JP2521095B2 - Method for producing L-isoleucine - Google Patents
Method for producing L-isoleucineInfo
- Publication number
- JP2521095B2 JP2521095B2 JP62107965A JP10796587A JP2521095B2 JP 2521095 B2 JP2521095 B2 JP 2521095B2 JP 62107965 A JP62107965 A JP 62107965A JP 10796587 A JP10796587 A JP 10796587A JP 2521095 B2 JP2521095 B2 JP 2521095B2
- Authority
- JP
- Japan
- Prior art keywords
- isoleucine
- brevibacterium
- ferm
- aminobutyric acid
- flavum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/90—Isomerases (5.)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P1/00—Preparation of compounds or compositions, not provided for in groups C12P3/00 - C12P39/00, by using microorganisms or enzymes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P13/00—Preparation of nitrogen-containing organic compounds
- C12P13/04—Alpha- or beta- amino acids
- C12P13/06—Alanine; Leucine; Isoleucine; Serine; Homoserine
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Biotechnology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Mycology (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明は酵素法によるL−イソロイシンの製造法に関
する。更に詳しくはビオチン要求性のブレビバクテリウ
ム(Brevibacterium)属に属する微生物の菌体若しくは
その固定化物を、エタノールとα−アミノ酪酸を含有す
るビオチンを含まぬ水溶液中で酵素反応させ、該反応液
中にL−イソロイシンを生成せしめる高収量でL−イソ
ロイシンを製造する方法に関する。TECHNICAL FIELD The present invention relates to a method for producing L-isoleucine by an enzymatic method. More specifically, a biotin-requiring microorganism belonging to the genus Brevibacterium or its immobilized product is subjected to an enzymatic reaction in a biotin-free aqueous solution containing ethanol and α-aminobutyric acid, The present invention relates to a method for producing L-isoleucine in high yield, which produces L-isoleucine.
(従来技術とその課題) L−イソロイシンは必須アミノ酸として、人間及び動
物の栄養上重要な役割をするアミノ酸であり、医薬、食
品、飼料強化剤としてその需要が近年急激に増加しつつ
ある。L−イソロイシンの工業的製造法としては、他の
アミノ酸の場合と同様に立体異性体が存在する為、化学
合成法ではL体のみの製造は困難であり、主に醗酵法に
より生産が行われている。(Prior art and its problem) L-isoleucine is an amino acid that plays an important role in human and animal nutrition as an essential amino acid, and the demand thereof as a pharmaceutical, food, and feed fortifier is rapidly increasing in recent years. As for the industrial production method of L-isoleucine, it is difficult to produce only the L-form by the chemical synthesis method because stereoisomers exist as in the case of other amino acids, and the production is mainly carried out by the fermentation method. ing.
醗酵法としてはDL−α−アミノ酪酸、スレオニン等の
L−イソロイシンの前駆物質を使用する方法(特公昭43
-8709、特公昭40-2880等)、前駆物質を特に加えない所
謂直接醗酵法(特公昭38-7091,特開昭49-93586等)があ
る。As a fermentation method, a method using a precursor of L-isoleucine such as DL-α-aminobutyric acid and threonine (Japanese Patent Publication No.
-8709, Japanese Patent Publication No. 40-2880, etc.) and so-called direct fermentation method in which no precursor is added (Japanese Patent Publication No. 38-7091, Japanese Patent Publication No. 49-93586, etc.).
一方酵素法としては、アンモニウムイオン又はイソロ
イシン以外のL−若しくはDL−α−アミノ酸の存在下
に、D−,L−,又はDL−α−ケト−β−メチルバレリア
ン酸からL−イソロイシンを製造する方法(特公昭46-2
9789),アンモニウムイオン又はイソロイシン以外のL
−若しくはDL−アミノ酸の存在下に、D−イソロイシン
或いはD−アロイソロイシンの単独若しくは混合物、又
はこれらとその光学異性体との適宜混合物に作用させて
L−イソロイシンを製造する方法(特公昭46-29788)、
セラチア(Serratia)属細菌の固定化物を用いてグルコ
ースとD−スレオニンからL−イソロイシンを製造する
方法(日本醗酵工学会大会講演要旨集p.47〜48昭和52年
度)等が報告されている。On the other hand, as an enzymatic method, L-isoleucine is produced from D-, L-, or DL-α-keto-β-methylvaleric acid in the presence of L- or DL-α-amino acid other than ammonium ion or isoleucine. Method (Japanese Patent Publication Sho 46-2
9789), ammonium ion or L other than isoleucine
-Or DL-amino acid, a method for producing L-isoleucine by acting on D-isoleucine or D-alloisoleucine alone or in a mixture, or an appropriate mixture of these and optical isomers thereof (JP-B-46- 29788),
A method for producing L-isoleucine from glucose and D-threonine using an immobilization product of a Serratia bacterium (Proceedings of the Japan Fermentation Engineering Society Conference p.47-48, 1977) and the like have been reported.
然しながら、これらの方法は、いずれも原料費が嵩む
とか収率が低いとかの課題を抱えている。However, all of these methods have problems such as high raw material cost and low yield.
(発明の構成及び効果) 本発明者らは、上記課題を解決すべく研究を重ねた結
果、先にブレビバクテリウム(Brevibacterium)属に属
するエタノール資化性微生物の菌体若しくはその処理物
又はこれの固定化物の存在下、エタノール及びα−アミ
ノ酪酸を含有する水溶液を酵素反応させて該反応液中に
L−イソロイシンを生成せしめる方法を発明した。(Structure and Effect of the Invention) As a result of repeated studies to solve the above-mentioned problems, the present inventors have previously found that an ethanol-assimilating microorganism belonging to the genus Brevibacterium or a treated product thereof Invented was a method of enzymatically reacting an aqueous solution containing ethanol and α-aminobutyric acid in the presence of the immobilization product to produce L-isoleucine in the reaction solution.
