JP3541013B2 - Steel for power transmission components with excellent contact fatigue properties - Google Patents

Steel for power transmission components with excellent contact fatigue properties Download PDF

Info

Publication number
JP3541013B2
JP3541013B2 JP2001009326A JP2001009326A JP3541013B2 JP 3541013 B2 JP3541013 B2 JP 3541013B2 JP 2001009326 A JP2001009326 A JP 2001009326A JP 2001009326 A JP2001009326 A JP 2001009326A JP 3541013 B2 JP3541013 B2 JP 3541013B2
Authority
JP
Japan
Prior art keywords
weight
steel
less
power transmission
contact fatigue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001009326A
Other languages
Japanese (ja)
Other versions
JP2002212668A (en
Inventor
庸 住田
一衛 野村
哲己 小川
友章 西川
幸夫 伊藤
出 山本
秀雄 相原
昌澄 大西
修 中野
明彦 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Aichi Steel Corp
Original Assignee
Toyota Motor Corp
Aichi Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Aichi Steel Corp filed Critical Toyota Motor Corp
Priority to JP2001009326A priority Critical patent/JP3541013B2/en
Publication of JP2002212668A publication Critical patent/JP2002212668A/en
Application granted granted Critical
Publication of JP3541013B2 publication Critical patent/JP3541013B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Articles (AREA)
  • Pulleys (AREA)
  • Friction Gearing (AREA)

