変化、電流値変化または電位変化および電流値変
化が検知されたとき、水素注入量を調節して腐食電位を
下げることを特徴とする。
Further, in the method of the present invention, the test piece is desirably treated with a noble metal. Further, the method for operating a nuclear power plant according to the present invention, when an excessive potential change, a current value change or a potential change and a current value change are detected by the above-described corrosive environment detection method, adjusts the hydrogen injection amount to adjust the corrosion potential. It is characterized by lowering.

【0014】本発明方法においては電気化学センサによ
り微小な損傷が検出されたとき、速やかに水素注入量を
変化させて腐食電位を下げる。これにより、腐食が進行
するのを抑えることができ、構成材料の健全性が損なわ
れるのを防ぐことが可能になる。
In the method of the present invention, when minute damage is detected by the electrochemical sensor, the corrosion potential is lowered by quickly changing the hydrogen injection amount. Thus, the progress of corrosion can be suppressed, and the soundness of the constituent materials can be prevented from being impaired.

【0015】さらに、上記と異なる運転方法は上記した
腐食環境検知方法で過大な電位変化、電流値変化、また
は電位変化および電流値変化が検知されたとき、水素注
入量を調節しながら腐食電位を下げることを特徴とす
る。
Further, an operation method different from the above is that when an excessive potential change, a current value change, or a potential change and a current value change are detected by the above-described corrosive environment detection method, the corrosion potential is adjusted while adjusting the hydrogen injection amount. It is characterized by lowering.

【0016】本発明方法においては電気化学センサによ
り微小な損傷が検出されたとき、速やかに水素注入量を
調節して腐食電位を下げる。これにより、腐食が進行す
るのを抑えることが可能になり、構成材料の健全性が損
なわれるのを防ぐことができる。
In the method of the present invention, when minute damage is detected by the electrochemical sensor, the amount of hydrogen injected is immediately adjusted to lower the corrosion potential. This makes it possible to suppress the progress of the corrosion and prevent the soundness of the constituent materials from being impaired.

【0017】[0017]

【発明の実施の形態】(第1の実施の形態)本発明方法
の第1の実施の形態を図面を参照して説明する。図1に
おいて、原子炉圧力容器1は鋼製の容器であり、内部に
炉心部2を収容している。炉心部2には冷却剤である
水、すなわち炉水が供給される。原子炉圧力容器1の外
部には原子炉再循環系(以下、PLR系と称する)が備
えられ、炉心部2からPLR系ポンプ3で抽出された炉
水が循環する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS (First Embodiment) A first embodiment of the method of the present invention will be described with reference to the drawings. In FIG. 1, a reactor pressure vessel 1 is a vessel made of steel and contains a reactor core 2 therein. Water as a coolant, that is, reactor water is supplied to the reactor core 2. A reactor recirculation system (hereinafter, referred to as a PLR system) is provided outside the reactor pressure vessel 1, and the reactor water extracted by the PLR pump 3 from the reactor core 2 circulates.

【0018】一方、原子炉圧力容器1には原子炉の熱出
力を回収するタービン系が接続される。タービン系はタ
ービン4および復水器5を備えている、復水器5で凝縮
した復水は復水ポンプ6によって抽出され、復水浄化装
置7で水質基準を満たすべく水処理される。この水処理
で給水は導電率、pH、溶存酸素濃度等が水質基準を満
たすことが可能になる。給水は給水ポンプ8によって原
子炉圧力容器1内に供給される。
On the other hand, a turbine system for recovering the thermal output of the reactor is connected to the reactor pressure vessel 1. The turbine system includes a turbine 4 and a condenser 5. Condensed water condensed in the condenser 5 is extracted by a condensate pump 6, and is treated in a condensate purification device 7 to satisfy water quality standards. In this water treatment, the supplied water can satisfy the water quality standards in terms of conductivity, pH, dissolved oxygen concentration, and the like. Water is supplied into the reactor pressure vessel 1 by a water supply pump 8.

【0019】本発明方法を実現する電気化学センサは基
準電極と試験片との組み合わせからなり、次のように配
置される。すなわち、炉心部2に基準電極9と構成材料
と同一材質の試験片10とが配置される。PLR系内に
基準電極9と構成材料と同一材質の試験片10とが、ま
た、給水が流動する給水経路に基準電極9と構成材料と
同一材質の試験片10とがそれぞれ配置される。それぞ
れ基準電極9および試験片10は後記のように電位を検
出するセンサの役割を果たすべく、炉水および給水と接
するように取り付けられる。
An electrochemical sensor for realizing the method of the present invention comprises a combination of a reference electrode and a test piece, and is arranged as follows. That is, the reference electrode 9 and the test piece 10 made of the same material as the constituent material are arranged in the core 2. A reference electrode 9 and a test piece 10 made of the same material as the constituent material are arranged in the PLR system, and a reference electrode 9 and a test piece 10 made of the same material as the constituent material are arranged in a water supply path through which water flows. Each of the reference electrode 9 and the test piece 10 is attached so as to be in contact with the reactor water and the water supply so as to serve as a sensor for detecting a potential as described later.