更に、本発明者らは、この発明につき研究を続けた結
果、さらに収率良くL−イソロイシンを生成するには、
該微生物の増殖必須成分であるビオチンを含まない完全
合成培地を酵素反応の反応液として用いることにより、
その目的を達成することを見出した。又本発明者は上記
発明の効果を高め、より良い収率を得るには、上記反応
液の溶存酸素濃度を0.05ppm以上に保持して反応させる
のが効果的であることを見出し本発明を完成した。Further, as a result of continuing the research on the present invention, the present inventors have found that in order to produce L-isoleucine with higher yield,
By using a completely synthetic medium containing no biotin, which is an essential component for the growth of the microorganism, as a reaction solution for the enzyme reaction,
It has been found to achieve that purpose. Further, the present inventors have found that, in order to enhance the effect of the invention and obtain a better yield, it is effective to carry out the reaction while maintaining the dissolved oxygen concentration of the reaction solution at 0.05 ppm or more. completed.
本発明の要旨は次に記載の通りである。 The gist of the present invention is as described below.
「ビオチン要求性のブレビバクテリウム(Brevibacteri
um)属に属する微生物の菌体若しくはこの固定化物の存
在下、炭素源及びα−アミノ酪酸を含有するがビオチン
を含まぬ水溶液中で、溶存酸素存在下に酵素反応させて
該溶液中にL−イソロイシンを生成せしめ、これからL
−イソロイシンを採取することを特徴とするL−イソロ
イシンの製造法。」 従来、本発明のような酵素法によるL−イソロイシン
の生産は報告が無く、又実施されてもいなく、本発明は
新規な方法である。"Biotin-requiring Brevibacterium
um) microorganisms belonging to the genus or its immobilization product, in an aqueous solution containing a carbon source and α-aminobutyric acid but not biotin, an enzyme reaction is carried out in the presence of dissolved oxygen to obtain L in the solution. -Produces isoleucine, from which L
-A method for producing L-isoleucine, which comprises collecting isoleucine. Heretofore, the production of L-isoleucine by the enzymatic method as in the present invention has not been reported or carried out, and the present invention is a novel method.
本発明に使用される微生物はビオチン要求性のブレビ
バクテリウム(Brevibacterium)属に属する、好ましく
はエタノール資化性のものであれば良い。このなかには
L−イソロイシン生産菌が含まれる。該微生物は例え
ば、ブレビバクテリウム・フラバム(Brevibacterium f
lavum)MJ-233(FERM BP-1497)、ブレビバクテリウム
・フラバム(Brevibacterium flavum)MJ-233-AB-41(F
ERM BP-1498)、ブレビバクテリウム・フラバム(Brevi
bacterium flavum)MJ-233-ABT-11(FERM BP-1500)及
びブレビバクテリウム・フラバム(Brevibacterium fla
vum)MJ-233-ABD-21(FERM BP-1499)等であり、本発明
に好適に用いられる。The microorganism used in the present invention may be one that belongs to the genus Brevibacterium that requires biotin, and is preferably ethanol-assimilating. Among these, L-isoleucine-producing bacteria are included. The microorganism is, for example, Brevibacterium flavum.
lavum) MJ-233 (FERM BP-1497), Brevibacterium flavum MJ-233-AB-41 (F
ERM BP-1498), Brevibacterium flavum (Brevi
bacterium flavum) MJ-233-ABT-11 (FERM BP-1500) and Brevibacterium flavum
vum) MJ-233-ABD-21 (FERM BP-1499) and the like, which are preferably used in the present invention.
なお、上記の(FERM BP-1498)は(FERM BP-1497)を
親株としてDL−α−アミノ酪酸耐性を積極的に付与され
たエタノール資化性微生物である(特公昭59-28398号公
報3〜4欄参照)。(FERM BP-1500)は、(FERM BP-14
97)を親株としたL−α−アミノ酪酸トランスアミナー
ゼ高活性変異株である(特願昭60-190609号明細書3〜
5頁参照)。また、(FERM BP-1499)は(FERM BP-149
7)を親株としたD−α−アミノ酪酸デアミナーゼ高活
性変異株である(特願昭60-017501号明細書5〜7頁参
照)。The above-mentioned (FERM BP-1498) is an ethanol-assimilating microorganism positively endowed with DL-α-aminobutyric acid resistance using (FERM BP-1497) as a parent strain (Japanese Patent Publication No. 59-28398). ~ Column 4). (FERM BP-1500) is (FERM BP-14
It is a highly active mutant strain of L-α-aminobutyric acid transaminase whose parent strain is 97) (Japanese Patent Application No. 60-190609, specification 3 to
(See page 5). Also, (FERM BP-1499) is (FERM BP-149
It is a mutant strain of D-α-aminobutyric acid deaminase having a high activity, which is obtained by using 7) as a parent strain (see Japanese Patent Application No. 60-017501, pages 5 to 7).
以下に本発明のL−イソロイシンの製造法を具体的に
説明する。The method for producing L-isoleucine of the present invention will be specifically described below.
本発明の菌体調製に使用する培地組成は、好ましくは
エタノールを主炭素源とするが、特に限定はなく一般の
微生物に使用されるもので良い。窒素源としてはアンモ
ニア、硫酸アンモニウム、塩化アンモニウム、硝酸アン
モニウム、尿素等を単独若しくは混合してもちいること
が出来る。The composition of the medium used for preparing the bacterial cells of the present invention preferably uses ethanol as a main carbon source, but is not particularly limited and may be that used for general microorganisms. As the nitrogen source, ammonia, ammonium sulfate, ammonium chloride, ammonium nitrate, urea or the like can be used alone or in combination.
無機塩としては、リン酸一水素カリウム、リン酸二水
素カリウム、硫酸マグネシウム等が用いられる。この他
に菌の生育及びL−イソロイシン生成に必要であれば、
ペプトン、肉エキス、酵母エキス、コーンステイープリ
カー、カザノミ酸、各種ビタミン等の栄養素を培地に添
加し用いる。As the inorganic salt, potassium monohydrogen phosphate, potassium dihydrogen phosphate, magnesium sulfate and the like are used. In addition to this, if necessary for the growth of the bacteria and the production of L-isoleucine,
Nutrients such as peptone, meat extract, yeast extract, corn stay liquor, casanomic acid and various vitamins are added to the medium and used.
