JPH0297618A - Steel member having excellent impact resistance and its production - Google Patents

Steel member having excellent impact resistance and its production

Info

Publication number
JPH0297618A
JPH0297618A JP24719888A JP24719888A JPH0297618A JP H0297618 A JPH0297618 A JP H0297618A JP 24719888 A JP24719888 A JP 24719888A JP 24719888 A JP24719888 A JP 24719888A JP H0297618 A JPH0297618 A JP H0297618A
Authority
JP
Japan
Prior art keywords
steel
impact resistance
steel member
steel material
quenching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24719888A
Other languages
Japanese (ja)
Inventor
Yukio Arimi
幸夫 有見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP24719888A priority Critical patent/JPH0297618A/en
Publication of JPH0297618A publication Critical patent/JPH0297618A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To easily produce the title steel member having excellent impact resistance at a low cost by applying carburization hardening and shot peening to a steel material, reheating the material to a temp. higher than the austenitizing temp., and then hardening the material. CONSTITUTION:A steel material is carburization-hardened or carbonitriding- hardened, and then shot-peened. The steel material is reheated to a temp. higher than the austenitizing temp., and then hardened. A hardened layer consisting of a mixed structure of martensite and retained austenite and having austenitic crystal grains of >=No.9 crystal grain size is formed on the steel material surface to a depth of >=0.1mm from the surface. By this method, a steel member having high toughness and impact resistance can be inexpensively obtained without using a special steel material such as alloyed steel and without deteriorating the machinability.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は耐衝撃性に優れた鋼部材およびその製造法に関
する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a steel member with excellent impact resistance and a method for manufacturing the same.

(従来の技術) 自動車における駆動系歯車、特にリバース系およびデフ
ァレンシャル系の歯車は高負荷を受けるので優れた強度
特性が要求され、このような強度特性を備えた鋼部材の
製造法としては、特開昭60−2)8422号公報に示
されるように、鋼材料を浸炭焼入れ後に焼もどし処理を
施し、その後ショットピーニング処理を行うものが知ら
れている。
(Prior Art) Drive system gears in automobiles, especially reverse system and differential system gears, are required to have excellent strength characteristics because they are subjected to high loads. As shown in Japanese Patent Application Laid-Open No. 60-2) 8422, a method is known in which a steel material is carburized and quenched, then tempered, and then shot peened.

しかるに、リバース系およびデファレンシャル系の歯車
はシラツクトルクを受けるため高い衝撃強度も要求され
るので、近時、衝撃強度を向上させる鋼部材の製造方法
として、機械構造用炭素鋼又は合金鋼等の材料を使用し
、この材料を焼入れ復燐もどし処理をする方法や、衝撃
強度を向上させる合金元素であるニッケル等を添加した
合金鋼を使用し、この合金鋼を浸炭焼入れする方法等が
提案されている。
However, since gears in reverse and differential systems are subject to shock torque, high impact strength is also required.Recently, materials such as carbon steel or alloy steel for machine structures have been used as a method of manufacturing steel components to improve impact strength. Proposals include a method in which the material is quenched and rephosphorized, and a method in which alloy steel is added with nickel, an alloying element that improves impact strength, and then carburized and quenched. .

(発明が解決しようとする課題) ところが、前者の方法により得られる鋼部材は、浸炭焼
入れした鋼部材と比べると衝撃強度は高いが駆動系歯車
に要求される程度の高い衝撃強度は有していないし、耐
摩耗性についても十分でない。
(Problem to be Solved by the Invention) However, although the steel members obtained by the former method have higher impact strength than carburized and quenched steel members, they do not have the high impact strength required for drive system gears. Moreover, the wear resistance is not sufficient.

一方、後者の方法により得られる鋼部材は、衝撃強度を
はじめとする駆動系歯車に要求される強度特性を有して
いるが、材料のコストが高くつき、また、合金元素添加
に伴う被削性の悪化により生産性が低下するという新た
な問題が生じるので、やはり駆動系歯車には使用できな
い。
On the other hand, steel members obtained by the latter method have the strength properties required for drive system gears, including impact strength, but the material costs are high, and the steel members that can be easily cut due to the addition of alloying elements. A new problem arises in that productivity decreases due to poor performance, so it cannot be used for drive system gears.

