JPH0297266A - Double-sided linear motor - Google Patents

Double-sided linear motor

Info

Publication number
JPH0297266A
JPH0297266A JP24931288A JP24931288A JPH0297266A JP H0297266 A JPH0297266 A JP H0297266A JP 24931288 A JP24931288 A JP 24931288A JP 24931288 A JP24931288 A JP 24931288A JP H0297266 A JPH0297266 A JP H0297266A
Authority
JP
Japan
Prior art keywords
secondary conductor
gap
sides
coil
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24931288A
Other languages
Japanese (ja)
Inventor
Toshiaki Takigawa
滝川 敏明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP24931288A priority Critical patent/JPH0297266A/en
Publication of JPH0297266A publication Critical patent/JPH0297266A/en
Pending legal-status Critical Current

Links

Landscapes

  • Motor Or Generator Cooling System (AREA)
  • Linear Motors (AREA)

Abstract

PURPOSE:To cool a primary side stator and a secondary conductor efficiently by sending a cooling air from the outside of coil ends on both sides through a ventilating gap to the traveling gap side by cooling fans provided in the manner of facing each other with the coil ends on both sides between. CONSTITUTION:Blade pieces 28a of respective cooling fans 28 are arranged to face each other with coil ends 25 on both sides in between. By rotation of the cooling fans 28, the outside air is absorbed into a fan cover 32 as shown by the arrow A and sent almost horizontally toward the coil end 25 as shown by the arrow B. A part of the cooling air hits the coil end 25 and flows along the coil end 25 as shown by the arrow C, but the cooling air mostly passes through the ventilating gap between respective coil ends 25 and flows to the traveling gap 22 side. Then, two flows of the cooling air hit each other from both sides of a secondary conductor 23 and the cooling air flows along both faces of the secondary conductor 23 and into the traveling gap 22.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、冷却方式に改良を施した両側式リニアモータ
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a double-sided linear motor with an improved cooling system.

(従来の技術) 従来より、両側式リニアモータは例えば特開昭61.−
173606号公報に示すように搬送システムの駆動源
として採用されている。この搬送システムは、第9図に
示すように、レール1に沿って両側式リニアモータ2を
所定の間隔で配置し、その両側式リニアモータ2によっ
て搬送テーブル3をステーション4へ移動させて荷の積
み下ろしを行うものである。この場合、両側式リニアモ
タ2は、第10図及び第11図に示すように、コイル5
が装着された一対の固定子鉄心6を、レール1内で互い
に対向させて配置して1次側固定子7を構成し、両側の
固定子鉄心6間に走行用空隙8を形成すると共に、この
走行用空隙8内を板状の2次導体9が走行し得るように
構成している。
(Prior Art) Conventionally, double-sided linear motors have been developed, for example, in Japanese Patent Application Laid-Open No. 1986-61. −
As shown in Japanese Patent No. 173606, it is used as a drive source for a conveyance system. As shown in FIG. 9, in this conveyance system, double-sided linear motors 2 are arranged at predetermined intervals along a rail 1, and the conveyance table 3 is moved to a station 4 by the double-sided linear motors 2 to transfer the load. It is used for loading and unloading. In this case, the double-sided linear motor 2 has a coil 5 as shown in FIGS. 10 and 11.
A pair of stator cores 6 equipped with the stator cores 6 are arranged to face each other within the rail 1 to form a primary stator 7, and a running gap 8 is formed between the stator cores 6 on both sides. A plate-shaped secondary conductor 9 is configured to run within this running gap 8.

この2次導体9は搬送テーブル3の下面に垂下状に取付
けられ、また搬送テーブル3は車輪]0を介してレール
1上を移動自在となっている。
This secondary conductor 9 is attached to the lower surface of the transport table 3 in a hanging manner, and the transport table 3 is movable on the rail 1 via wheels ]0.

このような構成の両側式リニアモータ2の駆動原理は、
1次側固定子7のコイル5に通電して励磁することによ
り走行用空隙8に移動磁界を発生させ、この移動磁界に
より2次導体9に推力(運動エネルギー)を与えて搬送
テーブル3を駆動するものである。
The driving principle of the double-sided linear motor 2 with such a configuration is as follows.
By energizing and exciting the coil 5 of the primary side stator 7, a moving magnetic field is generated in the running gap 8, and this moving magnetic field gives thrust (kinetic energy) to the secondary conductor 9 to drive the transport table 3. It is something to do.