培養は通気攪拌、振盪等の好気的条件下で行い、培養
温度は20〜40℃、好ましくは25〜35℃で行う。培養途中
のpHは5〜10、好ましくは7〜8付近にて行い、培養中
のpHの調整には酸、アルカリを添加して行う。Culturing is carried out under aerobic conditions such as aeration and stirring, and the cultivation temperature is 20 to 40 ° C, preferably 25 to 35 ° C. The pH during the culturing is 5 to 10, preferably around 7 to 8. The pH during the culturing is adjusted by adding an acid or an alkali.
培養開始のエタノール濃度は好ましくは1〜5容量
%、更に好ましくは2〜3容量%が適する。培養期間は
2〜9日間、最適期間は4〜7日間である。The ethanol concentration at the start of culture is preferably 1 to 5% by volume, more preferably 2 to 3% by volume. The culture period is 2 to 9 days, and the optimum period is 4 to 7 days.
このようにして得られた培養物から菌体を集めて適当
な緩衝液で洗浄し、その洗浄菌体を本発明の酵素反応に
使用する。The bacterial cells are collected from the thus obtained culture and washed with an appropriate buffer, and the washed bacterial cells are used for the enzymatic reaction of the present invention.
本発明の方法においては、上記で調製された微生物菌
体(ここには、その固定化物も含まれる)の存在下、少
なくとも炭素源(好ましくはエタノール)を含有する水
溶液にDL−α−アミノ酪酸を添加して酵素反応させ、L
−イソロイシンを生成せしめる。反応液に添加されるエ
タノールの濃度は1〜20容量%、好ましくは2〜10容量
%が適当である。In the method of the present invention, DL-α-aminobutyric acid is added to an aqueous solution containing at least a carbon source (preferably ethanol) in the presence of the above-prepared microbial cells (including its immobilized product). To make the enzyme reaction, L
-Produce isoleucine. The concentration of ethanol added to the reaction solution is appropriately 1 to 20% by volume, preferably 2 to 10% by volume.
なお、本発明の方法においては、菌体の固定化物も上
記菌体と同様に使用することが出来る。In addition, in the method of the present invention, an immobilized product of the bacterial cells can be used in the same manner as the above-mentioned bacterial cells.
本発明の菌体の固定化物は、公知の固定化法例えばア
クリルアミド、アルギン酸塩、カラギーナン等による包
括法、DEAE−セファデックス、DEAE−セルロース等によ
るイオン結合法などから適宜選択して調整できる。The immobilization product of the bacterial cells of the present invention can be appropriately selected and adjusted from known immobilization methods such as an encapsulation method using acrylamide, alginate, carrageenan and the like, an ion binding method using DEAE-Sephadex, DEAE-cellulose and the like.
該水溶液は、上記の様にエタノールを含有する水(pH
7.0〜9.0)あるいはリン酸又はトリス塩酸等の緩衝液
(pH7.0〜9.0)を用いることもできるが、好ましくはエ
タノールを含有する完全合成培地が用いられる。ここで
完全合成培地とは、化学構造が公知の無機窒素源及び無
機塩を含有する水溶液である。本発明に用いられる完全
合成培地の無機窒素源としては、アンモニア、塩化アン
モニウム、硫酸アンモニウム、硝酸アンモニウム、リン
酸アンモニウム等が例示でき、また無機塩としては、リ
ン酸−水素カリウム、リン酸二水素カリウム、硫酸マグ
ネシウム、硫酸マンガン、硫酸鉄等が例示される。これ
らの無機窒素源、無機塩は、単独でも2種以上混合して
も用いることもできる。The aqueous solution contains water containing ethanol (pH:
7.0 to 9.0) or a buffer solution (pH 7.0 to 9.0) such as phosphoric acid or Tris hydrochloric acid can be used, but a completely synthetic medium containing ethanol is preferably used. Here, the completely synthetic medium is an aqueous solution containing an inorganic nitrogen source and an inorganic salt having a known chemical structure. Examples of the inorganic nitrogen source of the completely synthetic medium used in the present invention include ammonia, ammonium chloride, ammonium sulfate, ammonium nitrate, ammonium phosphate and the like, and inorganic salts include phosphate-potassium hydrogen, potassium dihydrogen phosphate, Examples include magnesium sulfate, manganese sulfate, iron sulfate and the like. These inorganic nitrogen sources and inorganic salts may be used alone or in admixture of two or more.
これら無機窒素源及び/又は無機塩の水溶液としての
濃度は、通常の微生物菌体の培養に使用される培地と同
程度の範囲でよく、特に限定されない。The concentration of the inorganic nitrogen source and / or the inorganic salt as an aqueous solution may be in the same range as that of a medium used for usual culture of microbial cells, and is not particularly limited.
完全合成培地の一例を示すと、(NH4)2SO42g/l;KH2PO4
0.5g/l;K2HPO40.5g/l;MgSO4・7H2O0.5g/l;FeSO4・7H2
O 20ppm;MnSO4・4〜6H2O20ppmを含有するpH7.6の水溶
液がある。An example of a complete synthetic medium is (NH 4 ) 2 SO 4 2 g / l; KH 2 PO 4
0.5g / l; K 2 HPO 4 0.5g / l; MgSO 4 · 7H 2 O0.5g / l; FeSO 4 · 7H 2
O 20 ppm; MnSO have pH7.6 aqueous solution containing 4 · 4~6H 2 O20ppm.
上述の様に、本発明に使用される完全合成培地には、
ビオチン又はビオチンを含む天然物は含有されない。ビ
オチンの含有されないことの明らかな化学構造公知のア
ミノ酸、ビタミン、糖類等を添加することはできる。As mentioned above, the complete synthetic medium used in the present invention includes:
It does not contain biotin or natural products containing biotin. It is possible to add amino acids, vitamins, sugars, etc., of which the chemical structure is known to be free of biotin, which are known.