上記に鑑みて本発明は合金鋼のような特殊な鋼材料を使
用しないでも、つまり、コスト高や被削性の悪化を招く
ことなく、靭性に優れ、これにより高い衝撃強度を有す
る鋼部材を提供することを目的とする。また、このよう
な鋼部材を簡易に製造する方法を提供することを目的と
する。
In view of the above, the present invention provides a steel member with excellent toughness and high impact strength without using special steel materials such as alloy steel, that is, without increasing costs or deteriorating machinability. The purpose is to provide. Another object of the present invention is to provide a method for easily manufacturing such a steel member.

(課題を解決するための手段) 上記の目的を達成するため請求項(1)の発明は、鋼部
材の表面部の所定以上の範囲にマルテンサイトと残留オ
ーステナイトとの混在組織からなる硬化層を形成すると
共に、この硬化層中のオーステナイトを所定以上の微細
な結晶粒により構成するものである。
(Means for Solving the Problem) In order to achieve the above object, the invention of claim (1) provides a hardened layer consisting of a mixed structure of martensite and retained austenite in a predetermined or more range on the surface of a steel member. At the same time, the austenite in this hardened layer is composed of fine crystal grains of a predetermined size or more.

具体的に請求項(1)の発明の購じた解決手段は、耐衝
撃性に優れた鋼部材を、マルテンサイトと残留オーステ
ナイトとの混在組織からなり、結晶粒度番号9以上の平
均粒度からなるオーステナイト結晶粒を有する硬化層が
表面から0.1+nm以上の深さに亘って形成されてい
る構成としたものである。
Specifically, the solution purchased by the invention of claim (1) is to produce a steel member with excellent impact resistance, which is made of a mixed structure of martensite and retained austenite, and has an average grain size of 9 or more. The hardened layer having austenite crystal grains is formed from the surface to a depth of 0.1+nm or more.

また、請求項(2)の発明は、上記請求項(1)の発明
の鋼部材を得るにあたって、浸炭焼入れもしくは浸炭窒
化焼入れ後の鋼材料にショットピーニング処理を施した
後、所定の再加熱焼入れ処理を施すものである。
In addition, the invention of claim (2) provides that, in obtaining the steel member of the invention of claim (1), shot peening treatment is performed on the steel material after carburizing and quenching or carbonitriding and then predetermined reheating and quenching. It is used for processing.

具体的に請求項(2)の発明の講じた解決手段は、耐衝
撃性に優れた鋼部材の製造法を、鋼材料に、浸炭焼入れ
若しくは浸炭窒化焼入れ処理を施した後、ショットピー
ニング処理を施し、しかる後、オーステナイト化温度以
上に加熱した後焼入れする再加熱焼入れ処理を施して、
マルテンサイトとオーステナイトとの混在組織からなり
、結晶粒度番号9以上の平均粒度からなるオーステナイ
ト結晶粒を有する硬化層を表面から0. 1m11以上
の深さに亘って形成する構成としたものである。
Specifically, the solution taken by the invention of claim (2) is to provide a method for manufacturing a steel member with excellent impact resistance by applying shot peening treatment to the steel material after carburizing and quenching or carbonitriding and quenching. After that, a reheating and quenching treatment is performed, in which the material is heated above the austenitizing temperature and then quenched.
A hardened layer consisting of a mixed structure of martensite and austenite and having austenite crystal grains having an average grain size of 9 or more is formed from the surface. The structure is such that it is formed over a depth of 1 m11 or more.

(作用) 請求項(1)の発明の構成により、鋼部材の硬化層が表
面から0.imi以上の深さに亘って結晶粒度番号9以
上の微細なオーステナイトの結晶粒により構成されてい
るので、この鋼部材の表面は靭性が高い。
(Function) According to the structure of the invention of claim (1), the hardened layer of the steel member is 0.0 mm from the surface. The surface of this steel member has high toughness because it is composed of fine austenite crystal grains with a grain size number of 9 or more over a depth of imi or more.

