JPH0299584A - Latent heat storage material - Google Patents

Latent heat storage material

Info

Publication number
JPH0299584A
JPH0299584A JP24981088A JP24981088A JPH0299584A JP H0299584 A JPH0299584 A JP H0299584A JP 24981088 A JP24981088 A JP 24981088A JP 24981088 A JP24981088 A JP 24981088A JP H0299584 A JPH0299584 A JP H0299584A
Authority
JP
Japan
Prior art keywords
heat storage
latent heat
storage material
nucleating agent
solidification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24981088A
Other languages
Japanese (ja)
Inventor
Tomonari Saito
知成 斎藤
Hiroyuki Watanabe
裕之 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Priority to JP24981088A priority Critical patent/JPH0299584A/en
Publication of JPH0299584A publication Critical patent/JPH0299584A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the title material reduced in supercooling in solidification and stable in performance under a long-term heat cycle by adding as nucleating agent lead phosphate to disodium hydrogenphosphate.12H2O. CONSTITUTION:The objective heat storage material can be obtained by adding to (A) disodium hydrogenphosphate.12H2O (Na2HPO4.12H2O) (B) ca.0.1-20 (pref. ca.0.5-10)wt.% of lead phosphate [Pb3(PO4)2] as nucleating agent. The difference between the melting temperature and solidification-starting temperature for said material is normally 12-6 deg.C, being considerably smaller than 26 deg.C in the case of using no nucleating agent.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、潜熱蓄熱材に関する。更に詳しくは。[Detailed description of the invention] [Industrial application field] The present invention relates to a latent heat storage material. For more details.

凝固時の過冷却の程度を軽減し、長期の熱サイクルに対
し安定した性能を発揮する潜熱蓄熱材に関する。
This invention relates to a latent heat storage material that reduces the degree of supercooling during solidification and exhibits stable performance against long-term thermal cycles.

〔従来の技術〕[Conventional technology]

潜熱蓄熱材としては、従来から水や砕石が用いられてき
たが、これらは蓄熱密度が小さいため(Ical/g’
deg以下)、実用に際してはかなり大きな蓄熱器を必
要とする。また、放熱に伴って、蓄熱器内の温度は徐々
に低下するので、安定な熱エネルギーを得ることは、技
術的にかなり困難である。
Water and crushed stone have traditionally been used as latent heat storage materials, but these have low heat storage density (Ical/g'
deg or less), a fairly large heat storage device is required for practical use. Furthermore, as the heat is radiated, the temperature inside the heat storage device gradually decreases, so it is technically quite difficult to obtain stable thermal energy.

これに対し、近年物質の融解、凝固の際の潜熱を蓄熱に
応用する研究、開発が盛んになってきている。このよう
な潜熱型の蓄熱材の特徴は、材料の融解温度に一致した
一定温度の熱エネルギーを。
In response, research and development on applying latent heat during melting and solidification of substances to heat storage has become active in recent years. The characteristic of this type of latent heat storage material is that it stores thermal energy at a constant temperature that matches the melting temperature of the material.

数10cal/gという高い蓄熱密度で安定に吸収およ
び放出できる点にある。
It can be stably absorbed and released at a high heat storage density of several tens of cal/g.

かかる潜熱蓄熱材としては、パラフィンワックスや高級
脂肪酸などの有機物や無機水和物などが注目されている
As such latent heat storage materials, organic substances and inorganic hydrates such as paraffin wax and higher fatty acids are attracting attention.

潜熱蓄熱材としての有機物は、融解、凝固時における安
定性は良好であるものの、材料自身の熱伝導が悪いため
、熱の吸収および放出を行なう上で問題がある。また、
比重が小さいため、蓄熱器も比較的大きなものとなって
くる。
Although organic materials as latent heat storage materials have good stability during melting and solidification, they have problems in absorbing and releasing heat because the materials themselves have poor thermal conductivity. Also,
Since the specific gravity is small, the heat storage device is also relatively large.

一方、無機水和物は、有機物蓄熱材と比較して熱伝導率
は約2倍程よく、比重も1.5〜2.0程度と大きいた
め、蓄熱器も小さくすることができる。
On the other hand, inorganic hydrates have about twice the thermal conductivity as organic heat storage materials, and have a high specific gravity of about 1.5 to 2.0, so the heat storage device can also be made smaller.

しかるに、無機水和物は、一般に凝固開始温度が融解温
度よりも低くなるという、いわゆる過冷却現象を示す。
However, inorganic hydrates generally exhibit a so-called supercooling phenomenon in which the solidification initiation temperature becomes lower than the melting temperature.