本発明の方法において用いられるα−アミノ酪酸とし
ては、L−又はDL−α−アミノ酪酸が用いられ、D−α
−アミノ酪酸は、DL−α−アミノ酪酸にラセミ化して使
用される。As the α-aminobutyric acid used in the method of the present invention, L- or DL-α-aminobutyric acid is used, and D-α
-Aminobutyric acid is used by being racemized to DL-α-aminobutyric acid.
本発明の方法におけるα−アミノ酪酸の酵素反応にお
ける使用濃度は、特に制限はないが、一般には0.1〜20
%(wt/vol)、好ましくは2〜10%の濃度範囲で使用す
るのが適当である。又該微生物菌体の使用量も特に制限
されるものではないが、一般に1〜50%(wt/vol)、好
ましくは2〜30%の濃度で使用することが出来る。The concentration of α-aminobutyric acid used in the enzymatic reaction in the method of the present invention is not particularly limited, but is generally 0.1 to 20.
% (Wt / vol), preferably in the concentration range of 2 to 10%. The amount of the microbial cells used is not particularly limited, but it can be used generally at a concentration of 1 to 50% (wt / vol), preferably 2 to 30%.
本発明において、酵素反応は、約20〜約50℃、好まし
くは約30〜約40℃の温度で、通常約10〜約72時間行われ
る。In the present invention, the enzymatic reaction is carried out at a temperature of about 20 to about 50 ° C, preferably about 30 to about 40 ° C, usually for about 10 to about 72 hours.
上記酵素反応は、反応に用いられるビオチンを含まぬ
水溶液、好ましくはエタノールを含有する水溶液、特に
好ましくは上述のエタノールを含有する完全合成培地中
の溶存酸素が0.05ppm以上が好ましいが、8ppmを越えぬ
ように行う。反応水溶液中の溶存酸素が8ppmを越えると
酵素反応阻害が現れるので好ましくない。The above-mentioned enzymatic reaction is an aqueous solution containing no biotin used in the reaction, preferably an aqueous solution containing ethanol, and particularly preferably the dissolved oxygen in the above-mentioned ethanol-containing completely synthetic medium is preferably 0.05 ppm or more, but more than 8 ppm. Do so. When the dissolved oxygen in the reaction aqueous solution exceeds 8 ppm, enzyme reaction inhibition appears, which is not preferable.
反応時の反応液の溶存酸素濃度の調節には、溶存酸素
測定装置〔オリエンタル電気(株)製〕等を用いて、反
応液の溶存酸素を経時的に測定し、空気若しくは酸素を
反応系に連続又は間歇的に供給する通気量等を加減して
行う。To adjust the dissolved oxygen concentration of the reaction solution during the reaction, the dissolved oxygen of the reaction solution was measured with time using a dissolved oxygen measuring device (manufactured by Oriental Electric Co., Ltd.), and air or oxygen was fed to the reaction system. The amount of ventilation supplied continuously or intermittently should be adjusted.
本発明の酵素反応において、L−イソロイシンを基質
とせずD−α−アミノ酪酸をラセミ化する能力を有する
微生物の菌体又はその固定化物を併用するのが有利であ
り、好ましいことである。理由は本酵素反応の原料とし
て用いられるDL−α−アミノ酪酸の未反応物として残る
D−α−アミノ酪酸をラセミ化しL−α−アミノ酪酸を
生成するからである。In the enzymatic reaction of the present invention, it is advantageous and preferable to use a bacterial cell of a microorganism having an ability to racemize D-α-aminobutyric acid or its immobilized product without using L-isoleucine as a substrate. The reason is that L-α-aminobutyric acid is produced by racemizing D-α-aminobutyric acid, which remains as an unreacted product of DL-α-aminobutyric acid used as a raw material for this enzymatic reaction.
このL−イソロイシンを基質とせずD−α−アミノ酪
酸をラセミ化する能力を有する微生物としては、例えば
シュードモナス・プチダ(Pseudomonas Putida)IFO 12
996等がある。Examples of the microorganism having the ability to racemize D-α-aminobutyric acid without using L-isoleucine as a substrate include Pseudomonas Putida IFO 12
There are 996 etc.
上記のD−α−アミノ酪酸をラセミ化する能力を有す
る微生物の菌体等は、本発明の酵素反応系に初めから添
加されても良いが、酵素反応の途中に添加することも、
又該酵素反応系とは別の反応系でラセミ化反応させるの
に用いることも出来る。The microbial cells having the ability to racemize the above D-α-aminobutyric acid may be added to the enzyme reaction system of the present invention from the beginning, but may also be added during the enzyme reaction.
It can also be used for the racemization reaction in a reaction system different from the enzyme reaction system.
この様なD−α−アミノ酪酸をラセミ化する能力を有
する微生物の菌体又はその固定化物の使用量は、反応液
の0.1〜50重量%、好ましくは1〜30重量%程度であ
る。The amount of the microbial cell having the ability to racemize D-α-aminobutyric acid or its immobilized product is 0.1 to 50% by weight, preferably about 1 to 30% by weight of the reaction solution.
なお、この微生物の培養法は本来本発明に使用する微
生物(ビオチン要求性のブレビバクテリウム属に属する
エタノール資化性微生物)の前記の培養法に準じたもの
でよい。又酵素反応に使用する場合の菌体の処理方法や
固定化方法も、本来本発明に使用する微生物の場合と同
様である。The method for culturing this microorganism may be the same as the above-described method for culturing the microorganism originally used in the present invention (ethanol-utilizing microorganism belonging to the genus Brevibacterium that requires biotin). In addition, the method of treating the cells and the method of immobilization when used in the enzyme reaction are the same as those of the microorganism originally used in the present invention.
上記のような反応方法によって得られる反応液中に生
成したL−イソロイシンの分離・精製は、イオン交換樹
脂処理法あるいは、沈澱法等により容易に行うことが出
来る。Separation and purification of L-isoleucine produced in the reaction solution obtained by the above reaction method can be easily carried out by an ion exchange resin treatment method, a precipitation method or the like.