また、請求項(2)の発明の構成により、浸炭焼入れも
しくは浸炭窒化焼入れにより形成された鋼材料の硬化層
はショットピーニング処理により塑性加工され、この塑
性加工された硬化層が再加熱されるため、硬化層のオー
ステナイトは結晶粒度番号9以上の微細な結晶粒となる
ので、表面の靭性が高い鋼部材が得られる。
Further, according to the configuration of the invention of claim (2), the hardened layer of the steel material formed by carburizing and quenching or carbonitriding and quenching is plastically worked by shot peening treatment, and this plastically worked hardened layer is reheated. Since the austenite in the hardened layer becomes fine crystal grains with a grain size number of 9 or more, a steel member with high surface toughness can be obtained.

(実施例) 以下、本発明の実施例について説明する。(Example) Examples of the present invention will be described below.

本発明に係る耐衝撃性に優れた鋼部材は、マルテンサイ
トと残留オーステナイトとの混在組織からなり、結晶粒
度番号9以上の平均粒度からなるオーステナイト結晶粒
を有する硬化層が表面から0.1am以上の高さに亘っ
て形成されたものであって、この鋼部材は以下のように
して製造する。
The steel member with excellent impact resistance according to the present invention has a mixed structure of martensite and retained austenite, and a hardened layer having austenite crystal grains with an average grain size of 9 or more is located 0.1 am or more from the surface. This steel member is manufactured as follows.

まず、肌焼鋼である鋼部材を浸炭焼入れもしくは浸炭窒
化焼入れして、その表面にマルテンサイトと残留オース
テナイトとの混在組織からなる硬化層を形成する。この
浸炭焼入れの方法及び条件については一般的なものでよ
いが、硬化層の深さについては表面から硬さHv550
の個所までの深さが0. 2〜1. 3+nIIIの範
囲になるようにすることが好ましい。
First, a steel member that is case hardening steel is carburized and quenched or carbonitrided and quenched to form a hardened layer consisting of a mixed structure of martensite and retained austenite on its surface. The method and conditions for this carburizing and quenching may be general ones, but the depth of the hardened layer should be from the surface to a hardness of Hv550.
The depth up to the point is 0. 2-1. It is preferable to set it in the range of 3+nIII.

次に、浸炭焼入れもしくは浸炭窒化焼入れを施した鋼材
料にショットピーニング処理を施し、硬化層の表面部に
塑性加工された加工影響層を形成する。この加工影響層
の深さについては表面から0.1〜0.2amの範囲が
好ましい。この理由は、深さが0. 111w未満であ
ると次工程の再加熱焼入れ処理によって形成される微細
結晶粒の層厚が不足するためであり、深さが0.2)を
超えると鋼材料の表面粗さが劣化するためである。この
ような深さの加工影響層を形成するためには、ショット
硬さHRC45〜65でショット速度50〜120m/
sのピーニング強度が好ましい。その理由は、ピーニン
グ強度を大きくするほど加工影響層は深く、逆にピーニ
ング強度を小さくするほど加工影響層は浅くなり、ショ
ット硬さHRC45未満又はショット速度50m/s未
満では加工影響層の深さが0.1na+未満となり、シ
ョット硬さHRC65超又はショット速度120m/s
超では加工影響層の深さが0.2mmを超えるためであ
る。
Next, shot peening treatment is performed on the steel material that has been subjected to carburizing and quenching or carbonitriding and quenching, to form a plastically worked process-affected layer on the surface of the hardened layer. The depth of this process-affected layer is preferably in the range of 0.1 to 0.2 am from the surface. The reason for this is that the depth is 0. If the depth is less than 111w, the layer thickness of the fine grains formed by the next reheating and quenching process will be insufficient, and if the depth exceeds 0.2), the surface roughness of the steel material will deteriorate. be. In order to form a process-affected layer of such depth, shot hardness HRC 45-65 and shot speed 50-120 m/s.
A peening strength of s is preferred. The reason for this is that as the peening intensity increases, the processing affected layer becomes deeper, and conversely, as the peening intensity decreases, the processing affected layer becomes shallower, and when the shot hardness is less than HRC 45 or the shot speed is less than 50 m/s, the processing affected layer becomes deeper. is less than 0.1 na+, shot hardness exceeds HRC 65 or shot speed 120 m/s
This is because the depth of the machining-affected layer exceeds 0.2 mm.

