JPH0299857A - Ultrasonic flaw detector for weld part of seam welded steel pipe - Google Patents

Ultrasonic flaw detector for weld part of seam welded steel pipe

Info

Publication number
JPH0299857A
JPH0299857A JP63251874A JP25187488A JPH0299857A JP H0299857 A JPH0299857 A JP H0299857A JP 63251874 A JP63251874 A JP 63251874A JP 25187488 A JP25187488 A JP 25187488A JP H0299857 A JPH0299857 A JP H0299857A
Authority
JP
Japan
Prior art keywords
tube
inspected
steel pipe
probe
water tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63251874A
Other languages
Japanese (ja)
Inventor
Hiroaki Kondo
近藤 廣章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP63251874A priority Critical patent/JPH0299857A/en
Publication of JPH0299857A publication Critical patent/JPH0299857A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To enable detection of flaws even with a small diameter size immediately after a welding by providing an array contact under a seam welded steel pipe at the right angle to the direction of carrying the seam welded steel pipe. CONSTITUTION:A water tank 11 for storing an acoustic coupling water 5 is provided along a pass line of a tube 1 to be inspected on the outgoing side of a welding machine and an array probe 4 comprising a plurality of vibrators at the right angle to the pass line in the center of the bottom surface thereof. First, a deviation position DELTAl1 is determined from a vertical line CO to an outer diameter D of the tube 1 to be inspected using a specified formula to set a position of two horizontally symmetrical sets of vibrator groups 4i of a probe 4 on a controller 20. A copying mechanism 12 is operated to position the water tank 11 so that the underside of the tube 1 immerses. With such an arrangement, as the tube 1 is transported, the tube 1 is mutually excited horizontally with the vibrator groups 4i selected to the probe 4 through the coupling water 5 and any defect at a weld part causes a peak echo. The peak echo is received separately with the two sets of vibrator groups to determine the presence of a defect with the controller 20.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、電縫鋼管溶接部の超音波探傷装置に係り、特
に、電縫鋼管の溶接部の管軸方向の欠陥を検出するのに
好適な電縫鋼管溶接部の超音波探傷装置に関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to an ultrasonic flaw detection device for welded parts of ERW steel pipes, and is particularly suitable for detecting defects in the pipe axis direction of welded parts of ERW steel pipes. The present invention relates to a suitable ultrasonic flaw detection device for welded parts of ERW steel pipes.

〈従来の技術〉 一般に、電縫鋼管の溶接部における管軸方向の欠陥を検
出するために、超音波斜角探傷法が用いられている。こ
の方法は、電縫鋼管である被検査管の検査面に対して斜
めに超音波を入射させ、その欠陥で反射する反射波から
被検査管の内外表面欠陥および内部欠陥を検出するもの
である。
<Prior Art> Generally, an ultrasonic angle flaw detection method is used to detect defects in the pipe axis direction in a welded portion of an electric resistance welded steel pipe. In this method, ultrasonic waves are applied obliquely to the inspection surface of the tube to be inspected, which is an ERW steel tube, and defects on the inner and outer surfaces of the tube to be inspected and internal defects are detected from the reflected waves that are reflected by the defects. .

また、電縫鋼管の溶接部全長にわたって欠陥を検出する
ために、超音波探触子(以下、単に探触子という)を被
検査管の溶接部に対して平行に走査し、この溶接部に対
して超音波ビームを直角に伝播させる手段が用いられて
いる。
In addition, in order to detect defects over the entire length of the welded part of the ERW steel pipe, an ultrasonic probe (hereinafter simply referred to as a probe) is scanned parallel to the welded part of the pipe to be inspected. On the other hand, means for propagating the ultrasonic beam at right angles is used.

しかし、このような超音波斜角探傷法においては、超音
波ビームが入射した点から欠陥の位置までの距離の変動
、すなわち探触子から欠陥位置までの距離の変動に伴い
、欠陥からのエコー高さが、第5図に示すように、大き
く変化するということが知られている。このことは、例
えば特開昭55140148号公報の第2図などに開示
されている。そのため、基準エコー高さを定めるのが難
しく、探触子から欠陥位置までの距離が変動すると、正
確な探傷が困難になるという問題がある。
However, in this type of ultrasonic angle flaw detection method, as the distance from the point where the ultrasonic beam is incident to the defect position changes, that is, the distance from the probe to the defect position changes, the echo from the defect increases. It is known that the height varies greatly, as shown in FIG. This is disclosed in, for example, FIG. 2 of Japanese Unexamined Patent Publication No. 55140148. Therefore, it is difficult to determine the reference echo height, and if the distance from the probe to the defect position changes, there is a problem that accurate flaw detection becomes difficult.