Description

【0001】
【技術分野】
本発明は,摩擦係数の大きい潤滑油を介して,接触の摩擦力により動力を伝達する部品,例えばトロイダル式無段変速機等に使用される鋼,および部品に関し,特に優れた接触疲労特性を示す動力伝達部品用鋼,およびその鋼を用いた動力伝達部品に関する。
【0002】
【従来技術】
一般に,自動車や産業機械等に用いられ,接触疲労を受ける部品としては歯車や軸受が代表される。歯車は動力伝達部品として,特に自動車用変速機に,また,軸受は回転体の支持部に使用されており,これらは動力損失の原因となる接触による摩擦力の低減が重要とされている。
【0003】
近年,この歯車による変速機に代るものとして,トロイダル式無段変速機が採用され始めている。このトロイダル式無段変速機は,歯車の機械的かみ合いで動力を伝達するのではなく,駆動側回転体(円盤状部品,ディスクと呼ぶ)と従動側回転体(円盤状部品,ディスクと呼ぶ)との間に複数のローラを配置し,それぞれの接触部に発生する摩擦力によって回転し,動力を伝達するものである。従って,円盤状部品の上を円形軌道でローラが転がるため,その接触部においてスピンすべりが生じて発熱し,さらに,摩擦力によって動力を伝達するため接触部表面には通常の転がり接触にはない大きな摩擦力が発生する。このため,トロイダル式無段変速機は,構成部品に使用される鋼にとって,軸受等と比べて非常に苛酷な環境と考えられている。ここで,スピンすべりとは,円盤状部品の上を円形軌道でローラが転動する時,その接触面内における周速の差から生じるすべりを意味する。
【0004】
従来から,接触疲労をともなう歯車や軸受等には,SCR420やSCM420に代表される肌焼鋼や,SUJ2に代表される高炭素クロム軸受鋼が主に使用されている。しかし,これらの鋼をトロイダル式無段変速機等の用途に用いると,早期破損を起こす問題があった。そこで,このような特殊な使用環境下において,優れた接触疲労特性を有する鋼,およびその鋼を用いた部品が要望されている。
【0005】
こうした状況のもとに提案された鋼は,これまでに,特開平8−326862,特開平9−79337,特開平10−103440などに開示されている。たとえば,特開平8−326862は表面硬化処理として高周波焼入を採用しており,また,特開平9−79337は表面硬化処理として浸炭焼入と高周波焼入が併用しており,さらに特開平10−103440は浸炭焼入を採用している。これらはいずれも,本用途に対して疲労寿命向上効果が十分ではなく,さらに浸炭については,その処理に膨大な時間とエネルギーを必要とし,同時にCO2排出等の環境問題も生じる可能性があった。
【0006】
【解決しようとする課題】
これらの問題を考慮し,本発明の目的は,軸受等とは異なり,高面圧で,かつ,大きな摩擦力と高温という非常に苛酷な環境下において,優れた接触疲労特性を示す動力伝達部品用鋼及び,その鋼を用いた動力伝達部品を提供することにある。
【0007】
【課題の解決手段】
請求項1の発明は,C:0.55〜0.65重量%,Si:0.5超〜2.0重量%,Mn:1.0重量%以下,P:0.025重量%以下,S:0.035重量%以下,Cu:0.3重量%以下,Cr:1.6〜3.0重量%,Mo:1.6〜2.5重量%,V:0.75〜1.5重量%,Al:0.05重量%以下,O:0.0015重量%以下,N:0.030重量%以下,Ti:0.005重量%以下を含有し,かつ,(Mo%+V%)/C%:4.5〜6.0の関係を満足し,残部がFeおよび不可避的不純物よりなる鋼を球状化焼鈍した動力伝達部品用鋼であって,
該動力伝達部品用鋼に,焼入焼戻しをしたとき又は焼入焼戻しにサブゼロ処理を併用したとき,その硬さがHv680以上になることを特徴とする優れた接触疲労特性を有する動力伝達部品用鋼である。
【0008】
本発明によれば,潤滑油を介して接触し,その摩擦力を利用することで動力伝達を行う動力伝達部品用鋼に,溶製時の適正な化学成分と適切な硬化熱処理を施すことによって,一般的に用いられるSUJ2,SCM420および他の従来鋼に対して,優れた接触疲労特性向上効果を得ることができる。
このように本発明によれば,高面圧で,かつ,大きな摩擦力と高温という非常に苛酷な環境下において優れた接触疲労特性を示す動力伝達部品用鋼を提供することができる。
【0009】
以下に各合金元素の限定理由について説明する。
C:0.55〜0.65重量%
Cは鋼の強度を保持するために必須であり,また,焼もどしによる2次硬化で高硬度を確保するためにも必要な元素である。そのためには,少なくとも0.55重量%以上必要であるが,その含有量が多過ぎれば,Cとの結合力が特に強いMoやVと結合することで,大型の共晶炭化物やネット状炭化物が析出し易くなり,熱間および冷間加工性を阻害し製造性を悪化させるばかりか,接触疲労特性をも劣化させるため,上限を0.65重量%とした。
【0010】
Si:0.5超〜2.0重量%
Siは本発明にとって重要な元素の1つであり,発明者らは焼戻し軟化抵抗を与えるだけでなく,接触摩擦力によって動力伝達する部品において,その接触疲労特性の劣化を抑制する効果を見出した。その効果のためには0.5重量%を超えた含有量が必要である。しかし過剰に添加してもその効果は飽和するばかりでなく,鋼の変態点を高めるので熱処理温度を高温とする必要を生ずるほか,鍛造性および冷間加工性を損なうなどの弊害をもたらすので,Si含有量の上限を2.0重量%とする。好ましくは0.6〜1.2重量%が望ましい。
【0011】
Mn:1.0重量%以下
Mnは鋼の焼入れ性を向上させる元素であるが,過剰に添加すると素材の軟化焼鈍を困難とし,また加工性および熱間加工性をも劣化させるため上限を1.0重量%とする。
【0012】
P:0.025重量%以下
Pは鋼中に多量に存在すると結晶粒界に偏析し,粒界を脆化させる原因になる元素である。従って,可能な限り低いことが望ましく,上限を0.025重量%に規制する。
【0013】
S:0.035重量%以下
Sは切削性を向上させる元素であるが,多量に添加すると大型のMnS等の非金属介在物を生成し,疲労特性を劣化させるため上限を0.035重量%とする。
【0014】
Cu:0.3重量%以下
Cuは鋼の焼入れ性,耐食性を向上させる元素である。本発明においては,その含有量が多すぎれば赤熱脆性等の不具合を起こし,製造性を悪化させるので上限を0.3重量%とする。
【0015】
Cr:1.6〜3.0重量%
Crは本発明にとって必須の元素の1つで,焼戻し軟化抵抗性を与えるだけでなく,2次硬化にも寄与し,また,炭化物を生成することで耐摩耗性を付与するために必要な元素である。さらに,本発明において,Si,Mo,Vと同時に添加することにより,接触摩擦力によって動力伝達する部品において,接触疲労特性の劣化を抑制する効果を見出した。その効果のためには1.6重量%以上添加する必要がある。しかし,過剰に添加してもその効果は飽和するばかりか,Mo,Vと複合した巨大な共晶炭化物を析出させることで疲労特性を劣化させる場合があり,さらにはいたずらにコストを高めるのみなので,その含有量上限を3.0重量%とする。
【0016】
Mo:1.6〜2.5重量%
MoはCrと同様に炭化物形成元素であり,2次硬化や耐摩耗性に影響を与え,さらに焼戻し軟化抵抗性も向上させる。さらに,本発明においては,Si,Cr,Vと同時に添加することにより,接触疲労特性を向上できることを見出したことから必須の元素である。これらの効果のためには,少なくとも1.6重量%の添加が必要である。しかし,MoはCrよりもより安定な炭化物を形成することから,その含有量が多くなると,疲労特性を劣化させる大型の共晶炭化物やネット状炭化物の生成を促進させ,さらに,2次硬化に必要な固溶C量を確保するための焼入れにおいて,その温度の高温化を招くことで熱処理コストを上昇させ,さらに熱間加工性等の鋼の生産性にも悪影響を及ぼすので,上限を2.5重量%以下とする。
【0017】
V:0.75〜1.5重量%
VはMoと同様に炭化物形成元素であり,2次硬化や耐摩耗性に影響を与える元素である。特に,2次硬化に関しては,その効果は大きいことに加え,本発明においては,Si,Cr,Moと同時に添加することで,接触疲労特性を向上させることを見出した。これらの効果のためには,少なくとも,0.75重量%以上が必要である。しかしながら,過剰に添加すると,CrやMoに比べて非常に強い炭化物形成能を有することから,大型の共晶炭化物やネット状炭化物を生成しやすくなり,接触疲労特性を劣化させる場合があり,さらに加工性等をも劣化させるばかりか,いたずらにコストを上昇させてしまうため,上限を1.5重量%とする。
【0018】
Al:0.05重量%以下