次に、ショットピーニング処理を施した鋼材料を、オー
ステナイト化温度以上に加熱した後、焼入れすることに
より再加熱焼入れ処理を施し、硬化層中の残留オーステ
ナイトを再結晶化させる。
Next, the steel material subjected to the shot peening treatment is heated to a temperature equal to or higher than the austenitizing temperature and then quenched to perform a reheating quenching treatment to recrystallize the residual austenite in the hardened layer.

このオーステナイト化温度以上に加熱する工程について
は、加熱温度800〜900℃で保持時間20〜90分
が好ましい。その理由は、加熱温度800℃未満又は保
持時間20分未満では昇温過程で生じる炭化物の固溶が
十分でなく焼入れ性が劣るためであり、加熱温度900
℃超又は保持時間90分超ではせっかく形成された微細
なオーステナイトの結晶粒が再び成長して好ましくない
ためである。
Regarding the step of heating above the austenitizing temperature, the heating temperature is preferably 800 to 900°C and the holding time is preferably 20 to 90 minutes. The reason for this is that if the heating temperature is less than 800°C or the holding time is less than 20 minutes, the solid solution of carbides generated during the temperature raising process is insufficient, resulting in poor hardenability.
This is because if the temperature exceeds 0.degree. C. or the holding time exceeds 90 minutes, the fine austenite crystal grains that have been formed will grow again, which is undesirable.

以上のようにショットピーニング処理を施した後に再加
熱処理を施すと、鋼部材の表面部はショットピーニング
処理によって塑性加工され、浸炭焼入れもしくは浸炭窒
化焼入れ時のオーステナイト結晶粒は容易に再結晶化し
、微細な結晶粒を形成する。
When the reheating treatment is performed after shot peening treatment as described above, the surface portion of the steel member is plastically worked by the shot peening treatment, and the austenite crystal grains during carburizing and quenching or carbonitriding quenching are easily recrystallized. Forms fine crystal grains.

以下、本発明に係る耐衝撃性に優れた鋼部材およびその
製造法の具体例と比較例について説明する。
Hereinafter, specific examples and comparative examples of the steel member with excellent impact resistance according to the present invention and its manufacturing method will be described.

鋼材料としては、S0M420Hの肌焼鋼を準備した。As the steel material, case hardened steel of S0M420H was prepared.

具体例: まず、第1図の熱処理パターン図に示すように、鋼材料
を930℃の温度下で3時間保持した後、降温して84
0℃の温度下で30分間保持し、その後、急冷して浸炭
焼入れを行った。浸炭焼入れをした鋼材料にショット硬
さHRC50〜52、ショット速度60m/sでショッ
トピーニング処理を施し、次に第2図(イ)の熱処理パ
ターン図に示すように、再加熱して870℃の温度下で
30分間保持した後、降温して820℃の温度下で30
分間保持し、その後焼入れして再加熱焼入れ処理を施し
た。さらに、この鋼材料を第2図(ロ)の熱処理パター
ン図に示すように170℃の温度下で2時間保持した後
空冷して焼もどし処理を行った。
Specific example: First, as shown in the heat treatment pattern diagram in Figure 1, a steel material is held at a temperature of 930°C for 3 hours, and then the temperature is lowered to 84°C.
It was held at a temperature of 0° C. for 30 minutes, and then rapidly cooled and carburized and quenched. Carburized and quenched steel material is subjected to shot peening treatment at a shot hardness of HRC 50 to 52 and a shot speed of 60 m/s, and then reheated to 870°C as shown in the heat treatment pattern diagram in Figure 2 (a). After holding at the temperature for 30 minutes, the temperature was lowered and the temperature was kept at 820°C for 30 minutes.
It was held for a minute, and then quenched and reheated and quenched. Further, this steel material was held at a temperature of 170° C. for 2 hours and then cooled in air to perform a tempering treatment, as shown in the heat treatment pattern diagram of FIG. 2(b).