このような問題を解消する手段として、例えば特公昭5
7−8420号公報に開示されているように、溶接部の
捩じれ量と被検査管の長さを予めプリセットしておき、
その後現在位置の長さを逐次検出して、探触子の溶接部
からのずれ量を算出して溶接部の追従を行う方法や、あ
るいは、特開昭5943354号公報に開示されている
ように、探触子に被検査管の周方向に沿って複数個の送
受信コイルを取付番ノ、これら送受信コイルの受信信号
レベルを順次時系列的に判断し、溶接部と探触子の相対
位置を一定の関係に保持して、溶接部の追従を行う方法
などが提案されている。
As a means to solve such problems, for example,
As disclosed in Japanese Patent No. 7-8420, the twist amount of the welded portion and the length of the pipe to be inspected are preset,
Thereafter, the length of the current position is sequentially detected, the amount of deviation of the probe from the welded part is calculated, and the welded part is followed. , multiple transmitter/receiver coils are attached to the probe along the circumferential direction of the tube to be inspected, and the received signal levels of these transmitter/receiver coils are determined in chronological order to determine the relative position of the weld and the probe. A method has been proposed in which the weld is followed by maintaining a constant relationship.

〈発明が解決しようとする課題〉 しかしながら、上記のような従来例においては以下のよ
うな課題がある。
<Problems to be Solved by the Invention> However, the above-mentioned conventional examples have the following problems.

■ 探触子と欠陥位置との距離が変化すると、前述した
ようなエコー高さが大きく変化するから、溶接部の追従
を正確に行わなければならない。
■ If the distance between the probe and the defect location changes, the echo height as described above will change significantly, so it is necessary to accurately follow the weld.

■ また、被検査管の外径や管厚により、ビークエコー
の出現位置が異なる。
■ Also, the appearance position of the beak echo differs depending on the outer diameter and thickness of the tube to be inspected.

すなわち、第6図に示すように、外径り、管厚tなる被
検査管Iの外表面上の例えばP点に中心点Oに向けて探
触子2を取付けて、溶接部Wの欠陥1aに屈折角θ、で
超音波ビーム3を入η・1さ−Uたとすると、そのビー
クエコーの出現位置I7は下記(1)式で表される。
That is, as shown in FIG. 6, the probe 2 is mounted, for example, at a point P on the outer surface of the pipe I to be inspected with an outer diameter and a pipe thickness t, facing the center point O, and detects defects in the weld W. Assuming that the ultrasonic beam 3 is incident on 1a at a refraction angle θ, η·1−U, the appearance position I7 of the peak echo is expressed by the following equation (1).

L=N−に−t−j、an θ、 −−−−−−−−−
(1)ここで、Nは、スキップ数Sによる係数(N−3
10,5) 、kは、屈折角θ、とL/Dで決まる補正
係数である。
L=N- to -t-j, an θ, ----------
(1) Here, N is a coefficient (N-3
10,5), k is a correction coefficient determined by the refraction angle θ and L/D.

この式かられかるように、超音波3のビークエコーの出
現位置しは、被検査管1の外径りや管厚りの値によって
変動するから、それら外径りや管厚りの変更に応じて探
触子2と溶接部Wの距離をその都度調整しなL3ればな
らないのである。
As can be seen from this equation, the appearance position of the beak echo of the ultrasonic wave 3 varies depending on the outer diameter and tube thickness of the tube to be inspected 1. The distance between the feeler 2 and the weld W must be adjusted each time.

■ さらに、探触子を被検査管の検査面に取イ旧ノると
きは、水やソリプル油含有水などの音響カップリング水
を必要とするのであるが、例えば80ml11φ以下の
小径サイズの被検査管を探傷する場合には、この音響カ
ップリング水によっ′C溶接部をや、冷するから、溶接
部の品質に悪影響を与えることになる。
■ Furthermore, when placing the probe on the inspection surface of the tube to be inspected, acoustic coupling water such as water or water containing Soriple oil is required. When inspecting a test tube, the acoustic coupling water cools the welded area, which has an adverse effect on the quality of the welded area.

■ さらにまた、小径クイズの被検査管においては、探
触子を被検査管の検査面に取付ける際に、それらの物理
的位置関係の調整が極め゛ζデリケートであるから、そ
の位HPJ整に時間がかかる。
■Furthermore, in the case of small-diameter test tubes, when installing the probe on the test surface of the test tube, the adjustment of the physical positional relationship between them is extremely delicate. it takes time.

