JPH0297394A - Treatment of enzymatic catalyst - Google Patents

Treatment of enzymatic catalyst

Info

Publication number
JPH0297394A
JPH0297394A JP24977088A JP24977088A JPH0297394A JP H0297394 A JPH0297394 A JP H0297394A JP 24977088 A JP24977088 A JP 24977088A JP 24977088 A JP24977088 A JP 24977088A JP H0297394 A JPH0297394 A JP H0297394A
Authority
JP
Japan
Prior art keywords
valine
aqueous solution
glucose
biotin
ethanol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24977088A
Other languages
Japanese (ja)
Inventor
Masayuki Inui
将行 乾
Shoichi Nara
昭一 奈良
Makoto Goto
誠 後藤
Masato Terasawa
真人 寺沢
Hideaki Yugawa
英明 湯川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Original Assignee
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP24977088A priority Critical patent/JPH0297394A/en
Publication of JPH0297394A publication Critical patent/JPH0297394A/en
Pending legal-status Critical Current

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

PURPOSE:To obtain L-valine useful as a drug, etc., in high yield and efficiency by subjecting a microbial cell belonging to a biotin-requiring coryne-type bacterial strain to a specific treatment before the enzymatic reaction with said microbial cell in a glucose-containing aqueous solution. CONSTITUTION:Cells of a microorganism belonging to a biotin-requiring coryne- type bacterial strain [preferably Brevibacterium flavum MJ-233 (FERM BP-1497), etc.] are immersed in an aqueous solution containing 1-20vol.% of ethanol. L-valine can be produced by the enzymic reaction in a glucose-containing aqueous solution using said microbial cell as an enzyme source. The treatment with the ethanol-containing aqueous solution is carried out preferably at 30-40 deg.C and pH7-8 for 3-25hr.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、酵素反応によるし一バリンの製造法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for producing valine by enzymatic reaction.

本発明によれば、高収量で効率よくL−バリンを製造す
ることができる。
According to the present invention, L-valine can be efficiently produced with high yield.

■、−バリンは、必須アミノ酸の一つとして人間及び動
物の栄養上重要な役割をするもので、医薬、食品、飼料
添加物等の需要が近年急激に増加している。
(2) -Valine plays an important role in the nutrition of humans and animals as one of the essential amino acids, and the demand for pharmaceuticals, foods, feed additives, etc. has increased rapidly in recent years.

(従来の技術と課題) L−バリンの工業的製法としては、他のアミノ酸の場合
と同様に立体異性体が存在するので、化学合成法ではL
一体のみの製造は困難となり、主として醗酵法によって
いる。
(Prior art and issues) As for the industrial production method of L-valine, since stereoisomers exist as in the case of other amino acids, L-valine is produced by chemical synthesis method.
It is difficult to manufacture only one piece, and fermentation is mainly used.

しかしながら、公知の醗酵法によるし一バリンの製造で
は、L−バリンの蓄積に附界があり、新たな観点で■、
−バリンを蓄積生成させる方法の提供が求められている
However, in the production of L-valine using the known fermentation method, there is a limit to the accumulation of L-valine, and from a new perspective,
- There is a need to provide a method for accumulating and producing valine.

本発明者らは先に、グルコースを含有する水溶液中で、
ビオチン要求性のコリネ型細菌に属する微生物菌体を酵
素源として用いて酵素反応させ、該水溶液中にL−バリ
ンを収率良く製造する方法(特願昭62−101677
号公報)を提案している。
The present inventors previously demonstrated that in an aqueous solution containing glucose,
A method for producing L-valine in a high yield in an aqueous solution by carrying out an enzymatic reaction using microbial cells belonging to coryneform bacteria that require biotin as an enzyme source (Japanese Patent Application No. 101677/1988)
(No. Publication).