このようにして得た鋼部材の加工影響層の深さは表面か
ら0.15II11であって、第3図の顕微鏡写真(倍
率200倍)に示すようにオーステナイト結晶粒の結晶
粒度番号は10であった。
The depth of the processing-affected layer of the steel member thus obtained is 0.15II11 from the surface, and the grain size number of the austenite grains is 10, as shown in the micrograph in Figure 3 (200x magnification). there were.

比較例1: 鋼材料を具体例と同様に浸炭焼入れを行った後、ショッ
トピーニング処理及び再加熱焼入れ処理をしないで、1
70℃の温度下で2時間保持した後空冷して焼もどし処
理を行った。
Comparative Example 1: A steel material was carburized and quenched in the same manner as in the specific example, and then shot peened and reheated and quenched.
After being held at a temperature of 70° C. for 2 hours, it was air cooled and tempered.

第4図の顕微鏡写真(倍率200倍)に示すように、こ
のようにして得た鋼部材におけるオーステナイト結晶粒
の結晶粒度番号は7であった。この比較例においては、
ショットピーニング処理及び再加熱焼入れ処理が行われ
ながったので、オーステナイト結晶粒は大きかった。
As shown in the micrograph of FIG. 4 (200x magnification), the grain size number of the austenite crystal grains in the thus obtained steel member was 7. In this comparative example,
Since shot peening treatment and reheating quenching treatment were not performed, the austenite crystal grains were large.

比較例2: 鋼材料を具体例と同様に浸炭焼入れを行った後、ショッ
ト硬さHRC38〜40、ショット速度60m/sでシ
ョットピーニング処理を施し、次に具体例1と同様の条
件で再加熱焼入れ処理及び焼もどし処理を行った。
Comparative Example 2: After carburizing and quenching the steel material in the same manner as in the specific example, shot peening treatment was performed at a shot hardness of HRC 38 to 40 and a shot speed of 60 m/s, and then reheating under the same conditions as in specific example 1. Hardening treatment and tempering treatment were performed.

このようにして得た鋼部材の加工影響層の深さは表面か
ら0. 04+lllで、オーステナイト結晶粒の結晶
粒度番号は9.5であった。この比較例においてはショ
ット硬さが低かったのでピーニング強度が小さく、加工
影響層の深さが浅かった。
The depth of the machining-affected layer of the steel member obtained in this way is 0.0 mm from the surface. 04+1ll, the grain size number of the austenite crystal grains was 9.5. In this comparative example, the shot hardness was low, so the peening strength was low, and the depth of the processing affected layer was shallow.

比較例3: 鋼材料を具体例と同様に浸炭焼入れを行った後、ショッ
ト硬さHRC50〜52、ショット速度40m/sでシ
ョットピーニング処理を施し、次に具体例1と同様の条
件で再加熱焼入れ処理及び焼もどし処理を行った。
Comparative Example 3: After carburizing and quenching the steel material in the same manner as in the specific example, shot peening treatment was performed at a shot hardness of HRC 50 to 52 and a shot speed of 40 m/s, and then reheating under the same conditions as in specific example 1. Hardening treatment and tempering treatment were performed.

このようにして得た鋼部材の加工影響層の深さは表面か
ら0.06m5で、オーステナイト結晶粒の粒度番号は
9.5であった。この比較例においてはショット速度が
小さかったのでピーニング強度が小さく、加工影響層の
深さが浅かった。
The depth of the work-affected layer of the thus obtained steel member was 0.06 m5 from the surface, and the grain size number of the austenite crystal grains was 9.5. In this comparative example, the shot speed was low, so the peening intensity was low, and the depth of the processing-affected layer was shallow.