(発明が解決しようとする課題) ところで、上記従来構成では、両側式リニアモータ2の
運転中に発熱する1次側固定子7及び2次導体9の冷却
を自然放熱により行うようにしていたので、冷却性能が
低く、それ故に、コイル5に連続通電すると、発熱が過
大になってコイル5の焼損事故を招く虞れがあるので、
コイル5への通電は第12図に示すように間欠通電とし
ている。この場合、通電時間tを短くしてデユーティ比
t/T(Tは周期)を小さくすると、2次導体9の温度
上昇か低く抑えられて(第13図参照)、始動推力を大
きくできる(第14図参照)という利点かあるか、デユ
ーティ比t/Tか小さくなるに従って、各搬送テーブル
3間の距離(先の2次導体か走行用空隙8内を通過して
から後続の2次導体が通過するまでの時間)を長くしな
ければならす、搬送能率が低いという欠点かある。従っ
て、搬送能率を高めるには、通電時間tを長くしてデユ
ーティ比t/Tを大きくする必要かあるが、デユーティ
比t/Tを大きくするに従って、2次導体9の温度が急
激に上昇しく第13図参照)、その2次導体9に熱ひず
みによる変形が生して2次導体9が固定子鉄心6に接触
する原因となったり、或は2次導体9の温度上昇に伴う
抵抗変化によって2次導体9内への磁束の流れが悪くな
り、第14図に示すように始動推力が小さくなってしま
う。
(Problems to be Solved by the Invention) By the way, in the conventional configuration described above, the primary stator 7 and the secondary conductor 9, which generate heat during operation of the double-sided linear motor 2, are cooled by natural heat radiation. , the cooling performance is low, and therefore, if the coil 5 is continuously energized, it may generate excessive heat and cause the coil 5 to burn out.
The coil 5 is energized intermittently as shown in FIG. In this case, if the duty ratio t/T (T is period) is reduced by shortening the energization time t, the temperature rise of the secondary conductor 9 can be suppressed (see Fig. 13), and the starting thrust can be increased (see Fig. 13). 14), as the duty ratio t/T decreases, the distance between each conveyor table 3 (the distance between the previous secondary conductor and the subsequent secondary conductor after passing through the running gap 8) decreases. The disadvantages are that it requires a long time (time to pass) and that the transport efficiency is low. Therefore, in order to increase the conveyance efficiency, it is necessary to increase the duty ratio t/T by lengthening the energizing time t, but as the duty ratio t/T increases, the temperature of the secondary conductor 9 does not rise rapidly. (see Figure 13), the secondary conductor 9 may be deformed due to thermal strain, causing the secondary conductor 9 to come into contact with the stator core 6, or the resistance may change due to a rise in the temperature of the secondary conductor 9. As a result, the flow of magnetic flux into the secondary conductor 9 deteriorates, and the starting thrust becomes small as shown in FIG.

このため、従来のものは、使用可能なデユーティ比t/
Tの範囲か小さく抑えられてしまい、そのために両側式
リニアモータ2の適用範囲が上述の搬送システムのよう
な短時間定格のシステムのみに限定されてしまい、2次
導体9を連続的に通過させるシステムには適用できず、
リニアモータとしての適用範囲が狭いという欠点があっ
た。
Therefore, in the conventional system, the usable duty ratio t/
The range of T is suppressed to a small value, and as a result, the application range of the double-sided linear motor 2 is limited to short-time rated systems such as the above-mentioned conveyance system, and the secondary conductor 9 is continuously passed through. Not applicable to the system
The drawback was that the range of application as a linear motor was narrow.

このような欠点を改善するために、近年、両側式リニア
モータ2の冷却を自然冷却から送風機による強制冷却に
変更したものが開発されている。
In order to improve these drawbacks, in recent years, a double-sided linear motor 2 has been developed in which the cooling method is changed from natural cooling to forced cooling using a blower.