(発明の構成及び効果) 本発明者らは、ビオチン要求性のコリネ型細菌に属する
微生物菌体を、グルコースを含有する水溶液にて酵素反
応させて該溶液中にL−バリンを生成せしめるに際し、
予め該微生物菌体を、1〜20容量%のエタノール含有
水溶液中に浸漬させることにより、高収量でL−バリン
を製造できることを見出し、本発明に到達するに至った
。 本発明によれば、グルコースを含有する水/8液中
で、ビオチン要求性のコリネ型細菌に属する微生物菌体
を酵素源として用いて、酵素反応させL−バリンを製造
するに際し、予め該微生物を、1〜20容量%のエタノ
ール含有水溶液中に浸漬させることにより、グルコース
消費量を大幅に低減化出来、その結果L−バリンの対グ
ルコース収率を大幅に向」ニさせることが可能となった
。従って本発明の方法によれば、■、−バリンを工業的
に効率良く製造できる。
(Structure and Effects of the Invention) The present inventors performed an enzymatic reaction on microbial cells belonging to biotin-requiring coryneform bacteria in an aqueous solution containing glucose to produce L-valine in the solution.
It was discovered that L-valine can be produced in high yield by immersing the microbial cells in advance in an aqueous solution containing 1 to 20% by volume of ethanol, leading to the present invention. According to the present invention, when producing L-valine through an enzymatic reaction using microorganisms belonging to biotin-requiring coryneform bacteria as an enzyme source in water/8 solution containing glucose, the microorganisms are prepared in advance. By immersing L-valine in an aqueous solution containing 1 to 20% ethanol by volume, the amount of glucose consumed can be significantly reduced, and as a result, the yield of L-valine to glucose can be greatly improved. Ta. Therefore, according to the method of the present invention, -valine can be produced industrially and efficiently.

(発明の詳細な説明) 本発明の方法は、微生物菌体の増殖を全く伴わない条件
下にL−バリンを製造する、酵素反応のみによるL−バ
リンの製造法を提供するものである。
(Detailed Description of the Invention) The method of the present invention provides a method for producing L-valine using only an enzymatic reaction, which produces L-valine under conditions that do not involve the growth of microbial cells.

本発明に使用される微生物は、ビオチン要求性のコリネ
型細菌に属するものである。このなかにはL−イソロイ
シン生産菌が含まれる。本発明に使用される微生物菌体
としては例えば、ブレビバクテリウム・フラバム(Br
evibacterium  flavum)MJ−2
33(微工研条寄 第1497号)、ブレビバクテリウ
ム・フラバム(Brevibacteriumflav
um) M、J−233−AB−41(微工研条寄 第
1498号)、ブレビバクテリウム・フラバム(Bre
vibacterium  flavum) MJ  
233ABT−11(微工研条寄 第1500号)及び
ブレビバクテリウム・フラバム(Brevibacte
riumflavum) MJ−233−ABD−21
,(微工研条寄 第1499号)等であり、これらの菌
が本発明に好適に用いられる。
The microorganism used in the present invention belongs to biotin-requiring coryneform bacteria. This includes L-isoleucine producing bacteria. Examples of the microbial cells used in the present invention include Brevibacterium flavum (Br
evibacterium flavum) MJ-2
33 (Feikoken Joyori No. 1497), Brevibacterium flavum
um) M, J-233-AB-41 (Feikoken Joyori No. 1498), Brevibacterium flavum (Bre
vibacterium flavum) MJ
233ABT-11 (Feikoken Joyori No. 1500) and Brevibacterium flavum (Brevibacterium flavum).
riumflavum) MJ-233-ABD-21
, (Feikoken Joyori No. 1499), etc., and these bacteria are preferably used in the present invention.