比較例4: 鋼材料を具体例と同様の条件で浸炭焼入れ及びショット
ピーニング処理を施した。次に再加熱して930℃の温
度下で2時間保持した後に焼入れして再加熱焼入れ処理
を施した後、具体例と同様条件で焼もどし処理を行った
Comparative Example 4: A steel material was subjected to carburizing and quenching and shot peening under the same conditions as in the specific example. Next, after being reheated and held at a temperature of 930° C. for 2 hours, it was quenched and subjected to reheating and quenching treatment, followed by tempering treatment under the same conditions as in the specific example.

このようにして得た鋼部材の加工影響層の深さは表面か
ら0.16v++で、オーステナイト結晶粒の粒度番号
は6.5であった。この比較例においては再加熱焼入れ
処理における加熱温度が高くて保持時間が長かったので
、オーステナイトの微細な結晶粒が再び成長して大きく
なった。
The depth of the process-affected layer of the thus obtained steel member was 0.16v++ from the surface, and the grain size number of the austenite crystal grains was 6.5. In this comparative example, the heating temperature in the reheating and quenching treatment was high and the holding time was long, so the fine austenite crystal grains grew again and became larger.

比較例5: 鋼材料を具体例と同様の条件で浸炭焼入れ及びショット
ピーニング処理を施した。次に再加熱して800℃の温
度下で10分間保持した後に焼入れして再加熱焼入れ処
理を施した後、具体例と同様条件で焼もどし処理を行っ
た。
Comparative Example 5: A steel material was subjected to carburizing and quenching and shot peening treatment under the same conditions as in the specific example. Next, after being reheated and held at a temperature of 800° C. for 10 minutes, it was quenched and subjected to reheating and quenching treatment, followed by tempering treatment under the same conditions as in the specific example.

このようにして得た鋼部材の加工影響層の深ざ表面から
0.16mmで、オーステナイト結晶粒の粒度番号は1
0であったが、未固溶の炭化物が析出した。その理由は
、再加熱焼入れ処理における加熱温度が低くて保持時間
が短かったためである。
The grain size number of the austenite grains is 1 at 0.16 mm from the depth surface of the working affected layer of the steel member thus obtained.
0, but undissolved carbides were precipitated. The reason for this is that the heating temperature in the reheating and quenching treatment was low and the holding time was short.

以下、本発明に係る耐衝撃性に優れた鋼部材およびその
製造法を評価するために、具体例と比較例の鋼部材の靭
性評価試験について説明する。
Hereinafter, in order to evaluate the steel member with excellent impact resistance and the manufacturing method thereof according to the present invention, toughness evaluation tests of steel members of specific examples and comparative examples will be described.

まず、第5図(イ)及び(ロ)に示すような、巾10±
0.02)!+、高さ10±0.05mm、長さ55±
0.1mmの直方体の上面における長さ方向の中央に、
半径2±0.02mmの半円状断面の切欠を設けた試験
片1を製作する。
First, as shown in Figure 5 (a) and (b), a width of 10±
0.02)! +, height 10±0.05mm, length 55±
At the center in the length direction on the top surface of a 0.1 mm rectangular parallelepiped,
A test piece 1 having a notch with a semicircular cross section with a radius of 2±0.02 mm is manufactured.

次に、第6図に示すように、この試験片1を上下逆にし
て長さ方向の2点を支持し、切欠部の裏側をロードセル
2により荷重を加えて、切欠底歪速度:ε−0,016
/秒、試験温度:室温の条件下で3点曲げ試験を行った
Next, as shown in FIG. 6, this test piece 1 is turned upside down and supported at two points in the length direction, and a load is applied to the back side of the notch by the load cell 2, so that the strain rate at the bottom of the notch is: ε- 0,016
/second, test temperature: A three-point bending test was conducted under the conditions of room temperature.