本発明は、上記のような課題を解決すべくなされたもの
であって、たとえ溶接直後であっても、また、小径サイ
ズであっても探傷することの可能な電縫鋼管溶接部の超
音波探傷装置を提供することを目的とする。
The present invention has been made to solve the above-mentioned problems, and uses ultrasonic waves to detect flaws in welded parts of ERW steel pipes, which can detect flaws even immediately after welding and even in small diameter pipes. The purpose is to provide flaw detection equipment.

く課題を解決するだめの手段〉 本発明の要旨とするとごろは、長手方向に搬送される電
縫鋼管のパスライン下部に設けられて音響カップリング
水を貯える水槽と、この水槽を上下および左右に移動自
在とするならい機構と、前記水槽の底面に電縫鋼管の搬
送方向に対して直角方向に設けられる複数の振動子から
なるアレイ探触子と、から構成されることを特徴とする
電縫鋼管溶接部の超音波探傷装置である。
Means for Solving the Problems> The gist of the present invention is to provide a water tank for storing acoustic coupling water provided at the bottom of the pass line of an ERW steel pipe conveyed in the longitudinal direction, and a water tank for storing acoustic coupling water. and an array probe consisting of a plurality of vibrators provided on the bottom of the water tank in a direction perpendicular to the conveying direction of the electric resistance welded steel pipe. This is an ultrasonic flaw detection device for welded steel pipes.

〈作 用〉 以下に、本発明の原理について第4図を用いて説明する
<Operation> The principle of the present invention will be explained below using FIG. 4.

第4図(a)に示すように、溶接部Wが天位置にて搬送
される被検査管1の下部に複数の振動子からなるアレイ
探触子4を設番ノて、音響カップリング水5を介してそ
の外径に応じて左右対称な任意の2組の励振すべき振動
子群4m、4nを選択して超音波ビーム3m、3nを発
振させて、被検査管1の左右の管壁IA、IB内に交互
に伝播させる。
As shown in FIG. 4(a), an array probe 4 consisting of a plurality of transducers is installed at the bottom of the pipe 1 to be inspected, which is transported with the weld W in the top position, and an acoustic coupling water 5, select any two symmetrical transducer groups 4m and 4n to be excited according to their outer diameters, and oscillate the ultrasonic beams 3m and 3n. Propagate alternately into walls IA and IB.

いま、第4図(b)に示すように、外径り、肉厚りなる
被検査管1の中心点Oを通る垂直線C8がらΔftだけ
偏位した位置Iに相当する振動子41を選択して、垂直
線C6に平行に超音波ビーl、31を発振させたとする
と、この超音波ビーム31の被検査管1の1点を通る中
心線C+に対する角度すなわち入射角θ1は、次式で与
えられる。
Now, as shown in FIG. 4(b), a vibrator 41 is selected that corresponds to a position I that is deviated by Δft from a vertical line C8 passing through the center point O of the tube 1 to be inspected, which has a large outer diameter and a thick wall. Assuming that the ultrasonic beam 31 is oscillated parallel to the vertical line C6, the angle of the ultrasonic beam 31 with respect to the center line C+ passing through one point of the tube 1 to be inspected, that is, the incident angle θ1 is expressed by the following equation. Given.

sin θ、−2・ΔI!、、 /D  −一一−−−
−・−−−−−(2)また、このときの超音波ビーム3
1の被検査管1への屈折角θ、は、下記(3)式で求め
られる。
sin θ, -2・ΔI! ,, /D -11---
−・−−−−−(2) Also, the ultrasonic beam 3 at this time
The refraction angle θ of 1 into the tube 1 to be inspected is determined by the following equation (3).

sin  θr  =  (cr /C+  )sin
  θ、  −一一一−(3)ここで、c8は入射音速
、crは屈折音速であり、いずれも被検査管1の材質や
音響カップリング水5によって一定である。
sin θr = (cr/C+) sin
θ, -111-(3) Here, c8 is the incident sound velocity, and cr is the refracted sound velocity, both of which are constant depending on the material of the tube 1 to be inspected and the acoustic coupling water 5.