なお、上記の(微工研条寄 第1498号(微工研菌寄
 第3812号))は、(微工研条寄第1497号(微
工研菌寄 第3068号))を親株としてDL−α−ア
ミノ酪酸耐性を積極的に付与されたエタノール資化性微
生物である(特公昭59−28398号公報3〜4欄参
照)。微工研条寄 第1500号(微工研菌寄 第84
23号)は、(微工研条寄 第1497号)を親株とし
たI、−α−アミノ酪酸トランスアミナーゼ高活性変異
株である(特開昭62−519989号公報参照)。ま
た、微工研条寄 第1499号(微工研菌寄 第805
5号)は(微工研条寄 第1497号)を親株としたD
−α−アミノ酪酸デアミナーゼ高活性変異株である(特
開昭60−177993号公報参照)。
In addition, the above (Feikoken Joyori No. 1498 (Feikoken Byoyori No. 3812)) is a DL version using (Feikoken Joyori No. 1497 (Feikoken Byoyori No. 3068)) as the parent strain. - It is an ethanol-assimilating microorganism that has been actively given resistance to α-aminobutyric acid (see columns 3 and 4 of Japanese Patent Publication No. 59-28398). Microtechnology Research Institute No. 1500 (Feikoken Research Institute No. 84)
No. 23) is a mutant strain with high I, -α-aminobutyric acid transaminase activity using the parent strain (Feikoken Joyori No. 1497) (see JP-A-62-519989). In addition, FEIKEN JYOYO NO.
No. 5) is a D using (Feikoken Joyori No. 1497) as the parent stock.
-α-Aminobutyric acid deaminase is a highly active mutant strain (see Japanese Patent Application Laid-Open No. 177993/1983).

これらの微生物菌体の他にブレビバクテリウム・アンモ
ニアゲネス(Brevibacterium ammo
niagenes>ATCC6871、同ATCC13
745、同ATCC13746、ブレビバクテリウム・
デバリカタム(Brevibacterium div
aricatum)  ATCC14020等を用いる
こともできる。
In addition to these microbial cells, Brevibacterium ammonium
niagenes>ATCC6871, ATCC13
745, ATCC 13746, Brevibacterium
Brevibacterium div
aricatum) ATCC14020, etc. can also be used.

本発明に見られるビオチン要求性のコリネ型細菌に属す
る微生物菌体は、微生物菌体そのままで用いることもで
きるし、又これらを公知の手法で固定化した固定化物を
使用することもできる。この固定化手法としては、菌体
をアクリルアミド等の重合性モノマーを用いたり、アル
ギン酸塩あるいはカラギーナン等の適当な担体に不溶化
させる等の方法がある。
The microbial cells belonging to the biotin-requiring coryneform bacteria found in the present invention can be used as they are, or they can be immobilized by known methods. As a method for this immobilization, there are methods such as using a polymerizable monomer such as acrylamide or making the bacterial cells insoluble in a suitable carrier such as alginate or carrageenan.

本発明の方法に使用される上記のビオチン要求性のコリ
ネ型細菌に属する微生物菌体の調製に使用する培地は、
特に限定されるものではなく一般の微生物に使用される
ものでよい。
The medium used for preparing the microbial cells belonging to the above-mentioned biotin-requiring coryneform bacteria used in the method of the present invention is as follows:
There are no particular limitations, and any material used for general microorganisms may be used.

本発明に使用する微生物菌体のm製に使用する培地の炭
素源としては、グルコース等が使用される。窒素源とし
ては、アンモニア、硫酸アンモニウム、塩化アンモニウ
ム、硝酸アンモニウム、尿素等を単独若しくは混合して
用いることが出来る無機塩としては、リン酸−水素カリ
ウム、リン酸二水素カリウム、硫酸マグネシウム等が用
いられる。この他に菌の生育及びL−イソロイシン生育
に必要であれば、ペプトン、肉エキス、酵母エキス、コ
ーンステイブリカー、カザミノ酸、各種ビタミン等の栄
養素を培地に添加し用いる。
Glucose or the like is used as a carbon source for the culture medium used to prepare the microbial cells used in the present invention. As the nitrogen source, ammonia, ammonium sulfate, ammonium chloride, ammonium nitrate, urea, etc. can be used alone or in combination.As the inorganic salt, potassium hydrogen phosphate, potassium dihydrogen phosphate, magnesium sulfate, etc. can be used. In addition, nutrients such as peptone, meat extract, yeast extract, corn stable liquor, casamino acid, and various vitamins are added to the medium if necessary for the growth of bacteria and L-isoleucine.