この試験結果は第7図に示すとおりであって、具体例の
ものは比較例1〜5のものにくらべて大巾に衝撃強度が
向上していることが分る。この場合において、比較例1
及び4のものはオーステナイト結晶粒が粗く、比較例2
及び3のものは加工影響層ひいてはオーステナイトの微
細結晶粒の層が薄く、比較例5のものは未固溶の炭化物
が析出したためにそれぞれ破断強度が劣るものと考えら
れる。
The test results are as shown in FIG. 7, and it can be seen that the impact strength of the specific example is greatly improved compared to that of Comparative Examples 1 to 5. In this case, Comparative Example 1
Comparative example 2 and 4 have coarse austenite crystal grains.
It is thought that the work-affected layer and the layer of fine austenite grains are thin in Samples 3 and 3, and that the fracture strength of Comparative Example 5 is poor due to the precipitation of undissolved carbides.

(発明の効果) 以上説明したように、請求項(1)の発明に係る鋼部材
は、その硬化層が表面から0. 1mm以上の深さに亘
って結晶粒度番号9以上の微細なオーステナイト結晶粒
により構成されているため、表面の靭性が向上し、これ
によって高い耐衝撃性を有している。また、合金鋼等の
特殊な鋼材料を用いないので、コスト高や被削性の悪化
を招くことはない。
(Effects of the Invention) As explained above, in the steel member according to the invention of claim (1), the hardened layer is 0% from the surface. Since it is composed of fine austenite crystal grains with a grain size number of 9 or more over a depth of 1 mm or more, the surface toughness is improved, and thereby it has high impact resistance. Further, since special steel materials such as alloy steel are not used, there is no increase in cost or deterioration of machinability.

また、請求項(2の発明に係る製造法によると、浸炭焼
入れもしくは浸炭窒化焼入れにより形成された鋼材料の
硬化層をショットピーニング処理により塑性加工し、こ
の塑性加工した硬化層を再加熱するため、オーステナイ
トは微細な結晶粒となるので、得られる鋼材料は表面部
の靭性が向上し、これによって高い耐衝撃性を有してい
る。
In addition, according to the manufacturing method according to the invention of claim 2, the hardened layer of the steel material formed by carburizing and quenching or carbonitriding is plastically worked by shot peening treatment, and the plastically worked hardened layer is reheated. Since austenite forms fine crystal grains, the resulting steel material has improved surface toughness and thus has high impact resistance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図はそれぞれ本発明の具体例の熱処理パ
ターン図、第3図は具体例に係る鋼部材の硬化層の金属
組織を示す顕微鏡写真、第4図は比較例1に係る鋼部材
の硬化層の金属組織を示す顕微鏡写真、第5図(イ)及
び(ロ)は3点曲げ試験片の寸法及び形状を示す図、 第6図は3点曲 げ試験方法の説明図、第7図は具体例及び比較例の靭性
評価試験の結果を示す図である。 第 図 第 図 第 図 再711]#!L、ズ充入れ処理 (イ) 丈えもと゛し処理 (ロ) (イ) (ロ) 第5 図 第 図
1 and 2 are heat treatment pattern diagrams of specific examples of the present invention, FIG. 3 is a micrograph showing the metal structure of the hardened layer of the steel member according to the specific example, and FIG. 4 is a steel sheet according to comparative example 1. Micrograph showing the metal structure of the hardened layer of the member, Figures 5 (a) and (b) are diagrams showing the dimensions and shape of the 3-point bending test piece, Figure 6 is an explanatory diagram of the 3-point bending test method, FIG. 7 is a diagram showing the results of toughness evaluation tests of specific examples and comparative examples. Figure Figure Figure Re 711] #! L, Z filling process (A) Length centering process (B) (A) (B) Figure 5

Claims (2)