【0020】さらに、これらの基準電極9および試験片
10は検出された電位信号に基づいて電位差、電位変動
の大きさなどを解析する測定処理装置11と接続され
る。測定処理装置11はデータ処理用の計算機12と接
続される。なお、図中、符号13は原子炉格納容器を示
している。
Further, the reference electrode 9 and the test piece 10 are connected to a measurement processing device 11 for analyzing a potential difference, a magnitude of a potential variation, and the like based on the detected potential signal. The measurement processing device 11 is connected to a data processing computer 12. In the drawings, reference numeral 13 indicates a containment vessel.

【0021】次に、本発明方法を説明する。電気化学セ
ンサから電位信号が測定処理装置11に与えられる。最
も重要な値として基準電極9と試験片10との間の電位
差が算出される。また、時刻を追って電位変動の大き
さ、周期が求められる。電位変化の一例を図2に示して
いる。この例の構成材料はSUS304鋼である。温度
80°C、3.5%NaCl溶液中に浸漬したときのデ
ータである。SUS304鋼はある時刻から卑方向に電
位が変化している。電位低下は微小な損傷が発生し、こ
れが定常的に進んでいることを示している。本実施の形
態においてはこのような電位変化が発生していることを
電気化学センサにより容易に検知することが可能にな
る。電位変化が過大であるときは腐食が進行し易い環境
にあることを示すので、プラントの運転では、たとえば
水素注入等により腐食の進行しにくい環境へと変化させ
る。
Next, the method of the present invention will be described. A potential signal is provided from the electrochemical sensor to the measurement processing device 11. The potential difference between the reference electrode 9 and the test piece 10 is calculated as the most important value. Further, the magnitude and the cycle of the potential fluctuation are obtained in accordance with the time. FIG. 2 shows an example of the potential change. The constituent material of this example is SUS304 steel. It is data when immersed in a 3.5% NaCl solution at a temperature of 80 ° C. The electric potential of SUS304 steel changes in the base direction from a certain time. The potential drop indicates that slight damage has occurred and this is progressing constantly. In the present embodiment, the occurrence of such a potential change can be easily detected by the electrochemical sensor. When the potential change is excessive, it indicates that there is an environment in which corrosion is likely to progress. Therefore, in operation of the plant, the environment is changed to an environment in which corrosion hardly progresses by, for example, hydrogen injection.

【0022】(第2および第3の実施の形態)第2の実
施の形態は基準電極9および試験片10からなる電気化
学センサに代えて、図3(a)に示すような基準試験片
14と、構成材料と同一材質の試験片10とからなる電
気化学センサを用いたものである。また、第3の実施の
形態は図3(b)に示すような基準電極9と、基準試験
片14と、試験片10とからなる電気化学センサを用い
たものである。
(Second and Third Embodiments) In the second embodiment, a reference test piece 14 as shown in FIG. 3A is used instead of an electrochemical sensor comprising a reference electrode 9 and a test piece 10. And a test piece 10 of the same material as the constituent material. In the third embodiment, an electrochemical sensor including a reference electrode 9, a reference test piece 14, and a test piece 10 as shown in FIG. 3B is used.

【0023】図3(a)に示す電気化学センサの場合、
基準試験片14と試験片10との間に流れる電流値を測
定する。また、図3(b)に示す電気化学センサの場
合、基準電極9と試験片10との間の電位差を測定する
と共に、基準試験片14と試験片10との間に流れる電
流を測定する。
In the case of the electrochemical sensor shown in FIG.
A current value flowing between the reference test piece 14 and the test piece 10 is measured. In the case of the electrochemical sensor shown in FIG. 3B, the potential difference between the reference electrode 9 and the test piece 10 is measured, and the current flowing between the reference test piece 14 and the test piece 10 is measured.

【0024】CT試験片−カソード板間の電流および荷
重の関係を図4に示している。これは水の温度を252
°Cに保ったときの値である。荷重の負荷により亀裂が
進展し、電流値が変化していることが判る。また、荷重
が除かれたとき、亀裂の進展は止まり、このとき、電流
値は安定していることが判る。
FIG. 4 shows the relationship between the current and the load between the CT test piece and the cathode plate. This raises the water temperature to 252
It is a value when kept at ° C. It can be seen that the crack developed by the load and the current value changed. Also, when the load was removed, the growth of the cracks stopped, and at this time, it was found that the current value was stable.