培養は通気攪拌、振盪等の好気的条件下で行い、培#温
度は20〜40℃、好ましくは25〜35℃で行う。培
養途中のp Hは5〜10、好ましくは7〜8付近にて
行い、培養中のp Hの調整には酸、アルカリを添加し
て行う。
The culture is carried out under aerobic conditions such as aeration and shaking, and the culture temperature is 20 to 40°C, preferably 25 to 35°C. The pH during the cultivation is maintained at around 5 to 10, preferably around 7 to 8, and the pH during the cultivation is adjusted by adding acid or alkali.

培養開始時のグルコース濃度は好ましくは1〜5重量%
、更に好ましくは2〜3重量%が適する。培養期間は0
.5〜3日間、最適期間は1〜2日間である。
Glucose concentration at the start of culture is preferably 1 to 5% by weight
, more preferably 2 to 3% by weight. Culture period is 0
.. 5-3 days, optimal period is 1-2 days.

このようにして得られた培養物から菌体を集めて、水又
は適当な緩衝液で洗浄し、該洗浄菌体を本発明の方法に
使用する。
Cells are collected from the culture thus obtained, washed with water or an appropriate buffer, and the washed cells are used in the method of the present invention.

本発明の方法においては、上記でm製された微生物菌体
を、エタノールを含有する溶液中に浸漬処理した後、該
処理菌体の存在下、少なくともグルコースを含有する水
溶液にて酵素反応させ、Lバリンを生成せしめる。
In the method of the present invention, the microbial cells prepared above are immersed in a solution containing ethanol, and then subjected to an enzymatic reaction in an aqueous solution containing at least glucose in the presence of the treated microbial cells, Produces L-valine.

微生物菌体の処理に使用するエタノールの濃度は、1〜
20容量%、好ましくは5〜15容量%が好適に使用さ
れる。
The concentration of ethanol used to treat microbial cells is 1 to 1.
20% by volume, preferably 5-15% by volume is suitably used.

菌体の処理に用いる溶液としては、水又は適当な緩衝液
を用いることが出来、さらに必要に応じて窒素源、無機
塩、ビタミン等を添加することが出来る。
As the solution used for treating the bacterial cells, water or a suitable buffer can be used, and a nitrogen source, inorganic salts, vitamins, etc. can be added as necessary.

また、微生物菌体の処理時の濃度は、0.5〜50重量
%、好ましくは1〜30重量%である。
The concentration of microbial cells during treatment is 0.5 to 50% by weight, preferably 1 to 30% by weight.

処理時の温度は、10〜60℃、好ましくは、30〜4
0℃である。処理液のpHは、5〜10、好ましくは7
〜8が好適に用いられる。処理時間は、1〜30時間、
好ましくは3〜25時間である。
The temperature during treatment is 10 to 60°C, preferably 30 to 4°C.
It is 0°C. The pH of the treatment liquid is 5 to 10, preferably 7.
to 8 are preferably used. Processing time is 1 to 30 hours.
Preferably it is 3 to 25 hours.

以」二のようにして調製した処理菌体は酵素反応に使用
されるが、該菌体の固定化物も反応に供することができ
る。
The treated microbial cells prepared as described above are used in the enzyme reaction, but an immobilized product of the microbial cells can also be subjected to the reaction.

本発明の菌体の固定化物は、公知の固定化法例えばアク
リルアミド、アルギン酸塩、カラギーナン等による包括
法、DEAE−セファデックス、DEAE−セルロース
等によるイオン結合法などから適宜選択して調製できる
The immobilized bacterial cells of the present invention can be prepared by appropriately selecting from known immobilization methods, such as entrapment methods using acrylamide, alginate, carrageenan, etc., and ionic bonding methods using DEAE-Sephadex, DEAE-cellulose, etc.