Alは鋼を製造する上で脱酸剤として使用するため不可避に存在するもので,Nと結合して,結晶粒の成長を抑制することが知られている一方,過剰に添加すると酸化物系介在物となりやすく,接触疲労特性に悪影響を及ぼすので,上限を0.05重量%とする。
【0019】
O:0.0015重量%以下
OはAlと結合することで,接触疲労特性の低下を招く硬質な非金属介在物を形成する元素であるため,可能な限り低いことが望ましく,0.0015重量%以下に規制する。
【0020】
N:0.030重量%以下
NはAlと結合して結晶粒の成長を抑制することが知られており,その効果のために添加することが可能であるが,しかし過剰に添加すると,鋳造欠陥等の不具合を生じるので,その含有量上限を0.030重量%とする。
【0021】
Ti:0.005重量%以下
TiはNと結合して,大型で硬質な非金属介在物を生成しやすく接触疲労特性を劣化させるので,可能な限り低いことが望ましく,0.005重量%以下に規制する。
【0022】
(Mo%+V%)/C%:4.5〜6.0
本発明の請求範囲内において,特に,C,Mo,Vの間に最適な範囲が存在することを見出した。すなわち,本発明の請求範囲において,接触疲労特性を向上させ,また,必要な2次硬化能を付与するためには,少なくとも,(Mo%+V%)/C%が4.5以上必要である。しかし,Cとの結合力が強いMo,VがC量に対して過多になると,凝固時に大型の共晶炭化物やネット状炭化物を生成し,接触疲労特性に悪影響を及ぼすばかりか,過剰な合金添加による鋼のコスト増になるため,(Mo%+V%)/C%は6.0以下とする。
【0023】
焼入焼もどし硬さ:Hv680以上
動力伝達部品用鋼は接触荷重を受けるため,材料の塑性変形を防止し,その面圧に耐える必要があることから下限をHv680とした。
【0024】
本発明において,2次硬化をより効果的にするために,熱処理として,サブゼロ処理を併用してもかまわない。
【0025】
請求項2の発明のように,上記鋼は,更に,Ni:1.0重量%以下を含有していることが好ましい。
【0026】
Niは鋼中マトリックスを強化して靭性を向上させる点で,疲労特性の向上に有効な元素である。しかし,含有量が多くなるとその効果が飽和するばかりか冷間加工性を阻害し,さらに材料コストの上昇を招くことからその含有量は上記のように1.0重量%以下とすることが好ましい。
【0027】
次に,請求項3の発明は,C:0.55〜0.65重量%,Si:0.5超〜2.0重量%,Mn:1.0重量%以下,P:0.025重量%以下,S:0.035重量%以下,Cu:0.3重量%以下,Cr:1.6〜3.0重量%,Mo:1.6〜2.5重量%,V:0.75〜1.5重量%,Al:0.05重量%以下,O:0.0015重量%以下,N:0.030重量%以下,Ti:0.005重量%以下を含有し,かつ,(Mo%+V%)/C%:4.5〜6.0の関係を満足し,残部がFeおよび不可避的不純物よりなる鋼を球状化焼鈍した動力伝達部品用鋼からなる動力伝達部品であって,
該動力伝達部品には,焼入焼戻し又は焼入焼戻しにサブゼロ処理が併用されており,
上記動力伝達部品の硬さはHv680以上であることを特徴とする優れた接触疲労特性を有する動力伝達部品である。
【0028】
本発明の動力伝達部品は,摩擦力により動力を伝達するときに,優れた接触疲労特性を発揮することができる。また,高面圧で,かつ,大きな摩擦力と高温という非常に苛酷な環境下においても優れた接触疲労特性を発揮することができる。
【0029】
請求項4の発明のように,上記鋼は,更に,Ni:1.0重量%以下を含有していることが好ましい。1.0重量%を超える場合には,冷間加工性を阻害し,材料コストの上昇を招くおそれがある。
本発明の動力伝達部品の具体例としては,たとえば,トロイダル式無段変速機などがある。
【0030】
【発明の実施の形態】
発明者らは本発明を成すために,対象となる鋼あるいは部品が使用される環境を再現した試験を実施する必要があると考えた。すなわち,高面圧,摩擦力による動力伝達,高温,また接触面内におけるスピンすべり等が考慮された試験でなければならない。
【0031】
図1は本発明に係わる試験で用いた接触疲労試験機を示す。本試験機は円盤状試験片(従動円盤)2上において,垂直荷重を受けた2ないし3つの駆動ローラ1が駆動モータ3にて転動し,十分な摩擦力を与えるために動力吸収機4によって制動している従動円盤2を,駆動ローラ1と接触させ,その接触面21に発生する摩擦力を利用して駆動させるものである。
【0032】
表1は,本試験機と,一般に歯車の代用評価として用いられるローラピッチング試験機と,軸受の代用評価として用いられるスラスト型転動寿命試験機の特徴を合わせて示す。表1より,本試験機は,スピンすべりを伴いながら,接触摩擦力により動力伝達をおこなう部品を評価するのに適している。
表2は本発明を成すために各種検討を実施した供試材の化学成分の一覧表を示す。これらの供試材は,VIMで溶製し,分塊圧延後,熱間で鍛伸および据込み鍛造して素形材とした。その後,鋼A〜Vについては機械加工を容易にするために球状化焼鈍を施しており,特に鋼A〜Uについては,その条件を880℃で5hr保持後,550℃まで15℃/hrの徐冷とした。これら素形材を所定の寸法に機械加工して,所定の硬化熱処理を施した。さらに表面を仕上加工することによりスケールや脱炭層を除去し,その状態で試験に供した。
【0033】
なお,従来鋼V〜Zのなかで,硬化熱処理として浸炭や高周波焼入を施したものについては,当然のことながら,仕上加工代を0.1〜0.2mmとして,有効硬化深さを加工によって浅くしないように配慮している。
【0034】
表3は各供試材の熱処理,および仕上加工後のビッカース硬度計による表面硬さを示す。参考のため,X線回折法によって測定した,その表面の残留オーステナイト量も併記する。各供試材の熱処理のヒートパターンを図2〜図9に示す。図2は,試料A〜F,J,L,N〜Qのヒートパターンを,図3は,試料G〜I,K,M,R〜Uのヒートパターンを示す。図4,図5,図6,図7,図8,図9は,順に,試料A2,V,W,X,Y,Zのヒートパターンを示す。なお,図6,図8および図9中のC.P.とは浸炭雰囲気中のカーボン・ポテンシャルを意味する。
【0035】
これらの供試材を図1に示した接触疲労試験機において,表4に示す条件で試験を実施し,接触疲労特性は,接触面における剥離損傷の発生までの回転数として計測した。その結果を表5に示した。ここで,平均寿命比とは鋼V(JIS−SUJ2)を1とした比で表わしている。
【0036】
以下に本発明に係わる実施例について説明する。本発明鋼は表2における鋼A〜Iであり,表3における鋼A2は,鋼Aに関して熱処理条件を変化させて,仕上加工後の表面硬さを変化させたため比較鋼である。これらの本発明鋼は,表5に示す平均寿命比がいずれも10を超えており,優れた接触疲労特性を有することがわかる。
【0037】
一方,比較鋼は表2における鋼J〜鋼Uであり,本発明鋼に対し,鋼J,鋼Kは(Mo%+V%)/C%の値がそれぞれ下限未満,上限超過しており,表5に示すごとく,本発明鋼に比べて十分な寿命向上効果が得られていない。また,鋼L,鋼N,鋼O,鋼Pおよび鋼Qは,それぞれSi,C,Cr,MoおよびVが本請求範囲より低くなっており,鋼M,鋼Rおよび鋼Sは,それぞれC,MoおよびVが本請求範囲より高くなっており,いずれの比較鋼も表5に示すごとく十分な寿命向上効果が得られていない。さらに,鋼TはOが,また,鋼UはTiが本請求範囲を超えており,非金属介在物が増加していると考えられるため,表5に示すことく本発明鋼ほどの寿命向上効果を得るにいたっていない。
【0038】
ここで,表3および表5の比較鋼として記載してある鋼A2に関して説明する。この鋼A2は本発明鋼Aと同一成分であるが,焼入条件を鋼Aとは変えることによって,表3に示すように,本請求範囲よりも表面硬さが低くなったものである。したがって,この鋼A2においても,鋼Aほどの寿命向上効果が得られていない。
【0039】
さらに,表2における鋼V〜Zは従来鋼を示しており,表3にそれらの熱処理,硬さ,残留オーステナイト量などを示している。ここで,鋼VはJIS−SUJ2であり,鋼WはJIS−SCM420であり,鋼Xは特開平8−326862に相当し,鋼Yは特開平9−79337に相当し,鋼Zは特開平10−103440に相当するものである。いずれの従来鋼も化学成分が本発明鋼の請求範囲を逸脱し,さらに,硬化熱処理手法が異なっており,表5に示すごとく本発明鋼より劣る寿命水準となっている。これらの本発明鋼,比較鋼および従来鋼の結果は,本発明の有効性および妥当性を示すものである。
【0040】
以上に本発明の実施例を詳述したが,これは一例であり,本発明の意図を逸脱しない範囲で,摩擦力によって動力を伝達する動力伝達部品用鋼,および動力伝達部品に適用可能である。
【0041】
【表1】