【0025】第2および第3の実施の形態においてはこ
のような電流値変化が発生していることを電気化学セン
サにより容易に検知することが可能になる。電流値変化
が過大であるときには亀裂が進展し易い環境にあること
を示すので、プラントの運転では、たとえば水素注入等
により亀裂が進展しにくい環境へと変化させる。
In the second and third embodiments, the occurrence of such a change in the current value can be easily detected by the electrochemical sensor. If the change in the current value is excessive, it indicates that the environment is in an environment where cracks are likely to develop. Therefore, in operation of the plant, the environment is changed to an environment in which cracks are unlikely to grow by, for example, hydrogen injection.

【0026】上記第1、第2および第3の実施の形態の
基準電極9および基準試験片14は構成材料と同一材質
の試験片を用いて構成することができる。
The reference electrode 9 and the reference test piece 14 of the first, second and third embodiments can be formed using test pieces of the same material as the constituent material.

【0027】また、これに代えて、基準電極9および基
準試験片14は白金で構成してもよい。
Alternatively, the reference electrode 9 and the reference test piece 14 may be made of platinum.

【0028】さらに、基準電極9は、これに代えて、A
g/AgClまたはFe/Fe34で構成してもよい。
Further, the reference electrode 9 is replaced with A
g / AgCl or Fe / Fe 3 O 4 .

【0029】一方、第1、第2および第3の実施の形態
の試験片10は次のように構成することができる。すな
わち、図5において、平板15をU字状に折り曲げ、こ
の平板15の両端を締結部材であるボルト16およびナ
ット17で固定し、材料に予め応力を負荷する。平板1
5にはリード線18を接続しておく。
On the other hand, the test piece 10 of the first, second, and third embodiments can be configured as follows. That is, in FIG. 5, the flat plate 15 is bent into a U-shape, and both ends of the flat plate 15 are fixed with bolts 16 and nuts 17 as fastening members, and a stress is previously applied to the material. Flat plate 1
5 is connected with a lead wire 18 in advance.

【0030】このような試験片10を使用することによ
り応力腐食割れの発生を検出することが可能になる。
The use of such a test piece 10 makes it possible to detect the occurrence of stress corrosion cracking.

【0031】さらに、図6において、平板19にスリッ
ト20を切り、スリット20の先端に予め微小なクラッ
ク21を刻み、さらにスリット20の部分をボルト16
で締め、材料に応力を負荷する。このような試験片10
を使用することにより応力腐食割れの進展を検出するこ
とが可能になる。
Further, in FIG. 6, a slit 20 is cut in the flat plate 19, a fine crack 21 is cut in advance at the tip of the slit 20, and a portion of the slit 20 is
To apply stress to the material. Such a test piece 10
It is possible to detect the progress of stress corrosion cracking by using the.

【0032】また、図7(a)(b)において第1平板
22に同一材質の第2平板23を重ねて試験片10を構
成してもよい。第1平板22にリード線18を接続して
おく。このような試験片10を使用することにより隙間
腐食の発生を検出することができる。
7 (a) and 7 (b), the test piece 10 may be constructed by superimposing a second flat plate 23 of the same material on the first flat plate 22. The lead wire 18 is connected to the first flat plate 22. By using such a test piece 10, occurrence of crevice corrosion can be detected.

【0033】さらに、図8(a)(b)において、第1
平板22に同一材質の第2平板23を重ね、双方の部材
をスポット溶接24で接合して試験片10を構成しても
よい。このような試験片10を使用することにより隙間
腐食または隙間腐食内応力腐食割れの発生を検出するこ
とが可能になる。
Further, in FIGS. 8A and 8B, the first
The test piece 10 may be formed by stacking a second flat plate 23 of the same material on the flat plate 22 and joining both members by spot welding 24. The use of such a test piece 10 makes it possible to detect the occurrence of crevice corrosion or stress corrosion cracking in crevice corrosion.

【0034】また、図9において、第1平板22に同一
材質の第2平板23を重ね、双方の部材をボルト25お
よびナット26で結合して試験片10を構成してもよ
い。このような試験片10を用いることにより隙間腐食
の発生を検出することが可能になる。
In FIG. 9, the test piece 10 may be constructed by stacking a second flat plate 23 of the same material on the first flat plate 22 and connecting both members with bolts 25 and nuts 26. The use of such a test piece 10 makes it possible to detect the occurrence of crevice corrosion.

【0035】さらに、図10(a)(b)において、第
1平板22にテフロン製のシート27を重ね、その上に
第1平板22と同一材質の第2平板23を重ねて試験片
10を構成してもよい。このような試験片10を使用す
ることにより隙間腐食の発生を検出することが可能にな
る。なお、上記のテフロン製のシート27に代えて、グ
ラファイトウールまたは雲母を用いても同様の効果を得
ることができる。
10 (a) and 10 (b), a Teflon sheet 27 is placed on the first flat plate 22, and a second flat plate 23 made of the same material as the first flat plate 22 is placed thereon. You may comprise. The use of such a test piece 10 makes it possible to detect the occurrence of crevice corrosion. The same effect can be obtained by using graphite wool or mica instead of the Teflon sheet 27 described above.