これら(2)、 (3)式より、被検査管1の外径り、
肉厚りによって屈折角θ、を一定とすれば、入射角θ、
は一義的に決まり、したがって、外径りに対する垂直線
C0から偏位位置Δ!1が求められるから、励振すべき
左右対称な任意の2組の振動子群4m、4nを選択する
ことができる。
From these equations (2) and (3), the outer diameter of the pipe to be inspected 1,
If the refraction angle θ is constant depending on the wall thickness, the incident angle θ,
is uniquely determined, and therefore, the deviation position Δ! from the perpendicular line C0 to the outer diameter. 1, it is possible to select any two bilaterally symmetrical vibrator groups 4m and 4n to be excited.

したがって、被検査管1の下部に配置した多数の小さな
振動子を整列したアレイ探触子4を用いて、被検査管1
の外径り、肉厚tに応じて励振すべき左右対称な任意の
241の振動子群4m、4nを選択してやるごとにより
、被検査管1の溶接部の欠陥を溶接直後であっζも、ま
た、小径サイズであっても探傷することの可能である。
Therefore, by using an array probe 4 in which a large number of small transducers arranged at the bottom of the tube to be inspected 1 is used, the tube to be inspected can be
By selecting arbitrary 241 left-right symmetrical vibrator groups 4m and 4n to be excited according to the outer diameter and wall thickness t of Furthermore, it is possible to detect flaws even in small diameter sizes.

なお、ここで用いるアレイ探触子は、例えば文献1非破
壊検査(第35巻第9号667頁)」に記載されている
ように、各振動子の発振タイミングを位相制御すること
により、超音波ビームを広範囲にわたって走査すること
のできるものであればよい。
The array probe used here is capable of ultra-high performance by controlling the phase of the oscillation timing of each vibrator, as described in, for example, Document 1, Nondestructive Testing (Vol. 35, No. 9, p. 667). Any device that can scan a sound wave beam over a wide range may be used.

〈実施例〉 以下に、本発明の実施例につい゛C1図面を参照して詳
しく説明する。
<Example> Below, an example of the present invention will be described in detail with reference to drawing C1.

第1図は、本発明に係る超音波探傷装置の実施例を示す
側面図、第2図はその平面図、第3図はA−A矢視断面
図である。
FIG. 1 is a side view showing an embodiment of an ultrasonic flaw detection apparatus according to the present invention, FIG. 2 is a plan view thereof, and FIG. 3 is a sectional view taken along the line A-A.

図において、11は、音響カップリング水5を貯える水
槽であり、例えば図示しない溶接機の出側の被検査管1
のパスラインPLに沿って設けられ、その底面のほぼ中
央にはパスラインI’Lに直角な方向に、複数の振動子
からなるアレイ探触子4が配置される。
In the figure, 11 is a water tank that stores acoustic coupling water 5, for example, a pipe 1 to be inspected on the outlet side of a welding machine (not shown).
An array probe 4 made up of a plurality of transducers is disposed along the pass line PL of the transducer, and is arranged approximately at the center of the bottom surface in a direction perpendicular to the pass line I'L.

12は、水槽11を上下および左右に移動自在とするな
らい機構であり、搬送される被検査管lに対して水槽1
1を位置決めするものである。このならい機構12は、
架台13上に固定して取付りられる支持部材14に貫通
して摺動自在に支持される軸15の一端部が、水槽11
の底部に固定される一方の支持部材16aに結合され、
その他端部がもう一方の支持部材16bを貫通してシリ
ンダ17に接続されており、また、架台13の下部にば
水槽11と架台13を支持するシリンダ18が取イ」け
られて構成される。
Reference numeral 12 denotes a tracing mechanism that allows the water tank 11 to be moved vertically and horizontally, and the water tank 1 is moved vertically and horizontally.
1 for positioning. This tracing mechanism 12 is
One end of a shaft 15 that penetrates and is slidably supported by a support member 14 that is fixedly attached to the pedestal 13 is connected to the water tank 11 .
coupled to one support member 16a fixed to the bottom of the
The other end passes through the other support member 16b and is connected to the cylinder 17, and a cylinder 18 that supports the water tank 11 and the pedestal 13 is removed from the bottom of the pedestal 13. .

これによって、シリンダ17を操作することにより水槽
11の左右ならいができ、また、シリンダ18を操作す
ることによって上下ならいができる。
As a result, by operating the cylinder 17, the water tank 11 can be traced from side to side, and by operating the cylinder 18, it can be traced up and down.

なお、このならい機構12は、上記した構成に限定され
るものではなく、水槽11を上下および左右に移動でき
る構造のものであればどのような型式%式% 19は、水槽11の前後に設けられる被検査管1のガイ
ドローラである。
Note that this tracing mechanism 12 is not limited to the configuration described above, and may be of any type as long as it has a structure that allows the water tank 11 to be moved up and down and left and right. This is a guide roller for the tube 1 to be inspected.