Figure 0003541013
【0042】
【表2】
Figure 0003541013
【0043】
【表3】
Figure 0003541013
【0044】
【表4】
Figure 0003541013
【0045】
【表5】
Figure 0003541013
【0046】
【発明の効果】
本発明によれば,高面圧で,かつ,大きな摩擦力と高温という非常に苛酷な環境下において,優れた接触疲労特性を示す動力伝達部品用鋼及び,その鋼を用いた動力伝達部品を提供することができる。
【図面の簡単な説明】
【図1】本発明の接触疲労特性を測定する接触疲労試験機の概要を示す説明図。
【図2】表3における熱処理のうち,一部の焼入焼もどしに関するヒートパターンを示す説明図。
【図3】表3における熱処理のうち,一部の焼入焼もどしに関するヒートパターンを示す説明図。
【図4】表3における熱処理のうち,一部の焼入焼もどしに関するヒートパターンを示す説明図。
【図5】表3における熱処理のうち,一部の焼入焼もどしに関するヒートパターンを示す説明図。
【図6】表3における熱処理のうち,一部の浸炭焼入に関するヒートパターンを示す説明図。
【図7】表3における熱処理のうち,高周波焼入に関するヒートパターンを示す説明図。
【図8】表3における熱処理のうち,浸炭および高周波焼入に関するヒートパターンを示す説明図。
【図9】表3における熱処理のうち,一部の浸炭焼入に関するヒートパターンを示す説明図。
【符号の説明】
1...駆動ローラ,
2...円盤状試験片(従動円盤),
21...接触面,
3...駆動モータ,
4...動力吸収機,[0001]
【Technical field】
The present invention relates to a component for transmitting power by frictional force of contact through a lubricating oil having a large friction coefficient, for example, a steel used for a toroidal type continuously variable transmission and the like, and a component having particularly excellent contact fatigue characteristics. The present invention relates to a steel for a power transmission component and a power transmission component using the steel.
[0002]
[Prior art]
In general, gears and bearings are used as components used in automobiles and industrial machines and are subject to contact fatigue. Gears are used as power transmission parts, particularly in transmissions for automobiles, and bearings are used as supports for rotating bodies, and it is important to reduce frictional force due to contact that causes power loss.
[0003]
In recent years, a toroidal type continuously variable transmission has begun to be used as an alternative to the transmission using gears. This toroidal type continuously variable transmission does not transmit power by the mechanical engagement of gears, but uses a rotating body on the driving side (called a disk-shaped part or disk) and a rotating body on the driven side (called a disk-shaped part or disk). And a plurality of rollers are arranged between them, and are rotated by frictional force generated at respective contact portions to transmit power. Therefore, the roller rolls in a circular orbit on the disk-shaped part, causing a spin-slip at the contact part and generating heat. In addition, since the power is transmitted by frictional force, the surface of the contact part is not in normal rolling contact. Large friction force is generated. For this reason, the toroidal type continuously variable transmission is considered to be a very harsh environment for steel used as a component, compared to a bearing or the like. Here, the spin slip means a slip caused by a difference in peripheral speed in a contact surface when a roller rolls on a disk-shaped component in a circular orbit.
[0004]
Conventionally, case hardening steel represented by SCR420 and SCM420 and high carbon chromium bearing steel represented by SUJ2 have been mainly used for gears and bearings with contact fatigue. However, when these steels are used for applications such as toroidal-type continuously variable transmissions, there has been a problem of early breakage. Therefore, there is a demand for a steel having excellent contact fatigue properties under such a special use environment, and a part using the steel.
[0005]
The steel proposed in such a situation has been disclosed in Japanese Unexamined Patent Application Publication Nos. Hei 8-326862, Hei 9-79337, Hei 10-103440, and the like. For example, Japanese Unexamined Patent Publication No. Hei 8-326682 employs induction hardening as a surface hardening treatment, and Japanese Unexamined Patent Publication No. Hei 9-79337 employs both carburizing and induction hardening as a surface hardening treatment. -10440 adopts carburizing and quenching. All of these have insufficient fatigue life improvement effects for this application, and carburizing requires an enormous amount of time and energy to treat, and may also cause environmental problems such as CO2 emissions. .
[0006]
[Problem to be solved]
In view of these problems, an object of the present invention is to provide a power transmission component which exhibits excellent contact fatigue characteristics under a very harsh environment of high surface pressure, large frictional force and high temperature, unlike bearings and the like. And a power transmission component using the steel.
[0007]
[Means for solving the problem]
The invention of claim 1 is characterized in that: C: 0.55 to 0.65% by weight, Si: more than 0.5 to 2.0% by weight, Mn: 1.0% by weight or less, P: 0.025% by weight or less, S: 0.035% by weight or less, Cu: 0.3% by weight or less, Cr: 1.6 to 3.0% by weight, Mo: 1.6 to 2.5% by weight, V: 0.75 to 1. 5% by weight, Al: 0.05% by weight or less, O: 0.0015% by weight or less, N: 0.030% by weight or less, Ti: 0.005% by weight or less, and (Mo% + V% ) / C%: steel for power transmission parts, which spheroidized and spheroidized steel that satisfies the relationship of 4.5 to 6.0, with the balance being Fe and unavoidable impurities,
When the steel for power transmission parts is subjected to quenching and tempering or when sub-zero treatment is used in combination with quenching and tempering, the hardness of the steel becomes Hv680 or more. It is steel.
[0008]
According to the present invention, a steel for power transmission parts, which is in contact with the lubricating oil and transmits power by utilizing the frictional force, is subjected to an appropriate chemical component and an appropriate hardening heat treatment at the time of melting. As compared with SUJ2, SCM420 and other conventional steels which are generally used, an excellent contact fatigue property improving effect can be obtained.
As described above, according to the present invention, it is possible to provide a power transmission component steel exhibiting excellent contact fatigue characteristics under a very severe environment of a high surface pressure and a large frictional force and a high temperature.
[0009]
The reason for limiting each alloy element will be described below.
C: 0.55 to 0.65% by weight
C is an essential element for maintaining the strength of the steel, and is also an element necessary for securing high hardness by secondary hardening by tempering. For this purpose, at least 0.55% by weight or more is necessary, but if the content is too large, large eutectic carbides and net-like carbides are formed by bonding with Mo and V, which have a particularly strong bonding force with C. The upper limit is set to 0.65% by weight, since the precipitates are likely to precipitate, impairing the hot and cold workability and deteriorating the manufacturability as well as the contact fatigue characteristics.
[0010]
Si: more than 0.5 to 2.0% by weight
Si is one of the important elements for the present invention, and the inventors have found not only the effect of imparting the tempering softening resistance but also the effect of suppressing the deterioration of the contact fatigue characteristics in the parts that transmit power by the contact friction force. . A content exceeding 0.5% by weight is necessary for its effect. However, even if it is added excessively, the effect is not only saturated, but also raises the transformation point of the steel, so that it is necessary to increase the heat treatment temperature, and it also causes adverse effects such as impairing forgeability and cold workability. The upper limit of the Si content is set to 2.0% by weight. Preferably, it is 0.6 to 1.2% by weight.
[0011]
Mn: 1.0% by weight or less Mn is an element that improves the hardenability of steel. However, if added excessively, it becomes difficult to soften and soften the material, and the workability and hot workability are also deteriorated. 0.0% by weight.
[0012]