【0036】また、図11において、第1部材28と第
2部材29とを溶接継ぎ手30で接合して試験片10を
構成してもよい。
In FIG. 11, the test piece 10 may be formed by joining the first member 28 and the second member 29 with a welding joint 30.

【0037】さらに、鋭敏化熱処理を施した試験片10
または貴金属処理を施した試験片10を上記の各試験片
10に代えて使用することが可能である。
Further, the test piece 10 subjected to the sensitizing heat treatment was used.
Alternatively, it is possible to use the test pieces 10 subjected to the noble metal treatment instead of the test pieces 10 described above.

【0038】(第4の実施の形態)本発明方法の第4の
実施の形態を図12を参照して説明する。復水浄化装置
7から給水ポンプ8にかけての経路と結ぶ水素注入装置
31が設けられる。腐食環境の検出で使用する手段は第
1の実施の形態のものと同じである。
(Fourth Embodiment) A fourth embodiment of the method of the present invention will be described with reference to FIG. A hydrogen injection device 31 is provided which is connected to a path from the condensate purification device 7 to the water supply pump 8. The means used for detecting the corrosive environment is the same as that of the first embodiment.

【0039】本実施の形態では、プラント運転中、各電
気化学センサからの電位信号および電流信号が測定処理
装置11に与えられる。微小な損傷が検出されたとき、
計算機12からの注入指令が水素注入装置31に入力さ
れる。
In this embodiment, the potential signal and the current signal from each electrochemical sensor are supplied to the measurement processing device 11 during the operation of the plant. When minor damage is detected,
An injection command from the computer 12 is input to the hydrogen injection device 31.

【0040】このとき、水素注入装置31から水素が給
水経路を流れる給水中に注入される。これにより、腐食
電位を下げ、腐食の進行をくい止めることができる。
At this time, hydrogen is injected from the hydrogen injection device 31 into the supply water flowing through the water supply path. Thereby, the corrosion potential can be reduced and the progress of corrosion can be stopped.

【0041】なお、貴金属注入を行っているプラントに
おいては微小な損傷が検出されたとき、水素注入装置3
1から供給する水素量を調整しながら腐食電位を下げて
腐食の進行を食い止めるようにする。
In a plant in which noble metal is injected, when minute damage is detected, the hydrogen injection device 3
The corrosion potential is lowered while adjusting the amount of hydrogen supplied from 1 to stop the progress of corrosion.

【0042】また、腐食環境の検出で使用する手段は第
1の実施の形態のものに限ることなく、第2および第3
の実施の形態のものを使用することができる。
The means used for detecting the corrosive environment is not limited to the one in the first embodiment, but may be any of the second and third means.
Of the embodiment can be used.

【0043】(第5の実施の形態)本発明方法の第5の
実施の形態を図13を参照して説明する。PLR系と結
ぶ水素注入装置32が設けられる。腐食環境の検出で使
用する手段は第1の実施の形態のものと同じである。
(Fifth Embodiment) A fifth embodiment of the method of the present invention will be described with reference to FIG. A hydrogen injection device 32 connected to the PLR system is provided. The means used for detecting the corrosive environment is the same as that of the first embodiment.

【0044】本実施の形態では、プラント運転中、各電
気化学センサからの電位信号および電流信号が測定処理
装置11に与えられる。微小な損傷が検出されたとき、
計算機12からの注入指令が水素注入装置32に入力さ
れる。このとき、水素注入装置32から水素がPLR系
内を流れる炉水中に注入される。これにより、腐食電位
を下げ、腐食の進行を食い止めることが可能になる。
In this embodiment, the potential signal and the current signal from each of the electrochemical sensors are supplied to the measurement processing device 11 during the operation of the plant. When minor damage is detected,
An injection command from the computer 12 is input to the hydrogen injection device 32. At this time, hydrogen is injected from the hydrogen injection device 32 into the reactor water flowing in the PLR system. This makes it possible to lower the corrosion potential and stop the progress of corrosion.

【0045】なお、腐食環境の検出で使用する手段は第
1の実施の形態のものに限ることなく、第2および第3
の実施の形態のものを使用することができる。
The means used for detecting the corrosive environment is not limited to the one in the first embodiment, but may be the second or third means.
Of the embodiment can be used.