【特許請求の範囲】[Claims] (1)マルテンサイトと残留オーステナイトとの混在組
織からなり、結晶粒度番号9以上の平均粒度からなるオ
ーステナイト結晶粒を有する硬化層が表面から0.1m
m以上の深さに亘って形成されていることを特徴とする
耐衝撃性に優れた鋼部材。
(1) A hardened layer consisting of a mixed structure of martensite and retained austenite and having austenite crystal grains with an average grain size of 9 or more is 0.1 m from the surface.
A steel member with excellent impact resistance, characterized by being formed over a depth of m or more.
(2)鋼材料に、浸炭焼入れ若しくは浸炭窒化焼入れ処
理を施した後、ショットピーニング処理を施し、しかる
後、オーステナイト化温度以上に加熱した後焼入れする
再加熱焼入れ処理を施して、マルテンサイトと残留オー
ステナイトとの混在組織からなり、結晶粒度番号9以上
の平均粒度からなるオーステナイト結晶粒を有する硬化
層を表面から0.1mm以上の深さに亘って形成するこ
とを特徴とする耐衝撃性に優れた鋼部材の製造法。
(2) Steel materials are subjected to carburizing and quenching or carbonitriding and quenching, then shot peening, and then reheated and quenched to heat above the austenitizing temperature and then quenched to form martensite. Excellent impact resistance characterized by forming a hardened layer with austenite crystal grains having a mixed structure with austenite and having an average grain size of 9 or more over a depth of 0.1 mm or more from the surface. A manufacturing method for steel parts.
JP24719888A 1988-09-30 1988-09-30 Steel member having excellent impact resistance and its production Pending JPH0297618A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24719888A JPH0297618A (en) 1988-09-30 1988-09-30 Steel member having excellent impact resistance and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24719888A JPH0297618A (en) 1988-09-30 1988-09-30 Steel member having excellent impact resistance and its production

Publications (1)

Publication Number Publication Date
JPH0297618A true JPH0297618A (en) 1990-04-10

Family

ID=17159908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24719888A Pending JPH0297618A (en) 1988-09-30 1988-09-30 Steel member having excellent impact resistance and its production

Country Status (1)

Country Link
JP (1) JPH0297618A (en)

Similar Documents

Publication Publication Date Title
JP4022607B2 (en) Manufacturing method of high surface pressure resistant member
JP3995904B2 (en) Method for producing inner ring for constant velocity joint excellent in workability and strength
WO2006118243A1 (en) Carburized induction-hardened component
JPH0426752A (en) Rolling bearing
CN101346481A (en) High-strength steel bolt having excellent resistance for delayed fracture and method for producing the same
JPH02153018A (en) Production of steel member
JP2549039B2 (en) Carbonitriding heat treatment method for high strength gears with small strain
JP2549038B2 (en) Method for carburizing heat treatment of high-strength gear with small strain and its gear
JPS6383249A (en) Hot working tool steel and its manufacture
JPH0297618A (en) Steel member having excellent impact resistance and its production
JP2706940B2 (en) Manufacturing method of non-heat treated steel for nitriding
JP4821582B2 (en) Steel for vacuum carburized gear
JPS59190321A (en) Production of parts for machine structural use having excellent soft nitriding characteristic and machinability
JPH0559527A (en) Production of steel excellent in wear resistance and rolling fatigue characteristic
JP2802155B2 (en) Method for producing high-strength steel wire without heat treatment and excellent in fatigue resistance and wear resistance
JP3607583B2 (en) Steel for power transmission parts and power transmission parts
JPH06228734A (en) Production of steel for clutch diaphragm spring
JPH02240249A (en) Production of carburized parts reduced in heat treatment strain
JP3541013B2 (en) Steel for power transmission components with excellent contact fatigue properties
JPH0288760A (en) Steel member excellent in impact resistance and its production
JP2000239747A (en) Manufacture of rolling parts made of steel, excellent in rolling fatigue strength, and rolling parts
JPH10237589A (en) Martensitic non-heat treated steel excellent in machinability and having high strength and high toughness, and its production
JP2952862B2 (en) Manufacturing method of spring steel with excellent hardenability and warm set resistance
JP3104449B2 (en) Heat treatment of carburized gears
JPH02179841A (en) Non-heattreated steel for induction hardening and its manufacture