以下に実施例を示す。なお、L−イソロイシンの定性
は、ペーパークロマトグラフのRf値、電気泳動法の移動
度、微生物定量法による生物活性値により確認した。定
量はロイコノストック・メセンテロイデス(Leuconosto
c mesenteroides)ATCC 8042を用いるマイクロバイオア
ッセイ法と高速液体クロマトグラフィー(島津LC-5A)
とを併用して行った。また、下記の実施例において%と
表したのは重量%を意味する。Examples will be described below. The qualitative property of L-isoleucine was confirmed by the Rf value of a paper chromatograph, the mobility of the electrophoresis method, and the biological activity value of the microorganism quantification method. Quantitation is based on Leuconosto
micro bioassay using ATCC 8042 and high performance liquid chromatography (Shimadzu LC-5A)
Was done in combination with. Further, in the following examples, "%" means "% by weight".
実施例−1 培地(尿素0.4%、硫酸アンモニウム1.4%、KH2PO40.
05%、K2HPO40.05%、MgSO4・7H2O 0.05%、CaCl2・2
H2O 2ppm、FeSO4・7H2O 2ppm、MnSO4・4〜6H2O2pp
m、ZnSO4・7H2O 2ppm、NaCl 2ppm、ビオチン 200μg/
l、チアミン・HCl 100μg/l、カザミノ酸 0.1%、酵母
エキス 0.1%)100mlを500ml容三角フラスコに分注、
滅菌(滅菌後pH7.0)した後ブレビバクテリウム・フラ
バム(Brevibacterium flavum)MJ-233(FERM BP-149
7)を植菌し、無菌的にエタノールを2ml加え、30℃にて
2日間振盪培養を行った。Example 1 Medium (urea 0.4%, ammonium sulfate 1.4%, KH 2 PO 40 .
05%, K 2 HPO 4 0.05 %, MgSO 4 · 7H 2 O 0.05%, CaCl 2 · 2
H 2 O 2ppm, FeSO 4 · 7H 2 O 2ppm, MnSO 4 · 4~6H 2 O2pp
m, ZnSO 4 · 7H 2 O 2ppm, NaCl 2ppm, biotin 200 [mu] g /
l, thiamine / HCl 100 μg / l, casamino acid 0.1%, yeast extract 0.1%) 100 ml was dispensed into a 500 ml Erlenmeyer flask,
After sterilization (pH 7.0 after sterilization) Brevibacterium flavum MJ-233 (FERM BP-149
7) was inoculated, 2 ml of ethanol was aseptically added, and shaking culture was performed at 30 ° C. for 2 days.
前記培養物100mlから遠心分離にて集菌後これを硫酸
アンモニウム0.5g、DL−α−アミノ酪酸0.5g、エタノー
ル1mlを含む0.1Mリン酸緩衝液(pH7.6)50mlに懸濁し振
盪しながら30℃48時間反応を行った。After harvesting the cells by centrifugation from 100 ml of the culture, 0.5 g of ammonium sulfate, 0.5 g of DL-α-aminobutyric acid, and 1 ml of ethanol were suspended in 50 ml of 0.1 M phosphate buffer (pH 7.6) and shaken 30 times. The reaction was carried out at 48 ° C for 48 hours.
反応終了後、遠心分離にて除菌した上清液中にL−イ
ソロイシンが1.0mg/ml蓄積された。上記上清液40mlを、
強酸陽イオン交換樹脂(H+型)のカラムに通してL−イ
ソロイシンを吸着させ、水洗後、0.5Nアンモニア水で溶
出させたのち、L−イソロイシン画分を濃縮し、冷エタ
ノールでL−イソロイシンの結晶を析出させ、28mgの粗
結晶を得た。After the reaction was completed, 1.0 mg / ml of L-isoleucine was accumulated in the supernatant liquid that had been sterilized by centrifugation. 40 ml of the above supernatant,
After passing through a column of strong acid cation exchange resin (H + type) to adsorb L-isoleucine and washing with water and eluting with 0.5N ammonia water, the L-isoleucine fraction was concentrated and L-isoleucine was cooled with cold ethanol. Was precipitated to give 28 mg of crude crystals.
実施例−2 実施例−1と同様の条件にてブレビバクテリウム・フ
ラバム(Brevibacterium flavum)MJ-233-AB-41(FERM
BP-1498)を培養し、また実施例−1と同様の条件にて
反応させた後上清液中のL−イソロイシンを定量したと
ころ1.3mg/mlであった。Example-2 Under the same conditions as Example-1, Brevibacterium flavum MJ-233-AB-41 (FERM
BP-1498) was cultured and reacted under the same conditions as in Example-1, and then L-isoleucine in the supernatant was quantified to be 1.3 mg / ml.
さらに、実施例−1と同様の操作にて上清液40mlから
L−イソロイシンを回収したところ36mgの粗結晶を得
た。Furthermore, when L-isoleucine was recovered from 40 ml of the supernatant by the same operation as in Example-1, 36 mg of crude crystals were obtained.
実施例−3 実施例−1と同様の条件にてブレビバクテリウム・フ
ラバム(Brevibacterium flavum)MJ-233-ABT-11(FERM
BP-1500)を培養し、また実施例−1と同様の条件にて
反応させた後上清液中のL−イソロイシンを定量したと
ころ1.4mg/mlであった。Example-3 Under the same conditions as in Example-1, Brevibacterium flavum MJ-233-ABT-11 (FERM
BP-1500) was cultured and reacted under the same conditions as in Example-1, and L-isoleucine in the supernatant was quantified to be 1.4 mg / ml.
さらに、実施例−1と同様の操作にて上清液40mlから
L−イソロイシンを回収したところ40mgの粗結晶を得
た。Furthermore, when L-isoleucine was recovered from 40 ml of the supernatant by the same procedure as in Example-1, 40 mg of crude crystals were obtained.