【0046】(第6の実施の形態)本発明の第6の実施
の形態を図14(a)(b)を参照して説明する。原子
炉圧力容器1内の溶接部の一つであるシュラウド33と
シュラウドサポート34との溶接部35に合わせて電気
化学センサが配置されている。この電気化学センサは基
準電極9と試験片10とからなるものである。
(Sixth Embodiment) A sixth embodiment of the present invention will be described with reference to FIGS. An electrochemical sensor is arranged at a weld 35 between a shroud 33 and a shroud support 34, which is one of the welds in the reactor pressure vessel 1. This electrochemical sensor comprises a reference electrode 9 and a test piece 10.

【0047】本実施の形態では、プラント運転中、電気
化学センサからの電位信号が測定処理装置に与えられ
る。電位変化が検出されたならば、当該溶接部35は腐
食が進行し易い環境になっている。このような状況が確
認できたとき、たとえば水素注入等により腐食の進行し
にくい環境へと変化させる。
In this embodiment, during operation of the plant, a potential signal from the electrochemical sensor is supplied to the measurement processing device. If a potential change is detected, the welded portion 35 is in an environment where corrosion is likely to proceed. When such a situation can be confirmed, the environment is changed to an environment in which corrosion hardly progresses, for example, by hydrogen injection.

【0048】(第7の実施の形態)本発明の第7の形態
を図15(a)(b)を参照して説明する。腐食環境の
検出で使用する手段は第1および第2の実施の形態のも
のと同一である。本実施の形態では電位または電流値を
時間間隔を相違させて測定する。図において、(a)が
1分間隔で測定した結果を示し、(b)が10秒間隔で
測定した結果を示している。1分間隔の測定では緩やか
な曲線となり、変化を確実に捉えることができない。こ
れに対して、10秒間隔の測定では微小損傷の発生を示
す、鋭角的な変動を正確に見出すことができる。双方の
比較から測定における時間間隔は10秒以下にするのが
好ましいことが判る。
(Seventh Embodiment) A seventh embodiment of the present invention will be described with reference to FIGS. The means used for detecting the corrosive environment is the same as that of the first and second embodiments. In this embodiment mode, the potential or the current value is measured at different time intervals. In the figure, (a) shows the results measured at 1 minute intervals, and (b) shows the results measured at 10 second intervals. The measurement at one-minute intervals results in a gentle curve, and the change cannot be reliably detected. On the other hand, the measurement at 10-second intervals makes it possible to accurately detect a sharp change indicating the occurrence of minute damage. It can be seen from the comparison between the two that the time interval in the measurement is preferably set to 10 seconds or less.

【0049】[0049]

【発明の効果】本発明方法においては原子炉内構成物、
機器周囲または配管内の炉水または冷却水流動域に電気
化学センサを設け、電位差、電流値または電位差および
電流値を測定し、過大な電位変化、電流値変化または電
位変化および電流値変化に基づき腐食環境を検知するこ
とが可能になる。
According to the method of the present invention, the reactor internal components,
Install an electrochemical sensor in the reactor water or cooling water flow area around the equipment or in the piping to measure the potential difference, current value or potential difference and current value, and based on excessive potential change, current value change or potential change and current value change. Corrosive environment can be detected.

【0050】したがって、本発明によれば、得られた構
成材料についての情報に従い速やかに腐食等を起こさな
い最適な水質に変えることができ、構成材料の健全性を
維持することが可能になる。
Therefore, according to the present invention, it is possible to quickly change the water quality to an optimal one that does not cause corrosion or the like according to the obtained information on the constituent materials, and to maintain the soundness of the constituent materials.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明方法の第1の実施の形態を示す構成図。FIG. 1 is a configuration diagram showing a first embodiment of the method of the present invention.

【図2】本発明方法に係るSUS304鋼の電位変化の
推移を示すグラフ。
FIG. 2 is a graph showing a change in potential change of SUS304 steel according to the method of the present invention.

【図3】(a)は本発明方法の第2の実施の形態に係る
電気化学センサを示す構成図。(b)は第3の実施の形
態に係る電気化学センサを示す構成図。
FIG. 3A is a configuration diagram showing an electrochemical sensor according to a second embodiment of the method of the present invention. (B) is a block diagram showing an electrochemical sensor according to a third embodiment.

【図4】本発明方法に係るCT試験片−カソード板間の
電流と荷重との関係を示す線図。
FIG. 4 is a diagram showing the relationship between current and load between a CT test piece and a cathode plate according to the method of the present invention.

【図5】本発明方法に係る試験片の例を示す構成図。FIG. 5 is a configuration diagram showing an example of a test piece according to the method of the present invention.

【図6】本発明方法に係る試験片の他の例を示す構成
図。
FIG. 6 is a configuration diagram showing another example of a test piece according to the method of the present invention.

【図7】(a)は本発明方法に係る試験片の他の例を示
す正面図。(b)は(a)の試験片の側面図。
FIG. 7A is a front view showing another example of the test piece according to the method of the present invention. (B) is a side view of the test piece of (a).