該反応液は、通常完全合成培地が好適に用いられるが、
ここで完全合成培地とは、化学構造が公知の無機窒素源
及び/又は無機塩を含有する水溶液である。本発明に用
いられる完全合成培地の無機窒素源としては、アンモニ
ア、塩化アンモニウム、硫酸アンモニウム、硝酸アンモ
ニウム、リン酸アンモニウム等が例示でき、また無機塩
としては、リン酸−水素カリウム、リン酸二水素カリウ
ム、硫酸マグネシウム、硫酸マンガン、硫酸鉄等が例示
される。これらの無機窒素源、無機塩は、単独でも2種
以上混合して用いることもできる。
The reaction solution is usually a completely synthetic medium, but
Here, the completely synthetic medium is an aqueous solution containing an inorganic nitrogen source and/or an inorganic salt with a known chemical structure. Examples of inorganic nitrogen sources for the fully synthetic medium used in the present invention include ammonia, ammonium chloride, ammonium sulfate, ammonium nitrate, ammonium phosphate, etc., and examples of inorganic salts include potassium hydrogen phosphate, potassium dihydrogen phosphate, Examples include magnesium sulfate, manganese sulfate, and iron sulfate. These inorganic nitrogen sources and inorganic salts can be used alone or in combination of two or more.

完全合成培地の一例を示すと、(NH,)、30.23
g/j2、KH2PO40,5g/l、KHPO40,
5g/j!、、Mg5O,・7H200,5g/*、、
FeSO4’ 7H20201)pmXMnSO4・4
〜6H2020pI)m含有するPH7,6の水溶液が
ある。
An example of a completely synthetic medium is (NH,), 30.23
g/j2, KH2PO40, 5g/l, KHPO40,
5g/j! ,,Mg5O,・7H200,5g/*,,
FeSO4' 7H20201)pmXMnSO4・4
There is an aqueous solution with pH 7.6 containing ~6H2020pI)m.

上述の様に、本発明に使用される完全合成培地には、ビ
オチン又はビオチンを含む天然物は含有されない。ビオ
チンの含有されないことの明らかな化学構造公知のアミ
ノ酸、ビタミン、糖類等は添加することはできる。
As mentioned above, the fully synthetic medium used in the present invention does not contain biotin or natural products containing biotin. Amino acids, vitamins, sugars, etc. with known chemical structures that clearly do not contain biotin can be added.

本発明の方法において使用される、上記の様にm製され
た微生物菌体の使用量は、特に制限されるものではない
が、一般に1〜50%(w t / vol)の濃度で
使用することができる。
The amount of microbial cells prepared as described above used in the method of the present invention is not particularly limited, but is generally used at a concentration of 1 to 50% (wt/vol). be able to.

本発明において、酵素反応は、約20〜約50℃、好ま
しくは約30〜約40℃の温度で、通常約10〜約72
時間行われる。
In the present invention, the enzymatic reaction is carried out at a temperature of about 20 to about 50°C, preferably about 30 to about 40°C, and usually about 10 to about 72°C.
Time is done.

」1記酵素反応は、反応に用いられるグルコースを含有
する水溶液、好ましくは上述のグルコースを含有する完
全合成培地中の溶存酸素濃度が0゜O5ppm以上、8
ppm以下となる様に、反応系中に空気もしくは酸素を
、連続又は間歇的に供給して行うのが好ましい。
1. The enzyme reaction is carried out in an aqueous solution containing glucose used in the reaction, preferably in a fully synthetic medium containing glucose as described above, where the dissolved oxygen concentration is 0°O5 ppm or more, 8
It is preferable to continuously or intermittently supply air or oxygen into the reaction system so that the concentration is ppm or less.

上記のような反応方法によって得られる反応液中に生成
したし一バリンの分離・精製は、醗酵法によるアミノ酸
の分離・精製と同様に行え、例えば公知のイオン交換樹
脂処理法あるいは、沈澱法等により行うことができる。
The separation and purification of valine produced in the reaction solution obtained by the above reaction method can be performed in the same manner as the separation and purification of amino acids by fermentation, for example, by the known ion exchange resin treatment method, precipitation method, etc. This can be done by

実1」帆 以下の実験例において、L−バリンの定性は、ペーパー
クロマトグラフのRf値、電気泳動法の易動度、微生物
定量法による生物活性値により確認した。
In the following experimental examples, the quality of L-valine was confirmed by the Rf value of paper chromatography, the mobility of electrophoresis, and the biological activity value of microorganism quantification.