実施例−4 実施例−1と同様の条件にてブレビバクテリウム・フ
ラバム(Brevibacterium flavum)MJ-233-ABD-21(FERM
BP-1499)を培養し、また実施例−1と同様の条件にて
反応させた後上清液中のL−イソロイシンを定量したと
ころ1.1mg/mlであった。Example-4 Under the same conditions as in Example-1, Brevibacterium flavum MJ-233-ABD-21 (FERM
BP-1499) was cultured and reacted under the same conditions as in Example-1, and then L-isoleucine in the supernatant was quantified to be 1.1 mg / ml.
さらに、実施例−1と同様の操作にて上清液40mlから
L−イソロイシンを回収したところ30mgの粗結晶を得
た。Furthermore, when L-isoleucine was recovered from 40 ml of the supernatant by the same procedure as in Example-1, 30 mg of crude crystals were obtained.
実施例−5 ブレビバクテリウム・フラバム(Brevibacterium fla
vum)MJ-233(FERM BP-1497)を使用し、実施例−1の
前段の記載と同様な振盪培養を行った。Example-5 Brevibacterium flavum
vum) MJ-233 (FERM BP-1497) was used, and shaking culture was performed in the same manner as described in the previous stage of Example-1.
次に、本培養培地(硫酸アンモニウム2.3%、KH2PO
40.05%、K2HPO40.05%、MgSO4・7H2O 0.05%、FeSO4
・7H2O 20ppm、MnSO4・nH2O 20ppm、ビオチン200μg/
l、チアミン・HC100μg/l、カザミノ酸0.3%、酵母エ
キス0.3%)の1000mlを2l容通気攪拌槽にしこみ、滅菌
(120℃、20分間)後、エタノールの20mlと前記前培養
物の20mlを添加して、回転数1000rpm、通気量1vvm、温
度33℃、pH7.6にて48時間培養を行った。Next, the main culture medium (ammonium sulfate 2.3%, KH 2 PO
4 0.05%, K 2 HPO 4 0.05%, MgSO 4 · 7H 2 O 0.05%, FeSO 4
・ 7H 2 O 20ppm, MnSO 4・ nH 2 O 20ppm, biotin 200μg /
l, thiamine / HC 100 μg / l, casamino acid 0.3%, yeast extract 0.3%) 1000 ml into a 2 l aeration and agitation tank, and after sterilization (120 ° C., 20 minutes), 20 ml of ethanol and 20 ml of the preculture are added. After the addition, the culture was carried out at a rotation speed of 1000 rpm, an aeration rate of 1 vvm, a temperature of 33 ° C. and a pH of 7.6 for 48 hours.
尚、エタノールは、培養中培地に対するエタノールの
濃度が2容量%を越えないように、約1〜2時間ごと断
続的に添加した。In addition, ethanol was intermittently added about every 1 to 2 hours so that the concentration of ethanol in the culture medium did not exceed 2% by volume.
培養終了後、培養物500mlから遠心分離にて集菌後、
脱塩蒸留水にて2度洗浄した菌体を反応液〔硫安2g/l、
KH2PO40.5g/l、K2HPO40.5g/l、MgSO4・7H2O 0.5g/l、F
eSO4・7H2O 20ppm、MnSO4・4〜6H2O 20ppm、チアミ
ン・HC100μg/l、DL−α−アミノ酪酸10g/l(pH7.
6)〕の1000mlに懸濁後、該懸濁液を2l容通気攪拌槽に
仕込み、エタノール20mlを添加して、回転数300rpm、通
気量0.1vvm、温度33℃、pH7.6にて24時間反応を行っ
た。After completion of the culture, after collecting the cells by centrifugation from 500 ml of the culture,
The bacterial cells washed twice with desalted distilled water were added to the reaction solution [ammonium sulfate 2 g / l,
KH 2 PO 4 0.5g / l, K 2 HPO 4 0.5g / l, MgSO 4 · 7H 2 O 0.5g / l, F
eSO 4・ 7H 2 O 20ppm, MnSO 4・ 4-6H 2 O 20ppm, thiamine ・ HC 100μg / l, DL-α-aminobutyric acid 10g / l (pH 7.
6)] was suspended in 1000 ml, then the suspension was charged in a 2 l aeration and stirring tank, 20 ml of ethanol was added, and the rotation speed was 300 rpm, the aeration amount was 0.1 vvm, the temperature was 33 ° C., and the pH was 7.6 for 24 hours. The reaction was carried out.
反応終了後、遠心分離(4000rpm、15分間、4℃)に
て除菌した上清液中にL−イソロイシンを定量した。After the reaction was completed, L-isoleucine was quantified in the supernatant liquid that had been sterilized by centrifugation (4000 rpm, 15 minutes, 4 ° C).
また、反応終了後の培養液500mlを、強酸性陽イオン
交換樹脂(H+型)のカラムに通してL−イソロイシンを
吸着させ、水洗後、0.5Nアンモニア水で溶出させたの
ち、L−イソロイシン画分を濃縮し、冷エタノールでL
−イソロイシンの結晶を析出させた。結果を第1表に示
した。In addition, 500 ml of the culture solution after the reaction was passed through a column of a strongly acidic cation exchange resin (H + type) to adsorb L-isoleucine, washed with water and eluted with 0.5N ammonia water, and then L-isoleucine. Concentrate the fractions and add L with cold ethanol.
-Precipitated crystals of isoleucine. The results are shown in Table 1.
実施例−6 実施例−5と同様の条件にてブレビバクテリウム・フ
ラバム(Brevibacterium flavum)MJ-233-AB-41(FERM
BP-1498)を培養し、また実施例−5と同様の条件にて
反応させた上清液中のL−イソロイシンを定量した。ま
た、実施例−5と同様にしてL−イソロイシンの結晶を
析出させた。結果は第2表に示した。 Example-6 Under the same conditions as in Example-5, Brevibacterium flavum MJ-233-AB-41 (FERM
BP-1498) was cultured, and L-isoleucine in the supernatant liquid reacted under the same conditions as in Example-5 was quantified. Also, crystals of L-isoleucine were precipitated in the same manner as in Example-5. The results are shown in Table 2.