かかる現象は、無機水和物を蓄熱材として用いた場合、
一定温度の熱エネルギーを安定して吸収および放出する
という潜熱蓄熱材の特徴を著しく損わせるものである。
This phenomenon occurs when inorganic hydrates are used as heat storage materials.
This significantly impairs the characteristic of the latent heat storage material that it stably absorbs and releases thermal energy at a constant temperature.

リン酸水素2ナトリウム・12水和物Na2HPO4・
1211□0は、融解温度が36℃であり、潜熱量が5
4cal/g(示差走査熱量計による)の潜熱蓄熱材で
あるが、この無機水和物の場合にも過冷却現象がみられ
る。
Disodium hydrogen phosphate, dodecahydrate Na2HPO4,
1211□0 has a melting temperature of 36℃ and a latent heat amount of 5
Although it is a latent heat storage material with a value of 4 cal/g (as measured by a differential scanning calorimeter), a supercooling phenomenon is also observed in the case of this inorganic hydrate.

即ち、−旦融解させたリン酸水素2ナトリウム・12水
和物は、約20℃前後の室温に放置しても固化しないの
である。これは、リン酸水素2ナトリウム・12水和物
の凝固開始温度が約10℃であり、結局約25℃近い温
度差に相当する過冷却を生ずるためである。従って、3
6℃における熱の吸収・放出が全く円滑に行われないの
で、これ単独では潜熱蓄熱材として使用することができ
ない。
That is, once melted disodium hydrogen phosphate dodecahydrate does not solidify even if it is left at room temperature of about 20°C. This is because the solidification initiation temperature of disodium hydrogen phosphate dodecahydrate is about 10°C, which results in supercooling corresponding to a temperature difference of about 25°C. Therefore, 3
Since absorption and release of heat at 6° C. is not performed smoothly at all, it cannot be used alone as a latent heat storage material.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は、リン酸水素2ナトリウム・12水和物の過冷
却の程度を軽減させた潜熱蓄熱材を提供することを目的
とする。
An object of the present invention is to provide a latent heat storage material in which the degree of supercooling of disodium hydrogen phosphate dodecahydrate is reduced.

〔課題を解決するための手段〕および〔作用〕かかる目
的を達成させる本発明の潜熱蓄熱材は、リン酸水素2ナ
トリウム・12水和物に発核剤としてリン酸鉛を添加し
てなる。
[Means for Solving the Problems] and [Operation] The latent heat storage material of the present invention that achieves the above objects is made by adding lead phosphate as a nucleating agent to disodium hydrogen phosphate dodecahydrate.

添加された発核剤たるPb3 (PO4)2による過冷
却軽減の程度は、その添加割合によっても異なるが、必
要量以上の発核剤を添加すると、リン酸水素2ナトリウ
ム・12水和物本来の潜熱量が著しく低下し、蓄熱材と
しての機能が失われるばかりではなく、材料の変質をも
招くため、一般にpb□(PO4)zはNa、HPO4
42H20に対して、約0.1〜20重量%、好ましく
は約0.5〜10重!1%の割合で用いられる。
The degree of supercooling reduction due to the added nucleating agent Pb3 (PO4)2 varies depending on its addition ratio, but if more than the required amount of nucleating agent is added, disodium hydrogen phosphate decahydrate In general, pb□(PO4)z is replaced by Na, HPO4.
About 0.1 to 20% by weight, preferably about 0.5 to 10% by weight, based on 42H20! Used at a rate of 1%.

〔発明の効果〕〔Effect of the invention〕

リン酸水素2ナトリウム・12水和物にリン酸鉛を発核
剤として添加することにより、過冷却度を著しく軽減す
ることができる。また、それに伴って、融解温度への復
帰時間も短かくなり、それをくり返し加熱融解させた場
合にも、その効果が失われることがなく、長期にわたる
使用においても安定した効果が発揮される。
By adding lead phosphate as a nucleating agent to disodium hydrogen phosphate dodecahydrate, the degree of supercooling can be significantly reduced. In addition, the time required to return to the melting temperature is also shortened, and the effect is not lost even when repeatedly heated and melted, and the effect is stable even during long-term use.

〔実施例〕〔Example〕

次に、実施例について本発明を説明する。 Next, the present invention will be explained with reference to examples.