定量はロイコノストック・メセンテロイデス(Leuc
onostoc mesenteroides) A 
T CC8042を用いるマイクロバイオアッセイ法と
高速液体クロマトグラフィー(島原LC−5A)とを併
用して行った。グルコース残存量の定量は、グルコース
定量用キット(和光紬薬工業製 グルコースC−テスト
 ワコー)により行った。また、下記の実験例において
%と表したのは重量%を意味する実施例−1 培地(尿素0.4%、硫酸アンモニウム1.4%、KH
2Po、0.05%、K2 HP 040 。
Quantification was performed using Leuconostoc mesenteroides (Leuc
onostoc mesenteroides) A
The microbioassay method using TCC8042 and high performance liquid chromatography (Shimabara LC-5A) were used in combination. The residual amount of glucose was determined using a glucose determination kit (Glucose C-Test Wako, manufactured by Wako Tsumugi Kogyo Co., Ltd.). In addition, in the following experimental examples, % means weight %.Example 1 Medium (urea 0.4%, ammonium sulfate 1.4%, KH
2Po, 0.05%, K2 HP 040.

05%、MgSO4・TI(200,05%、CaCj
l!2  H2H202ppm、、FeSO4・7H2
02ppm= MnSO4・4〜6H2O2ppm、Z
nSO4・7H202ppmNaCIl 2ppm、ビ
オチン200μg/β、チアミン・H(1!100μg
 / j2、カザミノ酸0.1%、酵母エキス0.1%
)100rr+j!を500m1!容三角フラスコに分
注、滅菌(滅菌後pH7,0)した後ブレビバクテリウ
ム・フラバム(Brevibacterium  fl
avum) M J −233(微工研条寄 第149
7号)を植菌し、無菌的にグルコースを5g/βの濃度
になるように加え、30℃にて2B間振盪培養を行った
05%, MgSO4・TI (200,05%, CaCj
l! 2 H2H202ppm,,FeSO4・7H2
02ppm=MnSO4・4~6H2O2ppm, Z
nSO4・7H 202ppm NaCIl 2ppm, biotin 200μg/β, thiamine・H (1!100μg
/ j2, casamino acid 0.1%, yeast extract 0.1%
)100rr+j! 500m1! After dispensing into Erlenmeyer flasks and sterilizing (pH 7.0 after sterilization) Brevibacterium fl.
avum) M J-233 (Feikoken Joyori No. 149
No. 7) was inoculated, glucose was added aseptically to a concentration of 5 g/β, and shaking culture was performed at 30° C. for 2 hours.

次に、本培養培地(グルコース5%、硫酸アンモニウム
2.3%、KH2PO40,05%、KHP○40.0
5%、MgSO4・7H200,05%、FeSO4・
7H2020ppm、MnSO4・4〜6H2020p
pm、ビオチン200.jig/fi、チアミン−−H
C11l00p/R,カザミノ酸0,3%、酵母エキス
0.3%)の1000mILを21容通気攪拌槽に仕込
み、滅菌(120℃、20分間)後、前記前培養物の2
0mj2を添加して、回転数11000rp。
Next, the main culture medium (glucose 5%, ammonium sulfate 2.3%, KH2PO40.05%, KHP○40.0
5%, MgSO4・7H200,05%, FeSO4・
7H2020ppm, MnSO4・4~6H2020p
pm, biotin 200. jig/fi, thiamine--H
C11l00p/R, casamino acids 0.3%, yeast extract 0.3%) was charged into a 21 volume aerated stirring tank, and after sterilization (120°C, 20 minutes), 2 of the preculture was added.
0mj2 was added and the rotation speed was 11,000 rpm.

通気量1vvm、温度33℃、p)(7,6にて24時
間培養を行った。
Culture was carried out for 24 hours at aeration rate of 1 vvm, temperature of 33° C., p) (7,6).

培養終了後、培養物100rnj!から遠心分離にて集
菌した。これを脱塩蒸留水にて2度洗浄して得た菌体を
、第1表に示した各エタノール含有水溶液100mn 
((NH,) 2So、0.2g。
After the cultivation is completed, the culture is 100rnj! Bacteria were collected by centrifugation. This was washed twice with demineralized distilled water, and the resulting bacterial cells were added to 100 mL of each ethanol-containing aqueous solution shown in Table 1.
((NH,)2So, 0.2g.