実施例−7 実施例−5と同様の条件にてブレビバクテリウム・フ
ラバム(Brevibacterium flavum)MJ-233-ABT-11(FERM
BP-1500)を培養し、また実施例−5と同様の条件にて
反応させた上清液中のL−イソロイシンを定量した。ま
た、実施例−5と同様にしてL−イソロイシンの結晶を
析出させた。結果は第3表に示した。 Example-7 Under the same conditions as in Example-5, Brevibacterium flavum MJ-233-ABT-11 (FERM
BP-1500) was cultured, and L-isoleucine in the supernatant liquid reacted under the same conditions as in Example-5 was quantified. Also, crystals of L-isoleucine were precipitated in the same manner as in Example-5. The results are shown in Table 3.
実施例−8 実施例−5と同様の条件にてブレビバクテリウム・フ
ラバム(Brevibacterium flavum)MJ-233-ABD-21(FERM
BP-1499)を培養し、また実施例−5と同様の条件にて
反応させた後上清液のL−イソロイシンを定量した。ま
た実施例−5と同様にしてL−イソロイシンの結晶を析
出させた。結果は第4表に示した。 Example-8 Under the same conditions as in Example-5, Brevibacterium flavum MJ-233-ABD-21 (FERM
BP-1499) was cultured and reacted under the same conditions as in Example-5, and L-isoleucine in the supernatant was quantified. Further, crystals of L-isoleucine were precipitated in the same manner as in Example-5. The results are shown in Table 4.
実施例−9 ブレビバクテリウム・フラバム(Brevibacterium fla
vum)MJ-233(FERM BP-1497)を使用し、前培養、本培
養共に実施例−5と同様に培養した。 Example-9 Brevibacterium flavum
vum) MJ-233 (FERM BP-1497) was used for both pre-culture and main culture in the same manner as in Example-5.
培養終了後、培養物500mlから遠心分離にて集菌後、
脱塩蒸留水にて2度洗浄した菌体を反応液〔硫安2g/l、
KH2PO40.5g/l、K2HPO40.5g/l、MgSO4・7H2O 0.5g/l、F
eSO4・7H2O 20ppm、MnSO4・4〜6H2O 20ppm、チアミ
ンHC100μg/l、DL−α−アミノ酪酸10g/l(pH7.6)〕
の1000mlに懸濁後、該懸濁液を2l容通気攪拌槽に仕込
み、エタノール20mlを添加して、回転数300rpm、通気量
を反応液の溶存酸素が第5表に示すように変化させ温度
33℃、pH7.6にて24時間反応を行った。After completion of the culture, after collecting the cells by centrifugation from 500 ml of the culture,
The bacterial cells washed twice with desalted distilled water were added to the reaction solution [ammonium sulfate 2 g / l,
KH 2 PO 4 0.5g / l, K 2 HPO 4 0.5g / l, MgSO 4 · 7H 2 O 0.5g / l, F
eSO 4 · 7H 2 O 20ppm, MnSO 4 · 4~6H 2 O 20ppm, thiamine HC100μg / l, DL-α- aminobutyric acid 10g / l (pH7.6)]
After suspending in 1000 ml of the above, the suspension was charged in a 2 l aeration stirring tank, 20 ml of ethanol was added, the rotation speed was 300 rpm, and the aeration rate was changed by changing the dissolved oxygen of the reaction solution as shown in Table 5.
The reaction was carried out at 33 ° C and pH 7.6 for 24 hours.
反応終了後、遠心分離(4000rpm、15分間、4℃)に
て除菌した上清液中のL−イソロイシンを定量した。結
果を第5表に示した。After the completion of the reaction, L-isoleucine in the supernatant liquid was removed by centrifugation (4000 rpm, 15 minutes, 4 ° C.), and the amount was determined. The results are shown in Table 5.
実施例−10 ブレビバクテリウム・フラバム(Brevibacterium fla
vum)MJ-233-AB-41(FERM BP-1498)を使用し実施例−
9と同様に培養し、又そのあと、実施例−9と同様の条
件にて反応させた後上清液中のL−イソロイシンを定量
した。結果を第6表に示した。 Example-10 Brevibacterium flavum
vum) Example using MJ-233-AB-41 (FERM BP-1498)-
After culturing in the same manner as in Example 9 and then reacting under the same conditions as in Example-9, L-isoleucine in the supernatant was quantified. The results are shown in Table 6.
実施例−11 ブレビバクテリウム・フラバム(Brevibacterium fla
vum)MJ-233-ABT-11(FERM BP-1500)を使用し実施例−
9と同様に培養し、又そのあと、実施例−9と同様の条
件にて反応させた後上清液中のL−イソロイシンを定量
した。結果を第7表に示した。 Example 11 Brevibacterium flavum
vum) Example using MJ-233-ABT-11 (FERM BP-1500)-
After culturing in the same manner as in Example 9 and then reacting under the same conditions as in Example-9, L-isoleucine in the supernatant was quantified. The results are shown in Table 7.
実施例−12 ブレビバクテリウム・フラバム(Brevibacterium fla
vum)MJ-233-ABD-21(FERM BP-1499)を使用し実施例−
9と同様に培養し、又そのあと、実施例−9と同様の条
件にて反応させた後上清液中のL−イソロイシンを定量
した。結果を第8表に示した。 Example-12 Brevibacterium flavum
vum) Example using MJ-233-ABD-21 (FERM BP-1499) −
After culturing in the same manner as in Example 9 and then reacting under the same conditions as in Example-9, L-isoleucine in the supernatant was quantified. The results are shown in Table 8.
フロントページの続き (72)発明者 福島 真樹子 茨城県稲敷郡阿見町中央8−3−1 三 菱油化株式会社中央研究所内 (72)発明者 湯川 英明 茨城県稲敷郡阿見町中央8−3−1 三 菱油化株式会社中央研究所内Front page continuation (72) Inventor Makiko Fukushima 8-3-1 Chuo, Ami-cho, Inashiki-gun, Ibaraki Sanryo Petrochemical Co., Ltd. Central Research Laboratory (72) Hideaki Yukawa 8-3- Chuo, Ami-cho, Inashiki-gun, Ibaraki 1 Central Research Laboratory, Sanryo Yuka Co., Ltd.