【図8】(a)は本発明方法に係る試験片の他の例を示
す正面図。(b)は(a)の試験片の側面図。
FIG. 8A is a front view showing another example of the test piece according to the method of the present invention. (B) is a side view of the test piece of (a).

【図9】(a)は本発明方法に係る試験片の他の例を示
す正面図。(b)は(a)の試験片の側面図。
FIG. 9A is a front view showing another example of the test piece according to the method of the present invention. (B) is a side view of the test piece of (a).

【図10】(a)は本発明方法に係る試験片の他の例を
示す正面図、(b)は(a)の試験片の側面図。
10A is a front view showing another example of the test piece according to the method of the present invention, and FIG. 10B is a side view of the test piece of FIG.

【図11】本発明方法に係る試験片の他の例を示す断面
図。
FIG. 11 is a sectional view showing another example of the test piece according to the method of the present invention.

【図12】本発明方法の第4の実施の形態を示す構成
図。
FIG. 12 is a configuration diagram showing a fourth embodiment of the method of the present invention.

【図13】本発明方法の第5の実施の形態を示す構成
図。
FIG. 13 is a configuration diagram showing a fifth embodiment of the method of the present invention.

【図14】本発明方法の第6の実施の形態を示す構成
図。
FIG. 14 is a configuration diagram showing a sixth embodiment of the method of the present invention.

【図15】(a)(b)は本発明方法の第7の実施の形
態において時間間隔を変えて測定した場合の電位または
電流の推移を示すグラフ。
FIGS. 15A and 15B are graphs showing changes in potential or current when measured at different time intervals in the seventh embodiment of the method of the present invention.

【符号の説明】[Explanation of symbols]

1 原子炉圧力容器 2 炉心部 9 基準電極 10 試験片 11 測定処理装置 14 基準試験片 31、32 水素注入装置 DESCRIPTION OF SYMBOLS 1 Reactor pressure vessel 2 Reactor core part 9 Reference electrode 10 Test piece 11 Measurement processing device 14 Reference test piece 31 and 32 Hydrogen injection device

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G21D 1/00 G21C 17/02 GDB 3/08 G21D 1/00 W Fターム(参考) 2G024 AD33 AD34 BA12 BA21 CA18 2G050 BA03 CA01 EB03 EC02 2G075 AA03 BA03 CA07 CA13 CA40 DA02 DA14 EA08 FA10 FA12 FC14 FC19 GA34 4K062 AA05 AA10 CA10 DA10 EA04 EA11 FA02 FA04 FA05 FA16 GA10 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI theme coat ゛ (reference) G21D 1/00 G21C 17/02 GDB 3/08 G21D 1/00 WF term (reference) 2G024 AD33 AD34 BA12 BA21 CA18 2G050 BA03 CA01 EB03 EC02 2G075 AA03 BA03 CA07 CA13 CA40 DA02 DA14 EA08 FA10 FA12 FC14 FC19 GA34 4K062 AA05 AA10 CA10 DA10 EA04 EA11 FA02 FA04 FA05 FA16 GA10