20は、コントローラであり、アレイ探触子4の励振ず
べき左右対称な2組の振動子群を選択して超音波ビーム
3を発振さゼるとともに、そのビークエコーから被検査
管lの溶接部W内の欠陥1aの有無を判別する機能を有
する。
20 is a controller that selects two symmetrical transducer groups to be excited in the array probe 4, oscillates the ultrasonic beam 3, and detects the welded portion of the pipe to be inspected l from its beak echo. It has a function of determining whether there is a defect 1a in W.

このように構成された超音波探傷装置の動作について説
明する。
The operation of the ultrasonic flaw detection apparatus configured in this way will be explained.

■ まず、前出(2)、 (31式を用いて、被検査管
lである電縫鋼管の外径りに対する垂直線C0からの偏
位位置Δ!五を決定して、励振すべきアレイ探触子4の
左右対称な2 illの振動子群の位置をコントローラ
20に設定する。
■ First, using equation (2) and (31) above, determine the deviation position Δ!5 from the vertical line C0 with respect to the outer diameter of the ERW steel pipe that is the pipe to be inspected l, and then The positions of the 2ill symmetric transducer groups of the probe 4 are set in the controller 20.

■ ついで、ならい機構12を操作して、水iff 1
1(7)位置を被検査管1の下面が水浸するように位置
合わせする。
■ Next, operate the tracing mechanism 12 to adjust the water iff 1.
Position 1 (7) so that the lower surface of the tube to be inspected 1 is submerged in water.

■ 被検査管1が搬送されてくると、アレイ探触子4の
選択された2組の振動子群によって、音響カップリング
水5を介して被検査管1を左右に交互励振する。
(2) When the tube 1 to be inspected is conveyed, the tube 1 to be inspected is alternately excited left and right by the two selected sets of transducers of the array probe 4 via the acoustic coupling water 5.

■ 被検査管1の溶接部Wに欠陥1aがあればビークエ
コーが発生するから、それぞれ2組の振動子群で受信さ
れてコントローラ20に入力され、欠陥有りと判定され
る。
(2) If there is a defect 1a in the welded portion W of the tube to be inspected 1, a beak echo will be generated, so it is received by two sets of transducers and input to the controller 20, and it is determined that there is a defect.

〈発明の効果〉 以上説明したように、零発l914こよれば、アレイ探
触子を電縫鋼管の搬送方向に対して直角方向でかつその
下部に位置するように設けるようにしたので、溶接直後
においても確実に探傷することができ、したがって、速
やかにアクションをとることができるから、電縫鋼管の
品質向上に寄与する。
<Effects of the Invention> As explained above, according to the zero-fiber 1914, the array probe is installed perpendicular to the direction of conveyance of the ERW steel pipe and located below it, so that the welding It is possible to reliably detect flaws even immediately after use, and therefore, action can be taken quickly, contributing to improving the quality of ERW steel pipes.

また、電縫鋼管のサイズが異なっても溶接部と超音波探
触子の距離を調整する必要がないから、省力化を図るこ
とができ、かつ生産性の向上に寄与する。
Further, even if the size of the electric resistance welded steel pipes is different, there is no need to adjust the distance between the welded part and the ultrasonic probe, so it is possible to save labor and contribute to improved productivity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に係る超音波探傷装置の実施例を示す
側面図、第2図は、第1図の平面図、第3図は、第1図
のA−A矢視断面図、第4図は、本発明の原理を示す模
式図、第5図は、従来の超音波斜角探傷法における距離
振幅特性の例を示す線図、第6図は、従来例の測定原理
を示す模式図である。 11・・・水槽。 17、18・・・シリング。 20・・・コントローラ。 I2・・・ならい機構。 19・・・ガイドローラ。 1・・・被検査管(電縫鋼管)。 3・・・超音波ビーム、  4・・・アレイ探触子。 5・・・音響カップリング水。
FIG. 1 is a side view showing an embodiment of the ultrasonic flaw detection device according to the present invention, FIG. 2 is a plan view of FIG. 1, and FIG. 3 is a sectional view taken along the line A-A in FIG. Fig. 4 is a schematic diagram showing the principle of the present invention, Fig. 5 is a diagram showing an example of distance amplitude characteristics in the conventional ultrasonic angle flaw detection method, and Fig. 6 shows the measurement principle of the conventional example. It is a schematic diagram. 11...Aquarium. 17, 18... shillings. 20...controller. I2... Tracing mechanism. 19...Guide roller. 1... Pipe to be inspected (ERW steel pipe). 3... Ultrasonic beam, 4... Array probe. 5...Acoustic coupling water.