KH2PO40,05g−Mg SO4・7H200,
05gを含有〕に懸濁し、33℃にて3時間浸漬させた
。該浸漬処理菌体は遠心分離にて集菌後、脱塩蒸留水に
て洗浄し、該処理菌体を反応液〔グルコース100 g
/l−KH2PO40゜5g、に2 HPO40,5g
/β、MgSO47H200,5g/n= Fe3O4
H7H202oppm、チアミン−HCl塩100μg
/It (pH8,0))50m7!に懸濁した。また
pH調整の為、乾熱滅菌(150℃、5時間加熱)した
炭酸カルシウムを50g/βの濃度で添加した。反応は
、500mlml用フラスコを用い、33℃、回転数2
2Orpmにて40時間振盪反応を行った。反応終了後
〜遠心分離(4000rpm、15分間、4℃)にて除
菌した上清液中のし一バリン量およびグルコース残量を
定量した。
KH2PO40,05g-MgSO4・7H200,
05g] and immersed at 33°C for 3 hours. The immersion-treated bacterial cells were collected by centrifugation, washed with demineralized distilled water, and the treated bacterial cells were added to the reaction solution [glucose 100 g
/l-KH2PO40゜5g, Ni2HPO40.5g
/β, MgSO47H200,5g/n= Fe3O4
H7H202oppm, thiamine-HCl salt 100μg
/It (pH8,0))50m7! suspended in. Further, to adjust the pH, dry heat sterilized (heated at 150° C., 5 hours) calcium carbonate was added at a concentration of 50 g/β. The reaction was carried out using a 500ml flask at 33°C and at 2 rotations.
A shaking reaction was performed at 2 Orpm for 40 hours. After the completion of the reaction, the supernatant was sterilized by centrifugation (4000 rpm, 15 minutes, 4°C), and the amount of valine and remaining glucose in the supernatant was quantified.

結果は第1表に示した。The results are shown in Table 1.

第 表 残量を帽し六− バリン生慮 ×100 100g/j2 グルコース残存濃度 バリン件弁δ幣隻 ヌ彷河列−2 月何列−1と同様の条件にてフ゛レビバクテリウム・フ
ラバム (Brevibacterium  f la
vum)MJ−233−AB  41 (aσ珂条寄 
第1498号)を培養し、また沃防河列−1と巨mカ闘
牛にて反応させた後上清液中のL−バリンとグルコース
100g/j! グルコース残存濃度 ×100 実於仲1−3 鋳方河列−1とド相り塁ν牛にてフ゛レビバクテリウム
・フラバム (Brevibacterium  rI
avum)MJ−233−ABT−11(IkH5f’
J寄第1500号)を第 表 ソ彷筒列−4 メ防甑列−1と巨鮪隙×闘牛にてフ゛レビバクテリウム
・フラバム  (Brevibacterium  f
lavum)MJ−233−ABD 21 轍猶務寄第
1499号)を培養し、また実兇伊J−1と同約m牛に
て反応させた後上清液中のし一バリンとグルコース彩潰
I畝ヒレした好占?H君4表に示した。
The remaining amount of valine in the table 6 - Valine production x 100 100g/j2 Glucose residual concentration f la
vum) MJ-233-AB 41 (aσKajyoyo
No. 1498) was cultured, and after reacting with Ibokawaretsu-1 in a giant bullfight, L-valine and glucose in the supernatant were 100 g/j! Glucose residual concentration x 100 Brevibacterium flavum (Brevibacterium rI)
avum) MJ-233-ABT-11 (IkH5f'
Brevibacterium f.
lavum) MJ-233-ABD 21 Watakyumukyori No. 1499) was cultured and reacted with the same type of cow as J-1. Is it a good fortune with a ridged fin? Mr. H is shown in Table 4.