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 炉水または冷却水と接する原子炉内構造
物、機器、配管における構成材料の腐食環境を検知する
方法であって、前記原子炉内構造物、機器周囲または配
管内の炉水または冷却水流動域に基準電極と該構成材料
と同一材質の試験片とからなる電気化学センサを設け、
前記基準電極と前記試験片との間の電位差を測定し、前
記試験片の過大な電位変化に基づき腐食環境を検知する
ようにしたことを特徴とする腐食環境検知方法。
1. A method for detecting a corrosive environment of a constituent material in a reactor internal structure, equipment, or piping in contact with reactor water or cooling water, comprising: Or provided an electrochemical sensor consisting of a reference electrode and a test piece of the same material as the constituent material in the cooling water flow area,
A method for detecting a corrosive environment, comprising: measuring a potential difference between the reference electrode and the test piece; and detecting a corrosive environment based on an excessive change in potential of the test piece.
【請求項2】 炉水または冷却水と接する原子炉内構造
物、機器、配管における構成材料の腐食環境を検知する
方法であって、前記原子炉内構造物、機器周囲、または
配管内の炉水または冷却水流動域に基準試験片と該構成
材料と同一材質の試験片とからなる電気化学センサを設
け、前記基準試験片と前記試験片との間に流れる電流を
測定し、前記試験片の過大な電流値変化に基づき腐食環
境を検知するようにしたことを特徴とする腐食環境検知
方法。
2. A method for detecting a corrosive environment of a constituent material in a reactor internal structure, equipment, or piping in contact with reactor water or cooling water, the method comprising: detecting a corrosive environment of the reactor internal structure, equipment surroundings, or piping. An electrochemical sensor consisting of a reference test piece and a test piece of the same material as the constituent material is provided in a water or cooling water flow area, and a current flowing between the reference test piece and the test piece is measured. A corrosive environment detecting method, wherein a corrosive environment is detected based on an excessive current value change.
【請求項3】 炉水または冷却水と接する原子炉内構造
物、機器、配管における構成材料の腐食環境を検知する
方法であって、前記原子炉内構造物、機器周囲、または
配管内の炉水または冷却水流動域に基準電極および基準
試験片と該構成材料と同一材質の試験片とからなる電気
化学センサを設け、前記基準電極と前記試験片との間の
電位差および前記基準試験片と前記試験片との間に流れ
る電流を測定し、前記試験片の過大な電位変化および電
流値変化の双方に基づき腐食環境を検知するようにした
ことを特徴とする腐食環境検知方法。
3. A method for detecting a corrosive environment of a constituent material in a reactor internal structure, equipment, or piping that comes into contact with reactor water or cooling water, the method comprising detecting a corrosive environment of the reactor internal structure, equipment surroundings, or piping. An electrochemical sensor comprising a reference electrode and a reference test piece and a test piece of the same material as the constituent material is provided in a water or cooling water flow area, and a potential difference between the reference electrode and the test piece and the reference test piece are provided. A method for detecting a corrosive environment, comprising: measuring a current flowing between the test piece and a corrosive environment based on both an excessive change in potential and a change in current value of the test piece.
【請求項4】 前記試験片に予め応力が負荷されている
ことを特徴とする請求項1、2または3記載の腐食環境
検知方法。
4. The method for detecting a corrosive environment according to claim 1, wherein a stress is previously applied to the test piece.
【請求項5】 前記試験片に予めクラックが刻まれ、応
力が負荷されていることを特徴とする請求項1、2また
は3記載の腐食環境検知方法。
5. The method for detecting a corrosive environment according to claim 1, wherein a crack is formed in the test piece in advance, and a stress is applied.
【請求項6】 前記試験片が貴金属処理されていること
を特徴とする請求項1、2または3記載の腐食環境検知
方法。
6. The method for detecting a corrosive environment according to claim 1, wherein said test piece is treated with a noble metal.
【請求項7】 原子力発電プラントの原子炉内構造物、
機器、配管を腐食から保護するように、炉水または冷却
水水質を所定のレベルに維持するための運転方法であっ
て、請求項1、2または3記載の腐食環境検知方法で過
大な電位変化、電流値変化または電位変化および電流値
変化が検知されたとき、水素注入量を調節して腐食電位
を下げるようにしたことを特徴とする原子炉発電プラン
トの運転方法。
7. A reactor internal structure of a nuclear power plant,
An operating method for maintaining the quality of reactor water or cooling water at a predetermined level so as to protect equipment and piping from corrosion, and an excessive potential change in the method for detecting a corrosive environment according to claim 1, 2 or 3. A method for operating a nuclear power plant, wherein a change in current value or a change in potential and a change in current value are detected, the amount of hydrogen injected is adjusted to lower the corrosion potential.
【請求項8】 貴金属注入を行っているプラントにおい
て請求項1、2または3記載の腐食環境検知方法で過大
な電位変化、電流値変化、または電位変化および電流値
変化が検知されたとき、水素注入量を調節しながら腐食
電位を下げるようにしたことを特徴とする請求項7記載
の原子力発電プラントの運転方法。
8. In a plant in which a noble metal is injected, when an excessive potential change, a current value change, or a potential change and a current value change are detected by the method for detecting a corrosive environment according to claim 1, hydrogen or hydrogen is detected. The method for operating a nuclear power plant according to claim 7, wherein the corrosion potential is lowered while adjusting the injection amount.
JP35273099A 1999-12-13 1999-12-13 Method for detecting corrosive environment and method for operating nuclear power plant using it Pending JP2001166082A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35273099A JP2001166082A (en) 1999-12-13 1999-12-13 Method for detecting corrosive environment and method for operating nuclear power plant using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35273099A JP2001166082A (en) 1999-12-13 1999-12-13 Method for detecting corrosive environment and method for operating nuclear power plant using it

Publications (1)

Publication Number Publication Date
JP2001166082A true JP2001166082A (en) 2001-06-22

Family

ID=18426050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35273099A Pending JP2001166082A (en) 1999-12-13 1999-12-13 Method for detecting corrosive environment and method for operating nuclear power plant using it

Country Status (1)