P: 0.025% by weight or less P is an element that, when present in a large amount in steel, segregates at crystal grain boundaries and causes embrittlement of the grain boundaries. Therefore, it is desirable to be as low as possible, and the upper limit is regulated to 0.025% by weight.
[0013]
S: 0.035% by weight or less S is an element that improves the machinability, but when added in a large amount, large non-metallic inclusions such as MnS are generated and the fatigue characteristics are deteriorated, so the upper limit is 0.035% by weight. And
[0014]
Cu: not more than 0.3% by weight Cu is an element that improves the hardenability and corrosion resistance of steel. In the present invention, if the content is too large, problems such as red-hot brittleness are caused and the productivity is deteriorated. Therefore, the upper limit is set to 0.3% by weight.
[0015]
Cr: 1.6 to 3.0% by weight
Cr is one of the essential elements for the present invention, and not only provides temper softening resistance, but also contributes to secondary hardening, and is an element necessary for imparting wear resistance by forming carbides. It is. Furthermore, in the present invention, it has been found that by adding simultaneously with Si, Mo, and V, an effect of suppressing the deterioration of the contact fatigue characteristics in a component that transmits power by contact frictional force. It is necessary to add 1.6% by weight or more for the effect. However, even if it is added excessively, the effect is not only saturated, but also the fatigue properties may be deteriorated by precipitating a huge eutectic carbide compounded with Mo and V. In addition, the cost is simply increased unnecessarily. The upper limit of the content is 3.0% by weight.
[0016]
Mo: 1.6 to 2.5% by weight
Mo is a carbide-forming element like Cr, and affects secondary hardening and wear resistance, and further improves tempering softening resistance. Furthermore, in the present invention, it has been found that by adding simultaneously with Si, Cr and V, it is possible to improve the contact fatigue properties, so that it is an essential element. For these effects, an addition of at least 1.6% by weight is necessary. However, Mo forms more stable carbides than Cr, so when its content increases, it promotes the formation of large eutectic carbides and net-like carbides that degrade fatigue properties, and further promotes secondary hardening. In the quenching to secure the required amount of solid solution C, the heat treatment cost is raised by inducing the temperature to be high, and the productivity of steel such as hot workability is adversely affected. 0.5% by weight or less.
[0017]
V: 0.75 to 1.5% by weight
V is a carbide forming element like Mo, and is an element that affects secondary hardening and wear resistance. In particular, it has been found that in addition to the effect of secondary hardening, the effect is great, and in the present invention, the simultaneous addition of Si, Cr and Mo improves the contact fatigue properties. For these effects, at least 0.75% by weight or more is required. However, if added excessively, it has a very strong carbide-forming ability as compared with Cr and Mo, so that large eutectic carbides and net-like carbides are easily formed, which may degrade the contact fatigue properties. The upper limit is set to 1.5% by weight because not only the workability is deteriorated, but also the cost is unnecessarily increased.
[0018]
Al: 0.05% by weight or less Al is inevitably present because it is used as a deoxidizing agent in the production of steel, and is known to combine with N to suppress the growth of crystal grains. , Excessive addition tends to form oxide inclusions, which adversely affects the contact fatigue properties. Therefore, the upper limit is set to 0.05% by weight.
[0019]
O: 0.0015% by weight or less O is an element which forms hard non-metallic inclusions which cause a decrease in contact fatigue characteristics when combined with Al. %.
[0020]
N: 0.030% by weight or less It is known that N bonds with Al and suppresses the growth of crystal grains, and it is possible to add N for its effect. Since defects such as defects occur, the upper limit of the content is set to 0.030% by weight.
[0021]
Ti: 0.005% by weight or less Ti is preferably as low as possible because it combines with N to form large hard nonmetallic inclusions and deteriorates contact fatigue characteristics. To be regulated.
[0022]
(Mo% + V%) / C%: 4.5-6.0
Within the scope of the claims of the present invention, it has been found that there is an optimal range among C, Mo and V. That is, in the claims of the present invention, at least (Mo% + V%) / C% is required to be 4.5 or more in order to improve the contact fatigue property and to provide the necessary secondary hardening ability. . However, when Mo and V, which have a strong bonding force with C, are excessive with respect to the C content, large eutectic carbides and net-like carbides are formed during solidification, which not only adversely affects contact fatigue properties but also causes excessive alloying. (Mo% + V%) / C% is set to 6.0 or less because the cost of steel increases due to the addition.
[0023]
Hardening and tempering hardness: Hv680 or higher Since steel for power transmission components receives a contact load, it is necessary to prevent plastic deformation of the material and to withstand the surface pressure, so the lower limit was set to Hv680.
[0024]
In the present invention, in order to make the secondary curing more effective, a sub-zero treatment may be used in combination as the heat treatment.
[0025]
Preferably, the steel further contains 1.0% by weight or less of Ni.
[0026]
Ni is an element effective in improving fatigue characteristics in that it strengthens the matrix in steel and improves toughness. However, when the content is increased, the effect is saturated, not only the cold workability is impaired, but also the material cost is increased. Therefore, the content is preferably set to 1.0% by weight or less as described above. .
[0027]
Next, the invention according to claim 3 is characterized in that: C: 0.55 to 0.65% by weight, Si: more than 0.5 to 2.0% by weight, Mn: 1.0% by weight or less, P: 0.025% by weight %, S: 0.035% by weight or less, Cu: 0.3% by weight or less, Cr: 1.6 to 3.0% by weight, Mo: 1.6 to 2.5% by weight, V: 0.75% 1.5% by weight, Al: 0.05% by weight or less, O: 0.0015% by weight or less, N: 0.030% by weight or less, Ti: 0.005% by weight or less, and (Mo % + V%) / C%: a power transmission component that satisfies the relationship of 4.5 to 6.0 and the balance is steel for a power transmission component obtained by spheroidizing and annealing steel including Fe and unavoidable impurities,
The power transmission component uses quenching and tempering or quenching and tempering together with sub-zero treatment.
The power transmission component has a hardness of Hv680 or more, and is a power transmission component having excellent contact fatigue characteristics.
[0028]
The power transmission component of the present invention can exhibit excellent contact fatigue characteristics when transmitting power by frictional force. In addition, excellent contact fatigue characteristics can be exhibited even under a very severe environment of high surface pressure, large frictional force and high temperature.
[0029]
It is preferable that the steel further contains Ni: 1.0% by weight or less. If the content exceeds 1.0% by weight, the cold workability may be impaired, leading to an increase in material cost.
Specific examples of the power transmission component of the present invention include, for example, a toroidal-type continuously variable transmission.
[0030]
BEST MODE FOR CARRYING OUT THE INVENTION
The inventors thought that in order to carry out the present invention, it was necessary to carry out a test reproducing the environment in which the target steel or component was used. In other words, the test must take into account high surface pressure, power transmission by frictional force, high temperature, and spin slip in the contact surface.