第  4  表 バリンd児δ整斐 バリン牛慮 ×100 100g/7! グルコース残存濃度Table 4 Balin d child δ adjustment Barin beef plan ×100 100g/7! Glucose residual concentration

Claims (2)

【特許請求の範囲】[Claims] (1)ビオチン要求性のコリネ型細菌に属する微生物菌
体の存在下、グルコースを含有する水溶液にて酵素反応
させて該溶液中にL−バリンを生成せしめるに際し、該
微生物菌体を予め、1〜20容量%のエタノール含有水
溶液中に浸漬させることを特徴とする酵素触媒の処理方
法。
(1) When carrying out an enzymatic reaction in an aqueous solution containing glucose in the presence of microbial cells belonging to biotin-requiring coryneform bacteria to produce L-valine in the solution, A method for treating an enzyme catalyst, comprising immersing it in an aqueous solution containing ~20% by volume of ethanol.
(2)酵素触媒の存在下グルコースを含有する水溶液に
て酵素反応させて該水溶液中にL−バリンを生成させ、
これからL−バリンを採取するL−バリンの製造法にお
いて、該酵素触媒に使用するビオチン要求性のコリネ型
細菌に属する微生物菌体を予め1〜20容量%のエタノ
ール含有水溶液中に浸漬させることを特徴とする、L−
バリンの製造法。
(2) causing an enzymatic reaction in an aqueous solution containing glucose in the presence of an enzyme catalyst to produce L-valine in the aqueous solution;
In the L-valine production method for collecting L-valine from now on, it is necessary to immerse microbial cells belonging to biotin-requiring coryneform bacteria to be used in the enzyme catalyst in advance in an aqueous solution containing 1 to 20% by volume of ethanol. Characterized by L-
Method of manufacturing valine.
JP24977088A 1988-10-05 1988-10-05 Treatment of enzymatic catalyst Pending JPH0297394A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24977088A JPH0297394A (en) 1988-10-05 1988-10-05 Treatment of enzymatic catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24977088A JPH0297394A (en) 1988-10-05 1988-10-05 Treatment of enzymatic catalyst

Publications (1)

Publication Number Publication Date
JPH0297394A true JPH0297394A (en) 1990-04-09

Family

ID=17197970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24977088A Pending JPH0297394A (en) 1988-10-05 1988-10-05 Treatment of enzymatic catalyst

Country Status (1)

Country Link
JP (1) JPH0297394A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000005340A1 (en) * 1998-07-21 2000-02-03 Kansai Chemical Engineering Co., Ltd. Method for enhancing catalytic activity of cells

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000005340A1 (en) * 1998-07-21 2000-02-03 Kansai Chemical Engineering Co., Ltd. Method for enhancing catalytic activity of cells
AU755592B2 (en) * 1998-07-21 2002-12-19 Kansai Chemical Engineering Co., Ltd. Method for enhancing catalytic activity of cells
US6524839B1 (en) 1998-07-21 2003-02-25 Kansai Chemical Engineering Co., Ltd. Method for enhancing catalytic activity of cells

Similar Documents

Publication Publication Date Title
JPH0297394A (en) Treatment of enzymatic catalyst
JP2832723B2 (en) Method for producing L-alanine
JPS63267285A (en) Production of l-valine
JP2721975B2 (en) Method for producing L-lysine
JPH0272888A (en) Production of l-valine
JPS63112992A (en) Production of l-threonine
JPH02273191A (en) Production of l-valine
JPS63269991A (en) Production of l-isoleucine
JP2721990B2 (en) Method for producing L-isoleucine
JP2582808B2 (en) Method for producing L-isoleucine
JPH04293492A (en) Production of l-valine
JP2582806B2 (en) Method for producing L-isoleucine
JPS60120983A (en) Culture of bacterial cell belonging to brevibacterium genus
JP2721989B2 (en) Method for producing L-isoleucine
JPH04356194A (en) Production of l-lysine
JPH04228085A (en) Production of l-tryptophan
JP2582810B2 (en) Method for producing L-isoleucine
JPH02211884A (en) Production of l-isoleucine
JPH0365193A (en) Production of l-proline
JP2521095B2 (en) Method for producing L-isoleucine
JPS6342692A (en) Production of l-isoleucine
JPS63160592A (en) Production of l-valine
JPH02295491A (en) Preparation of l-isoleucine
JPS63192396A (en) Production of l-isoleucine
JPS61177993A (en) Production of l-isoleucine