Claims (1)

【特許請求の範囲】[Claims] 長手方向に搬送される電縫鋼管のパスライン下部に設け
られて音響カップリング水を貯える水槽と、この水槽を
上下および左右に移動自在とするならい機構と、前記水
槽の底面に電縫鋼管の搬送方向に対して直角方向に設け
られる複数の振動子からなるアレイ探触子と、から構成
されることを特徴とする電縫鋼管溶接部の超音波探傷装
置。
A water tank is provided below the pass line of the ERW steel pipe that is conveyed in the longitudinal direction to store acoustic coupling water, a tracing mechanism that allows the water tank to be moved vertically and horizontally, and the bottom of the water tank is provided with the ERW steel pipe. 1. An ultrasonic flaw detection device for a welded part of an ERW steel pipe, comprising: an array probe consisting of a plurality of transducers arranged perpendicular to a conveying direction.
JP63251874A 1988-10-07 1988-10-07 Ultrasonic flaw detector for weld part of seam welded steel pipe Pending JPH0299857A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63251874A JPH0299857A (en) 1988-10-07 1988-10-07 Ultrasonic flaw detector for weld part of seam welded steel pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63251874A JPH0299857A (en) 1988-10-07 1988-10-07 Ultrasonic flaw detector for weld part of seam welded steel pipe

Publications (1)

Publication Number Publication Date
JPH0299857A true JPH0299857A (en) 1990-04-11

Family

ID=17229218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63251874A Pending JPH0299857A (en) 1988-10-07 1988-10-07 Ultrasonic flaw detector for weld part of seam welded steel pipe

Country Status (1)

Country Link
JP (1) JPH0299857A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019219344A (en) * 2018-06-22 2019-12-26 日本製鉄株式会社 Ultrasonic inspection method for pipe weld zone

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019219344A (en) * 2018-06-22 2019-12-26 日本製鉄株式会社 Ultrasonic inspection method for pipe weld zone

Similar Documents

Publication Publication Date Title
JP4816731B2 (en) Ultrasonic flaw detection method, welded steel pipe manufacturing method, and ultrasonic flaw detection apparatus
JP4910768B2 (en) Calibration method of ultrasonic flaw detection, tube quality control method and manufacturing method
JP4910770B2 (en) Tubular ultrasonic inspection apparatus and ultrasonic inspection method
US5677490A (en) Ultrasonic testing device for weld seams in pipes, sheets and containers
KR102251819B1 (en) Device and method for non-destructive control of tubular products using electroacoustic phased networks, in particular on site
JP4614150B2 (en) Ultrasonic flaw detection method and apparatus for welds
WO1999034204A1 (en) Method and apparatus for ultrasonic flaw detection of weld portion
JP4345734B2 (en) Quality inspection method for welded steel pipe welds
JP5574731B2 (en) Ultrasonic flaw detection test method
JP2010025676A (en) Ultrasonic flaw detecting method and device
JP4356549B2 (en) Ultrasonic flaw detection method and ultrasonic flaw detection apparatus
JP2005274583A (en) Ultrasonic flaw detection method and its system
JP3744444B2 (en) Ultrasonic flaw detection method
JP2002022714A (en) Ultrasonic flaw detector for welded steel pipe
JP6733650B2 (en) Ultrasonic flaw detection method, ultrasonic flaw detection equipment, steel production equipment row, and steel production method
JPH0299857A (en) Ultrasonic flaw detector for weld part of seam welded steel pipe
JPH07244028A (en) Apparatus and method for ultrasonically detecting flaw on spherical body to be detected
JP2003322643A (en) Quality inspection method in welded steel pipe welded section
JPH1114608A (en) Electromagnetic ultrasonic probe
JPS6118860A (en) Ultrasonic beam control method for ultrasonic flaw detection of steel pipe using array type probe
US20240210358A1 (en) Method and Device for Checking the Wall of a Pipeline for Flaws
JP3389599B2 (en) Ultrasonic flaw detection method for steel pipe and ultrasonic flaw detection apparatus for steel pipe
Deutsch et al. Automated ultrasonic pipe weld inspection
JP2010190794A (en) Thinning detection method
JPS62192653A (en) Ultrasonic flaw detecting method for steel tube weld seam part