Claims (5)
evibacterium)属に属する微生物の菌体若しくはこの固
定化物の存在下、α−アミノ酪酸及び炭素源を含有する
がビオチンを含まぬ水溶液中で、溶存酸素存在下に酵素
反応させて該溶液中にL−イソロイシンを生成せしめ、
これからL−イソロイシンを採取することを特徴とする
L−イソロイシンの製造法。1. A Brevibacterium which requires biotin.
E. coli in the presence of microorganisms belonging to the genus Evibacterium) or its immobilized product, an enzyme reaction is carried out in the presence of dissolved oxygen in an aqueous solution containing α-aminobutyric acid and a carbon source but not biotin, and L is added to the solution. -Producing isoleucine,
A method for producing L-isoleucine, which comprises collecting L-isoleucine from this.
evibacterium)属に属するエタノール資化性微生物をエ
タノールを主炭素源とする培地に培養して得られる菌体
若しくはこの固定化物の存在下に酵素反応させる特許請
求の範囲第1項記載の製造法。2. A Brevibacterium which requires biotin.
The production method according to claim 1, wherein the enzyme reaction is carried out in the presence of bacterial cells obtained by culturing an ethanol-assimilating microorganism belonging to the genus evibacterium) in a medium containing ethanol as a main carbon source, or in the presence of this immobilized product.
オチンを含まぬ水溶液が、α−アミノ酪酸及び炭素源を
含有する完全合成培地である特許請求の範囲第1項又は
同第2項記載の製造法。3. An aqueous solution containing α-aminobutyric acid and a carbon source, but not biotin, which is a completely synthetic medium containing α-aminobutyric acid and a carbon source. The manufacturing method described.
反応させる特許請求の範囲第1項、同第2項又は同第3
項記載の製造法。4. The enzyme reaction at a dissolved oxygen concentration of 0.05 ppm or more and 8 ppm or less, claim 1, claim 2 or claim 3
The manufacturing method described in the item.
に属する微生物が、ブレビバクテリウム・フラバム(Br
evibacterium flavum)MJ-233(FERM BP-1497)、ブレ
ビバクテリウム・フラバム(Brevibacterium flavum)M
J-233-AB-41(FERM BP-1498)、ブレビバクテリウム・
フラバム(Brevibacterium flavum)MJ-233-ABT-11(FE
RM BP-1500)又はブレビバクテリウム・フラバム(Brev
ibacterium flavum)MJ-233-ABD-21(FERM BP-1499)で
ある特許請求の範囲第1項、同第2項、同第3項又は同
第4項記載の製造法。5. A microorganism belonging to the genus Brevibacterium is Brevibacterium flavum (Br
evibacterium flavum) MJ-233 (FERM BP-1497), Brevibacterium flavum M
J-233-AB-41 (FERM BP-1498), Brevibacterium
Brevibacterium flavum MJ-233-ABT-11 (FE
RM BP-1500) or Brevibacterium flavum (Brev
ibacterium flavum) MJ-233-ABD-21 (FERM BP-1499), The production method according to claim 1, claim 2, claim 3, or claim 4.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61-133773 | 1986-06-11 | ||
JP13377386 | 1986-06-11 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63112991A JPS63112991A (en) | 1988-05-18 |
JP2521095B2 true JP2521095B2 (en) | 1996-07-31 |
Family
ID=15112637
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62107965A Expired - Lifetime JP2521095B2 (en) | 1986-06-11 | 1987-05-02 | Method for producing L-isoleucine |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2521095B2 (en) |
DE (1) | DE3719332C2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4738677B2 (en) * | 2001-09-17 | 2011-08-03 | 本田技研工業株式会社 | Blinker device |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4329427A (en) * | 1980-10-06 | 1982-05-11 | W. R. Grace & Co. | Fermentative preparation of L-isoleucine |
-
1987
- 1987-05-02 JP JP62107965A patent/JP2521095B2/en not_active Expired - Lifetime
- 1987-06-10 DE DE3719332A patent/DE3719332C2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPS63112991A (en) | 1988-05-18 |
DE3719332C2 (en) | 1996-10-17 |
DE3719332A1 (en) | 1987-12-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0559709B2 (en) | ||
JP2521095B2 (en) | Method for producing L-isoleucine | |
US5116743A (en) | L-alanine production with two microorganisms having fumarase inactivity in a single reaction tank | |
JP2516625B2 (en) | Method for producing L-threonine | |
JP2942995B2 (en) | Method for producing L-alanine | |
EP0156504B1 (en) | A process for the preparation of l-tryptophan | |
JP2721975B2 (en) | Method for producing L-lysine | |
JP2582805B2 (en) | Method for producing L-threonine | |
JP2582808B2 (en) | Method for producing L-isoleucine | |
JP2582806B2 (en) | Method for producing L-isoleucine | |
JP2721989B2 (en) | Method for producing L-isoleucine | |
US5034319A (en) | Process for producing L-arginine | |
JP2582810B2 (en) | Method for producing L-isoleucine | |
JP2721990B2 (en) | Method for producing L-isoleucine | |
JP2716470B2 (en) | Method for producing L-isoleucine | |
JPH0822234B2 (en) | Method for producing L-valine | |
JP2716473B2 (en) | Method for producing L-isoleucine | |
JPH0822232B2 (en) | Method for producing L-isoleucine | |
JPS6342692A (en) | Production of l-isoleucine | |
JPH0657155B2 (en) | Method for producing L-valine | |
JPH02295491A (en) | Preparation of l-isoleucine | |
JPH05271147A (en) | Method for separating and recovering d-malic acid | |
JPS63192395A (en) | Production of l-isoleucine | |
JPH02211884A (en) | Production of l-isoleucine | |
JPH04228085A (en) | Production of l-tryptophan |