このものは、送風機を別に設け、この送風機より通風ダ
クトを通して冷却風を両固定子鉄心6間の走行用空隙8
に沿って送風するように構成している。
In this case, a blower is provided separately, and the blower sends cooling air through a ventilation duct to the running gap 8 between both stator cores 6.
It is configured to blow air along the

このような構成では、通風ダクト内の管路抵抗による圧
力損失により送風効率が低下して、冷却効率か悪くなっ
てしまう。このため、十分な冷却能力を確保するには、
送風機を大形化せざるを得ず、通風ダクトの配設スペー
スと相俟って装置全体が大形化したり、製造コストが高
くなり過ぎる欠点かある。
In such a configuration, air blowing efficiency decreases due to pressure loss due to conduit resistance within the ventilation duct, resulting in poor cooling efficiency. Therefore, to ensure sufficient cooling capacity,
This has the disadvantage that the blower has to be made larger, which, together with the space required for the ventilation duct, makes the entire device larger and the manufacturing cost too high.

本発明はこのような技術的課題を解決しようとしてなさ
れたもので、従ってその目的は、1次側固定子及び2次
導体を効率良く冷却でき、その冷却性能向上によってコ
イルへの通電のデユーティ比を大きくしたり、連続通電
とすることが可能となり、リニアモータとしての適用範
囲を大幅に拡大てき、しかも装置全体の小形化と低コス
ト化を図り得る両側式リニアモータを提供するにある。
The present invention has been made to solve such technical problems, and therefore, its purpose is to efficiently cool the primary stator and secondary conductor, and by improving the cooling performance, to reduce the duty ratio of energization to the coil. To provide a double-sided linear motor that can be made larger and can be continuously energized, greatly expanding the range of application as a linear motor, and further reducing the size and cost of the entire device.

[発明の構成] (課題を解決するための手段) 本発明の両側式リニアモータは、互いに対向する両側の
固定子鉄心の各スロットに各コイルを収納して1次側固
定子を構成し、両側の固定子鉄心間の走行用空隙に沿っ
て2次導体を走行させるようにしたものにおいて、各コ
イルのコイルエンドの間に固定子鉄心の各ティースの端
面に沿って通風用空隙を形成すると共に、両側のコイル
エンドを挾んで互いに対向するように冷却ファンを設け
、この冷却ファンにより冷却風を両側のコイルエンドの
外側から上記通風用空隙を通して上記走行用空隙側へ向
けて送風するようにしたものである。
[Structure of the Invention] (Means for Solving the Problems) The double-sided linear motor of the present invention has a primary stator configured by housing each coil in each slot of stator cores on both sides facing each other, In a device in which the secondary conductor runs along the running gap between the stator cores on both sides, a ventilation gap is formed between the coil ends of each coil along the end face of each tooth of the stator core. At the same time, cooling fans are provided so as to sandwich the coil ends on both sides and face each other, and the cooling fans blow cooling air from the outside of the coil ends on both sides through the ventilation gap toward the running gap side. This is what I did.

(作用) 運転中は、冷却ファンにより冷却風を両側のコイルエン
ドの外側からコイルエンド間の通風用空隙を通して固定
子鉄心間の走行用空隙側へ向けて送風する。このとき、
冷却風が通風用空隙を通過する過程で、その冷却風がコ
イルエンドと固定子鉄心の端面に接触してそれらを冷却
する一方、走行用空隙内に2次導体が進入したときには
、2次導体の両面にその両側から冷却風が衝突し、その
冷却風か2次導体の両面に沿って走行用空隙の内外に流
れて2次導体と1次側固定子を冷却する。
(Function) During operation, the cooling fan blows cooling air from the outside of the coil ends on both sides toward the running gap between the stator cores through the ventilation gap between the coil ends. At this time,
In the process of the cooling air passing through the ventilation gap, the cooling air comes into contact with the end faces of the coil end and the stator core to cool them. On the other hand, when the secondary conductor enters the running gap, the secondary conductor Cooling air impinges on both sides of the secondary conductor from both sides, and the cooling air flows into and out of the running gap along both sides of the secondary conductor to cool the secondary conductor and the primary stator.