[0031]
FIG. 1 shows a contact fatigue tester used in a test according to the present invention. In this tester, two or three drive rollers 1 which have been subjected to a vertical load are rolled by a drive motor 3 on a disk-shaped test piece (follower disk) 2 to apply a sufficient frictional force to a power absorber 4. The driven disk 2 which is being braked by this is brought into contact with the drive roller 1 and driven by utilizing the frictional force generated on the contact surface 21.
[0032]
Table 1 shows the features of the present test machine, a roller pitching test machine generally used as a substitute evaluation of gears, and a thrust rolling life test machine used as a substitute evaluation of bearings. From Table 1, this tester is suitable for evaluating components that transmit power by contact frictional force while involving spin slip.
Table 2 shows a list of the chemical components of the test materials that were subjected to various studies to implement the present invention. These test materials were melted by VIM, slab-rolled, and then hot forged and upset forged to obtain shaped materials. Thereafter, steels A to V are subjected to spheroidizing annealing in order to facilitate machining. Particularly, for steels A to U, the conditions are maintained at 880 ° C. for 5 hours, and then up to 550 ° C. at 15 ° C./hr. It was slowly cooled. These shaped members were machined to predetermined dimensions and subjected to predetermined hardening heat treatment. Furthermore, the scale and decarburized layer were removed by finishing the surface, and the specimen was subjected to the test in that state.
[0033]
Of the conventional steels V to Z, those that have been subjected to carburizing or induction hardening as the hardening heat treatment are, of course, finished with an allowance of 0.1 to 0.2 mm and an effective hardening depth. So that it is not shallow.
[0034]
Table 3 shows the surface hardness of each test material after heat treatment and finish processing by a Vickers hardness tester. For reference, the amount of retained austenite on the surface measured by the X-ray diffraction method is also shown. The heat pattern of the heat treatment of each test material is shown in FIGS. FIG. 2 shows heat patterns of samples A to F, J, L, N to Q, and FIG. 3 shows heat patterns of samples G to I, K, M, RU. 4, 5, 6, 7, 8, and 9 show heat patterns of samples A2, V, W, X, Y, and Z, respectively. Note that C.I. in FIG. 6, FIG. 8 and FIG. P. Means the carbon potential in a carburizing atmosphere.
[0035]
These test materials were tested on the contact fatigue tester shown in FIG. 1 under the conditions shown in Table 4, and the contact fatigue characteristics were measured as the number of rotations until the occurrence of peeling damage on the contact surface. Table 5 shows the results. Here, the average life ratio is expressed as a ratio of steel V (JIS-SUJ2) as 1.
[0036]
Hereinafter, embodiments according to the present invention will be described. The steels of the present invention are steels A to I in Table 2, and steel A2 in Table 3 is a comparative steel because the heat treatment conditions for steel A were changed to change the surface hardness after finishing. These steels of the present invention all have the average life ratios shown in Table 5 exceeding 10, indicating that they have excellent contact fatigue properties.
[0037]
On the other hand, the comparative steels are steel J to steel U in Table 2, and the steels J and K have (Mo% + V%) / C% values below the lower limit and the upper limit, respectively. As shown in Table 5, the effect of improving the life was not sufficiently obtained as compared with the steel of the present invention. Steel L, steel N, steel O, steel P and steel Q have Si, C, Cr, Mo and V respectively lower than the claimed range, and steel M, steel R and steel S have C respectively. , Mo and V are higher than the claimed range, and none of the comparative steels has a sufficient life improving effect as shown in Table 5. Further, since the steel T is O and the steel U is Ti in excess of the claimed range and the nonmetallic inclusions are considered to be increased, as shown in Table 5, the life is improved as much as the steel of the present invention. It has not been effective.
[0038]
Here, steel A2 described as a comparative steel in Tables 3 and 5 will be described. The steel A2 has the same composition as the steel A of the present invention, but has a lower surface hardness than the scope of the present invention as shown in Table 3 by changing the quenching conditions from the steel A. Therefore, even in steel A2, the effect of improving the life as steel A is not obtained.
[0039]
Further, steels V to Z in Table 2 show conventional steels, and Table 3 shows their heat treatment, hardness, residual austenite amount, and the like. Here, steel V is JIS-SUJ2, steel W is JIS-SCM420, steel X is equivalent to JP-A-8-326882, steel Y is equivalent to JP-A-9-79337, and steel Z is JP-A-9-79337. This corresponds to 10-103440. All of the conventional steels have chemical components outside the scope of the claimed invention, and further have different hardening heat treatment methods. As shown in Table 5, the life levels are inferior to those of the inventive steel. The results of the steel according to the present invention, the comparative steel and the conventional steel show the effectiveness and validity of the present invention.
[0040]
Although the embodiment of the present invention has been described in detail above, this is merely an example, and the present invention can be applied to a power transmission component steel and a power transmission component that transmit power by frictional force without departing from the intention of the present invention. is there.
[0041]
[Table 1]
Figure 0003541013
[0042]
[Table 2]
Figure 0003541013
[0043]
[Table 3]
Figure 0003541013
[0044]
[Table 4]
Figure 0003541013
[0045]
[Table 5]
Figure 0003541013
[0046]
【The invention's effect】
According to the present invention, a steel for a power transmission component exhibiting excellent contact fatigue characteristics under a very harsh environment of high surface pressure, large frictional force and high temperature, and a power transmission component using the steel are provided. Can be provided.
[Brief description of the drawings]
FIG. 1 is an explanatory view showing an outline of a contact fatigue tester for measuring contact fatigue characteristics of the present invention.
FIG. 2 is an explanatory view showing a heat pattern relating to a part of quenching and tempering among the heat treatments in Table 3.
FIG. 3 is an explanatory diagram showing a heat pattern relating to a part of quenching and tempering among the heat treatments in Table 3.
FIG. 4 is an explanatory view showing a heat pattern relating to a part of quenching and tempering among the heat treatments in Table 3.
FIG. 5 is an explanatory view showing a heat pattern relating to a part of quenching and tempering among the heat treatments in Table 3.
FIG. 6 is an explanatory view showing a heat pattern relating to a part of carburizing and quenching among the heat treatments in Table 3.
FIG. 7 is an explanatory diagram showing a heat pattern related to induction hardening among the heat treatments in Table 3.
FIG. 8 is an explanatory view showing a heat pattern relating to carburizing and induction hardening in the heat treatments in Table 3.
FIG. 9 is an explanatory view showing a heat pattern relating to a part of carburizing and quenching among the heat treatments in Table 3.
[Explanation of symbols]
1. . . Drive roller,
2. . . Disc-shaped test piece (follower disc),
21. . . Contact surface,
3. . . Drive motor,
4. . . Power absorber,