実施例 Na2HPO4・12H2010gを容i20mRのガ
ラス製容器にとり、これにPb、(PO4)、 0.3
gを添加し、密栓する。これを恒温槽内に入れ、60℃
で加熱したところ36℃で融解した。次いで、これを毎
分1℃の冷却速度で冷却すると28℃で凝固が開始され
、試料温度は36℃に上昇して凝固が進行し、凝固が終
了するとその温度は低下した。このような状態は、第1
図のグラフに実線で示されている。一方、Pb、 (P
O,)zを添加しないものは、グラフに点線で示されて
おり、10℃の環境温度で始めて凝固が開始した。
Example 2010 g of Na2HPO4.12H was placed in a glass container with a capacity of 20 mR, and Pb, (PO4), 0.3
Add g and seal tightly. Place this in a thermostat at 60°C.
When heated at 36°C, it melted. Next, when this was cooled at a cooling rate of 1° C./min, solidification started at 28° C., the sample temperature rose to 36° C., solidification progressed, and when solidification was completed, the temperature decreased. This situation is the first
It is shown as a solid line in the graph of the figure. On the other hand, Pb, (P
The sample to which O,)z was not added is indicated by a dotted line in the graph, and coagulation started only at an ambient temperature of 10°C.

また1発核剤を添加したものの凝固開始温度は、融解−
凝固を20回くり返しても±3℃の差の範囲内に収った
。従って、Pb3 (PO4)zを発核剤として用いる
ことで、融解温度(Tm)と凝固開始温度(Tm’)と
の差(ΔTsc)は1発核剤を用いないときの26℃か
ら約8℃に迄その値を低下させることができた。
In addition, the solidification start temperature of the product with one nucleating agent added is melting -
Even after repeating the coagulation 20 times, the difference was within ±3°C. Therefore, by using Pb3 (PO4)z as a nucleating agent, the difference (ΔTsc) between the melting temperature (Tm) and the solidification initiation temperature (Tm') is reduced from 26°C when no nucleating agent is used to approximately 8°C. It was possible to reduce the value to ℃.

なお、Pb、 (po、 )2を0.1〜20重i%の
範囲内で添加したときのΔTscは、12〜6℃の間の
値を示した。
Note that when Pb, (po, )2 was added in a range of 0.1 to 20% by weight, ΔTsc showed a value between 12 and 6°C.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、融解潜熱蓄熱材の凝固時の挙動を示すグラフ
である。
FIG. 1 is a graph showing the behavior of the latent heat storage material during solidification.

Claims (1)

【特許請求の範囲】[Claims] 1、リン酸水素2ナトリウム・12水和物に発核剤とし
てリン酸鉛を添加してなる潜熱蓄熱材。
1. A latent heat storage material made by adding lead phosphate as a nucleating agent to disodium hydrogen phosphate dodecahydrate.
JP24981088A 1988-10-05 1988-10-05 Latent heat storage material Pending JPH0299584A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24981088A JPH0299584A (en) 1988-10-05 1988-10-05 Latent heat storage material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24981088A JPH0299584A (en) 1988-10-05 1988-10-05 Latent heat storage material

Publications (1)

Publication Number Publication Date
JPH0299584A true JPH0299584A (en) 1990-04-11

Family

ID=17198543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24981088A Pending JPH0299584A (en) 1988-10-05 1988-10-05 Latent heat storage material

Country Status (1)

Country Link
JP (1) JPH0299584A (en)

Similar Documents

Publication Publication Date Title
CA1201031A (en) Latent heat storage and supply system and method
US5417276A (en) Particulate heating/cooling agents
JPH0299584A (en) Latent heat storage material
JPH0347889A (en) Latent heat-accumulating material
JP2805968B2 (en) Latent heat storage material
JPH0215598B2 (en)
JPS61197668A (en) Thermal energy storage material
JPH0472378A (en) Latent heat storage material
JPH04168191A (en) Latent heat storage material
JPH0151517B2 (en)
JPH0347888A (en) Heat-accumulating material
JP2800039B2 (en) Latent heat storage material
JP2800329B2 (en) Latent heat storage material
JPS63256683A (en) Heat storage material
JP6682712B1 (en) Latent heat storage material composition
JPH0453913B2 (en)
JPH0226160B2 (en)
JPS581714B2 (en) Heat storage agent composition
JPH02132181A (en) Latent thermal energy storing material
JP2982409B2 (en) Latent heat storage material
JPS588712B2 (en) Heat storage agent composition
JP2982397B2 (en) Latent heat storage material
JPS5821942B2 (en) Heat storage agent composition
JP2932774B2 (en) Latent heat storage material
JPH0414718B2 (en)