そして、2次導体が走行用空隙から出ていった後は、両
側からの冷却風が走行用空隙の開口端で衝突し、その衝
突によって両側の冷却風が流れ方向を略90’変えて走
行用空隙の内側やコイルエンドの先端側に向って流れ、
1次側固定子を内側からも冷却する。
After the secondary conductor leaves the running gap, the cooling air from both sides collides at the open end of the running gap, and due to this collision, the cooling air from both sides changes its flow direction by about 90' and runs. Flows toward the inside of the air gap and the tip of the coil end,
The primary stator is also cooled from the inside.

(実施例) 以下、本発明を搬送システムに適用した第1実施例につ
いて第1図乃至第7図を参照して説明する。まず、搬送
システム全体の平面図を示す第7図において、11は複
数の搬送テーブル12を巡回させるレールで、このレー
ル]1には両側式リニアモータ13か所定間隔で配置さ
れている。
(Example) Hereinafter, a first example in which the present invention is applied to a conveyance system will be described with reference to FIGS. 1 to 7. First, in FIG. 7 showing a plan view of the entire conveyance system, reference numeral 11 denotes a rail for circulating a plurality of conveyance tables 12, and on this rail 1, double-sided linear motors 13 are arranged at predetermined intervals.

この場合、各搬送テーブル12は連結具14を介してレ
ール11全体にループ状に連なっており、各搬送テーブ
ル12を各両側式リニアモータ13によって同時に駆動
し、ステーション15へ順次移動させて荷の積み下ろし
を行うようになっている。
In this case, each transport table 12 is connected in a loop across the entire rail 11 via a connector 14, and each transport table 12 is simultaneously driven by each double-sided linear motor 13 to sequentially move to a station 15 to load the load. Loading and unloading is now possible.

斯かる搬送システムに採用される両側式リニアモータ1
3の具体的構成を第1図乃至第6図に基いて説明する。
Double-sided linear motor 1 used in such a conveyance system
The specific configuration of 3 will be explained based on FIGS. 1 to 6.

即ち、1次側固定子16は、互いに対向する両側の固定
子鉄心17と、これら両固定子鉄心17の対向面(磁極
面)側に形成されたスロワl−18(第5図及び第6図
参照)に収納されたコイル]9とから構成され、各固定
子鉄心17はレール11内においてクランプ20(第3
図参照)を介して脚部21に固定されている。そして、
両側の固定子鉄心17間の隙間を走行用空隙22とし、
この走行用空隙22内を板状の2次導体23が走行し得
るように構成している。この2次導体23は、走行方向
の幅寸法が固定子鉄心17のそれよりも長くなっていて
(m4図参照)、搬送テーブル12の下面に垂下状に取
付けられ、また搬送テーブル12は車輪24(第3図参
照)を介してレール11上を移動自在となっている。
That is, the primary stator 16 includes stator cores 17 on both sides facing each other, and a throat l-18 (see FIGS. coils] 9 housed in the clamps 20 (see figure), and each stator core 17 is
(see the figure) is fixed to the leg portion 21 via. and,
The gap between the stator cores 17 on both sides is used as a running gap 22,
A plate-shaped secondary conductor 23 is configured to run within this running gap 22. This secondary conductor 23 has a width dimension in the running direction that is longer than that of the stator core 17 (see figure m4), and is attached to the lower surface of the conveyance table 12 in a hanging manner, and the conveyance table 12 has wheels 24. It is movable on the rails 11 via (see FIG. 3).