Claims (4)

C:0.55〜0.65重量%,Si:0.5超〜2.0重量%,Mn:1.0重量%以下,P:0.025重量%以下,S:0.035重量%以下,Cu:0.3重量%以下,Cr:1.6〜3.0重量%,Mo:1.6〜2.5重量%,V:0.75〜1.5重量%,Al:0.05重量%以下,O:0.0015重量%以下,N:0.030重量%以下,Ti:0.005重量%以下を含有し,かつ,(Mo%+V%)/C%:4.5〜6.0の関係を満足し,残部がFeおよび不可避的不純物よりなる鋼を球状化焼鈍した動力伝達部品用鋼であって,
該動力伝達部品用鋼に,焼入焼戻しをしたとき又は焼入焼戻しにサブゼロ処理を併用したとき,その硬さがHv680以上になることを特徴とする優れた接触疲労特性を有する動力伝達部品用鋼。
C: 0.55 to 0.65 wt%, Si: more than 0.5 to 2.0 wt%, Mn: 1.0 wt% or less, P: 0.025 wt% or less, S: 0.035 wt% Hereinafter, Cu: 0.3% by weight or less, Cr: 1.6 to 3.0% by weight, Mo: 1.6 to 2.5% by weight, V: 0.75 to 1.5% by weight, Al: 0 0.05% by weight or less, O: 0.0015% by weight or less, N: 0.030% by weight or less, Ti: 0.005% by weight or less, and (Mo% + V%) / C%: 4. A steel for power transmission parts, which spheroidizes and spheroidizes a steel that satisfies the relationship of 5 to 6.0 and the balance is Fe and inevitable impurities;
When the steel for power transmission parts is subjected to quenching and tempering or when sub-zero treatment is used in combination with quenching and tempering, the hardness of the steel becomes Hv680 or more. steel.
請求項1において,上記鋼は,更に,Ni:1.0重量%以下を含有していることを特徴とする優れた接触疲労特性を有する動力伝達部品用鋼。The steel for a power transmission component having excellent contact fatigue characteristics according to claim 1, wherein the steel further contains 1.0% by weight or less of Ni. C:0.55〜0.65重量%,Si:0.5超〜2.0重量%,Mn:1.0重量%以下,P:0.025重量%以下,S:0.035重量%以下,Cu:0.3重量%以下,Cr:1.6〜3.0重量%,Mo:1.6〜2.5重量%,V:0.75〜1.5重量%,Al:0.05重量%以下,O:0.0015重量%以下,N:0.030重量%以下,Ti:0.005重量%以下を含有し,かつ,(Mo%+V%)/C%:4.5〜6.0の関係を満足し,残部がFeおよび不可避的不純物よりなる鋼を球状化焼鈍した動力伝達部品用鋼からなる動力伝達部品であって,
該動力伝達部品には,焼入焼戻し又は焼入焼戻しにサブゼロ処理が併用されており,
上記動力伝達部品の硬さはHv680以上であることを特徴とする優れた接触疲労特性を有する動力伝達部品。
C: 0.55 to 0.65 wt%, Si: more than 0.5 to 2.0 wt%, Mn: 1.0 wt% or less, P: 0.025 wt% or less, S: 0.035 wt% Hereinafter, Cu: 0.3% by weight or less, Cr: 1.6 to 3.0% by weight, Mo: 1.6 to 2.5% by weight, V: 0.75 to 1.5% by weight, Al: 0 0.05% by weight or less, O: 0.0015% by weight or less, N: 0.030% by weight or less, Ti: 0.005% by weight or less, and (Mo% + V%) / C%: 4. A power transmission component comprising a steel for a power transmission component which spheroidizes and spheroidizes a steel comprising Fe and inevitable impurities, the balance satisfying a relationship of 5 to 6.0.
The power transmission component uses quenching and tempering or quenching and tempering together with sub-zero treatment.
A power transmission component having excellent contact fatigue characteristics, wherein the hardness of the power transmission component is Hv680 or more.
請求項3において,上記鋼は,更に,Ni:1.0重量%以下を含有していることを特徴とする優れた接触疲労特性を有する動力伝達部品。4. The power transmission component according to claim 3, wherein the steel further contains Ni: 1.0% by weight or less.
JP2001009326A 2001-01-17 2001-01-17 Steel for power transmission components with excellent contact fatigue properties Expired - Lifetime JP3541013B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001009326A JP3541013B2 (en) 2001-01-17 2001-01-17 Steel for power transmission components with excellent contact fatigue properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001009326A JP3541013B2 (en) 2001-01-17 2001-01-17 Steel for power transmission components with excellent contact fatigue properties