Country Link
JP (1) JP2001166082A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003014681A (en) * 2001-06-27 2003-01-15 Mitsubishi Chemicals Corp Equipment for measuring microvariation of solution
JP2009168608A (en) * 2008-01-16 2009-07-30 Ihi Corp Method of introducing crack into inner peripheral surface of piping
CN101900664A (en) * 2010-08-04 2010-12-01 南京工业大学 Vapour-liquid two-phase flow accelerated corrosion test device
CN104215571A (en) * 2014-09-24 2014-12-17 中国石油天然气股份有限公司 Method for testing high-temperature and high-pressure corrosion rate of multi-phase medium
CN104215572A (en) * 2014-09-24 2014-12-17 中国石油天然气股份有限公司 Device for testing high-temperature and high-pressure corrosion rate of multi-phase medium
JP2019152618A (en) * 2018-03-06 2019-09-12 日立Geニュークリア・エナジー株式会社 Exposure reduction method
CN111579471A (en) * 2020-05-27 2020-08-25 中国石油天然气集团有限公司 Device and method for testing corrosion performance of material under stress and gap action
CN116973783A (en) * 2023-09-22 2023-10-31 山东金科力电源科技有限公司 Polar plate in-situ current potential measurement method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003014681A (en) * 2001-06-27 2003-01-15 Mitsubishi Chemicals Corp Equipment for measuring microvariation of solution
JP2009168608A (en) * 2008-01-16 2009-07-30 Ihi Corp Method of introducing crack into inner peripheral surface of piping
CN101900664A (en) * 2010-08-04 2010-12-01 南京工业大学 Vapour-liquid two-phase flow accelerated corrosion test device
CN104215571A (en) * 2014-09-24 2014-12-17 中国石油天然气股份有限公司 Method for testing high-temperature and high-pressure corrosion rate of multi-phase medium
CN104215572A (en) * 2014-09-24 2014-12-17 中国石油天然气股份有限公司 Device for testing high-temperature and high-pressure corrosion rate of multi-phase medium
JP2019152618A (en) * 2018-03-06 2019-09-12 日立Geニュークリア・エナジー株式会社 Exposure reduction method
CN111579471A (en) * 2020-05-27 2020-08-25 中国石油天然气集团有限公司 Device and method for testing corrosion performance of material under stress and gap action
CN116973783A (en) * 2023-09-22 2023-10-31 山东金科力电源科技有限公司 Polar plate in-situ current potential measurement method
CN116973783B (en) * 2023-09-22 2023-12-12 山东金科力电源科技有限公司 Polar plate in-situ current potential measurement method

Similar Documents

Publication Publication Date Title
EP1292820B1 (en) Dynamic optimization of chemical additives in a water treatment system
US5519330A (en) Method and apparatus for measuring degree of corrosion of metal materials
US7310877B2 (en) Method of producing sensors for monitoring corrosion of heat-exchanger tubes
Manahan Sr et al. Determination of the fate of the current in the stress corrosion cracking of sensitized type 304SS in high temperature aqueous systems
JPH0650927A (en) Detecting method for crack or fracture caused by stress corrosion cracking
JP2001166082A (en) Method for detecting corrosive environment and method for operating nuclear power plant using it
JP5483385B2 (en) Nuclear plant management method
Peng et al. Intergranular environmentally assisted cracking of Alloy 182 weld metal in simulated normal water chemistry of boiling water reactor
Maeng et al. The effect of acetic acid on the stress corrosion cracking of 3.5 NiCrMoV turbine steels in high temperature water
JPH03146900A (en) Sensor for water quality control of atomic reactor and its control method
JP2008008750A (en) Corrosive environment determination method of nuclear reactor cooling water, and device therefor
JP3518463B2 (en) Aqueous water treatment method
Féron et al. Stress corrosion cracking of Alloy 600: overviews and experimental techniques
JP2006010427A (en) Method and apparatus for manufacturing stress corrosion crack test specimen
CN110095404B (en) Method and device for monitoring corrosion state of stainless steel in aqueous medium
JPH0658903A (en) Crack tip potential measuring method and water quality controlling method
JP3061707B2 (en) Method and apparatus for measuring corrosion of metallic materials
Thompson et al. Effects of hydrogen on electropotential monitoring of stress corrosion crack growth
JP6100643B2 (en) Noble metal coverage monitoring method, noble metal coverage monitoring device and nuclear power plant operating method
JPH06323984A (en) Method and apparatus for monitoring corrosion, and atomic power plant using them
JP5226975B2 (en) Stress corrosion cracking monitoring method and monitoring device therefor
JP4342715B2 (en) Intergranular corrosion diagnostic method for nickel base alloys
JP2003279684A (en) Stress corrosion crack preventing method and design supporting device for pressure member, and operation supporting device for plant including pressure member
JP2000258381A (en) Method and device for measuring corrosion rate in thermal plant water-feeding system and water quality control method utilizing them
JP6371242B2 (en) Anticorrosion method and anticorrosion system for in-reactor equipment materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040616

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050315

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060427

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060530