而して、コイル19は、第5図に示すように各コイルエ
ンド25のうち固定子鉄心17のスロット]8に近い部
分を真直ぐに延ばすように成形することによって、各コ
イルエンド25間に通風用空隙26を固定子鉄心]7の
各ティース27の端面に沿って形成している。これに対
応して、第3図及び第4図に示すように両固定子鉄心1
7の外側には夫々冷却ファン28が左右に2個ずつ設け
られ、これら各冷却ファン28の羽根片28aが両側の
コイルエンド25を挾んで互いに対向した配置関係とな
っている。そして、各冷却ファン28は脚部21に固定
された取付板29に取付けられ、この取付板29には、
各冷却ファン28と対向する位置に吐出口30(第3図
参照)を形成すると共に、冷却ファン28の側方に通風
窓31(第4図参照)を形成している。また、各冷却フ
ァン28を覆うファンカバー32には吸気口33か形成
されている。この吸気口33に対応して、第3図に示す
ようにレール11の側面には吸気用の通風窓34か形成
され、またレール11の下面には、排気用の通風窓35
か1次側固定子16の下側に位置するように形成されて
いる。
As shown in FIG. 5, the coil 19 is formed so that the portion of each coil end 25 near the slot 8 of the stator core 17 extends straight, thereby creating ventilation between the coil ends 25. A space 26 is formed along the end face of each tooth 27 of the stator core 7. Correspondingly, as shown in FIGS. 3 and 4, both stator cores 1
Two cooling fans 28 are provided on the left and right sides of the cooling fan 7, and the blades 28a of the cooling fans 28 are arranged to face each other with the coil ends 25 on both sides in between. Each cooling fan 28 is attached to a mounting plate 29 fixed to the leg portion 21, and this mounting plate 29 includes:
A discharge port 30 (see FIG. 3) is formed at a position facing each cooling fan 28, and a ventilation window 31 (see FIG. 4) is formed on the side of the cooling fan 28. In addition, an air intake port 33 is formed in the fan cover 32 that covers each cooling fan 28 . Corresponding to this intake port 33, a ventilation window 34 for intake is formed on the side surface of the rail 11, as shown in FIG.
The primary stator 16 is located below the primary stator 16.

次に、上記構成の作用について説明する。運転中は、コ
イル]9に連続通電して1次側固定子]6を常に励磁状
態に保ち、走行用空隙22に常に移動磁界を発生させて
2次導体22に連続的に推力(運動エネルギー)を与え
、ループ状に連結された搬送テーブル12全体をレール
1]に沿って走行させる。
Next, the operation of the above configuration will be explained. During operation, the coil [9] is continuously energized to keep the primary stator [6] in an excited state, and a moving magnetic field is constantly generated in the running air gap 22, so that thrust (kinetic energy) is continuously applied to the secondary conductor 22. ), and the entire transport table 12 connected in a loop is run along the rail 1].

このように、コイル19に連続通電すると、1次側固定
子16と2次導体23の発熱量が多くなるため、運転中
は冷却ファン28を回転させて次のようにして強制冷却
する。即ち、冷却ファン28の回転により、レール11
側面の通風窓34がら吸入した外気(冷えた空気)を第
1図に矢印Aで示すようにファンカバー32内に吸入し
、矢印Bで示すようにコイルエンド25に向けて略水平
に送風する。この冷却風の一部は、コイルエンド25に
衝突して矢印Cで示すようにコイルエンド25に沿って
流れるが、冷却風の多くは、各コイルエンド25間の通
風用空隙26を通過してティス27の端面に沿って走行
用空隙22側へ流れる。そして、第1図に示すように走
行用空隙22内に2次導体23が進入しているときには
、2次導体23の両面にその両側から冷却風が衝突し、
その衝突により冷却風が流れ方向を矢印り、E方向へ略
90°変えて2次導体23の両面に沿って流れ、走行用
空隙22内へも流れる。また、2次導体23が走行用空
隙22から出ていった後は、第2図に示すように両側か
らの冷却風か走行用空隙22で衝突し、その衝突によっ
て両側の冷却風か流れ方向を矢印り、E方向へ略90°
変えて走行用空隙22の内側やコイルエンド25の先端
側に向って流れる。このようにして、冷却風は矢印B、
CD、E方向に流れる過程で、コイルエンド25.固定
子鉄心17及び2次導体23から熱を奪ってこれらを冷
却し、最終的にレール11の」二部開口や下面の通風窓
35から外部に排出される。
When the coil 19 is continuously energized in this way, the amount of heat generated by the primary stator 16 and the secondary conductor 23 increases, so during operation, the cooling fan 28 is rotated to perform forced cooling as follows. That is, due to the rotation of the cooling fan 28, the rail 11
The outside air (chilled air) taken in through the ventilation window 34 on the side is drawn into the fan cover 32 as shown by arrow A in FIG. 1, and is blown approximately horizontally toward the coil end 25 as shown by arrow B. . A part of this cooling air collides with the coil end 25 and flows along the coil end 25 as shown by arrow C, but most of the cooling air passes through the ventilation gap 26 between each coil end 25. The water flows along the end surface of the teeth 27 toward the traveling gap 22 side. When the secondary conductor 23 enters the running gap 22 as shown in FIG. 1, cooling air collides with both sides of the secondary conductor 23 from both sides.
Due to the collision, the cooling air turns the flow direction by approximately 90° toward the E direction, flows along both sides of the secondary conductor 23, and also flows into the running gap 22. In addition, after the secondary conductor 23 leaves the running gap 22, as shown in FIG. arrow, approximately 90° toward the E direction.
Instead, it flows inside the running gap 22 and toward the tip side of the coil end 25. In this way, the cooling air is directed to arrow B,
In the process of flowing in the CD and E directions, the coil end 25. Heat is removed from the stator core 17 and the secondary conductor 23 to cool them, and is finally discharged to the outside through the two-part opening of the rail 11 and the ventilation window 35 on the bottom surface.