Publications (2)

Publication Number Publication Date
JP2002212668A JP2002212668A (en) 2002-07-31
JP3541013B2 true JP3541013B2 (en) 2004-07-07

Family

ID=18876826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001009326A Expired - Lifetime JP3541013B2 (en) 2001-01-17 2001-01-17 Steel for power transmission components with excellent contact fatigue properties

Country Status (1)

Country Link
JP (1) JP3541013B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105331789A (en) * 2015-10-29 2016-02-17 武汉理工大学 Heat treatment method for die casting insert for automobile body
CN109338218A (en) * 2018-11-06 2019-02-15 江苏省无锡交通高等职业技术学校 Use for diesel engine super-pressure common rail fuel injection system needle-valve body steel and manufacturing process

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105331789A (en) * 2015-10-29 2016-02-17 武汉理工大学 Heat treatment method for die casting insert for automobile body
CN109338218A (en) * 2018-11-06 2019-02-15 江苏省无锡交通高等职业技术学校 Use for diesel engine super-pressure common rail fuel injection system needle-valve body steel and manufacturing process

Also Published As

Publication number Publication date
JP2002212668A (en) 2002-07-31

Similar Documents

Publication Publication Date Title
TWI399441B (en) Induction hardening steel component or parts with pre-carbonitriding treatment
JP5927868B2 (en) Carburizing steel excellent in cold forgeability and method for producing the same
KR101830017B1 (en) Carburized-steel-component production method, and carburized steel component
JP3995904B2 (en) Method for producing inner ring for constant velocity joint excellent in workability and strength
KR20020033420A (en) Stainless steel for a disc brake rotor
CN112292471B (en) Mechanical component
JP5886119B2 (en) Case-hardened steel
JP4923776B2 (en) Rolling and sliding parts and manufacturing method thereof
JPH04143253A (en) Bearing steel excellent in rolling fatigue characteristic
JPH07188857A (en) Bearing parts
JP3541013B2 (en) Steel for power transmission components with excellent contact fatigue properties
JP6390685B2 (en) Non-tempered steel and method for producing the same
JP3607583B2 (en) Steel for power transmission parts and power transmission parts
CN107653420A (en) Vacuum carburization steel and its manufacture method
JP7436779B2 (en) Steel for carburized gears, carburized gears, and method for manufacturing carburized gears
JP5305778B2 (en) Manufacturing method of seamless steel pipe for high strength carburized parts
JP6825605B2 (en) Carburizing member
JP3236883B2 (en) Case hardening steel and method for manufacturing steel pipe using the same
JP2021006659A (en) Steel component and method for producing the same
JP2006199993A (en) Steel material to be case-hardened superior in cold forgeability and temper softening resistance
JP3996386B2 (en) Carburizing steel with excellent torsional fatigue properties
JPS59190321A (en) Production of parts for machine structural use having excellent soft nitriding characteristic and machinability
GB2513881A (en) Steel Alloy
JP7368697B2 (en) Steel for carburized gears, carburized gears, and method for manufacturing carburized gears
JP4411096B2 (en) Steel wire rod and steel bar for case hardening with excellent cold forgeability after spheronization

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040326

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080402

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110402

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110402

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110402

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120402

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250