上記第1実施例によれば、運転中は、冷却風がコイルエ
ンド25の内外両側に沿って流れて、コ]] イルエンド25を内外両側から効率良く冷却すると共に
、その冷却風が固定子鉄心17(ティース27)の端面
と走行用空隙22の内面に沿って流れて、固定子鉄心1
7を内外両側から効率良く冷却し、1次側固定子16の
温度上昇を低く抑えて、過熱によるコイル19の焼損等
を防止できる。更に、冷却風が2次導体23の両面に沿
って流れて、2次導体23を両側から効率良く冷却し、
2次導体23の温度上昇も低く抑えて、2次導体23の
熱ひずみによる変形を抑え、2次導体23と固定子鉄心
17との接触を防止できると共に、温度上昇による始動
特性低下(2次導体23の抵抗変化)を防止できて、搬
送テーブル12を円滑に走行させることかきる。しかも
、上述のように優れた冷却能力により、コイル1つへの
通電のデユーティ比を大きく (通電時間を長く)シた
り、連続通電することが可能となり、上記実施例のよう
な2次導体23が走行用空隙22を連続的に通過するシ
ステムにも適用でき、リニアモータとしての適用範囲を
拡大できる。
According to the first embodiment, during operation, the cooling air flows along both the inner and outer sides of the coil end 25, efficiently cooling the coil end 25 from both the inner and outer sides, and the cooling air flows along the stator core. 17 (teeth 27) and the inner surface of the running gap 22, the stator core 1
7 can be efficiently cooled from both the inside and outside, the temperature rise of the primary stator 16 can be suppressed to a low level, and burnout of the coil 19 due to overheating can be prevented. Furthermore, the cooling air flows along both sides of the secondary conductor 23, efficiently cooling the secondary conductor 23 from both sides,
It is possible to suppress the temperature rise of the secondary conductor 23 to a low level, suppress deformation of the secondary conductor 23 due to thermal strain, and prevent contact between the secondary conductor 23 and the stator core 17. This allows the transfer table 12 to run smoothly. Moreover, as mentioned above, the excellent cooling ability makes it possible to increase the duty ratio (longer energization time) of energization to one coil and to continuously energize the coil, making it possible to It can also be applied to a system in which the linear motor continuously passes through the running gap 22, and the range of application as a linear motor can be expanded.

この場合、冷却方式は、コイルエンド25の間に通風用
空隙26を形成すると共に、両側のコイルエンド25を
挾んで互いに対向するように冷却ファン28を設け、こ
の冷却ファン28により冷却風を両側のコイルエンド2
5の外側から通風用空隙26を通して走行用空隙22側
へ向けて送風する構成であるから、従来の通風ダクトが
不要となり、その分、装置全体を小形化できてコスト安
になし得る。しかも、従来の通風ダクト内の管路抵抗に
よる圧力損失の問題を解消できて、送風効率を向上でき
ると共に、1次側固定子16を内外両側から効率良く冷
却できて冷却効率を向上でき冷却ファン28自体の小形
化(薄形化)も可能となる。
In this case, the cooling system is such that a ventilation gap 26 is formed between the coil ends 25, and cooling fans 28 are provided so as to sandwich the coil ends 25 on both sides and face each other. coil end 2
Since the configuration is such that air is blown from the outside of the vehicle through the ventilation gap 26 toward the travel gap 22 side, a conventional ventilation duct is not required, and the entire device can be made smaller and cost-effective accordingly. Moreover, the problem of pressure loss due to conduit resistance in the conventional ventilation duct can be solved, and the air blowing efficiency can be improved, and the primary stator 16 can be efficiently cooled from both the inside and outside, improving the cooling efficiency. It is also possible to make the 28 itself smaller (thinner).

尚、上記第1実施例では、固定子鉄心17の横幅か長い
ため、片側に冷却ファン28を2個ずつ設けて、1次側
固定子]6全体にまんべんなく冷却風が行渡るようにし
たが、固定子鉄心の横幅か比較的短い場合や発熱量か比
較的少ないような場合には、第8図に示す本発明の第2
実施例のように、1次側固定子16の両側の中央に冷却
ファン28を1個ずつ設け、これら再冷却ファン28を
両側のコイルエンド25を挾んで対向させるようにして
も良い。この場合、冷却ファン28を支持する取付板2
9の上下両端に、冷却風を固定子鉄心17に沿って左右
方向に導く導風壁36を設け、この導風壁36と取(N
I板29との導風作用によって冷却風を1次側固定子1
6全体にまんべんなく行渡らせるようにしている。
In the first embodiment, since the width of the stator core 17 is long, two cooling fans 28 are provided on each side so that the cooling air is evenly distributed over the entire primary stator 6. , when the width of the stator core is relatively short or when the amount of heat generated is relatively small, the second method of the present invention shown in FIG.
As in the embodiment, one cooling fan 28 may be provided in the center on both sides of the primary stator 16, and these re-cooling fans 28 may be opposed to each other with the coil ends 25 on both sides in between. In this case, the mounting plate 2 that supports the cooling fan 28
Air guide walls 36 are provided at both upper and lower ends of the stator core 17 to guide the cooling air in the left and right direction along the stator core 17.
The cooling air is directed to the primary stator 1 by the air guiding action with the I plate 29.
6. I try to spread it evenly throughout the whole area.

その他、本発明は、冷却ファンを3組以上(合計6個以
上)設ける構成としたり、搬送システムの構成を変更し
ても良い等、種々の変形が可能である。
In addition, the present invention can be modified in various ways, such as a configuration in which three or more sets of cooling fans (six or more in total) are provided, and the configuration of the conveyance system may be changed.

[発明の効果コ 本発明は以上の説明から明らかなように、各コイルのコ
イルエンドの間に固定子鉄心の各ナイスの端面に沿って
通風用空隙を形成すると共に、両側のコイルエンドを挾
んで互いに対向するように冷却ファンを設け、この冷却
ファンにより冷却風を両側のコイルエンドの外側から上
記通風用空隙を通して固定子鉄心間の走行用空隙側へ向
けて送風するように構成したので、1次側固定子と2次
導体を効率良く冷却できて、2次導体の熱ひずみによる
変形や始動特性低下を抑えて、2次導体の走行を円滑に
することができる。しかも、冷却性能向上によってコイ
ルへの通電のデユーティ比を大きくしたり、連続通電と
することが可能となり、リニアモータとしての適用範囲
を大幅に拡大でき、その上、装置全体の小形化と低コス
ト化を図り得る。
[Effects of the Invention] As is clear from the above description, the present invention forms a ventilation gap along each nice end surface of the stator core between the coil ends of each coil, and also pinches the coil ends on both sides. Therefore, cooling fans are provided to face each other, and the cooling fans are configured to blow cooling air from the outside of the coil ends on both sides through the ventilation gap toward the running gap between the stator cores. The primary stator and the secondary conductor can be efficiently cooled, the deformation of the secondary conductor due to thermal strain and deterioration in starting characteristics can be suppressed, and the running of the secondary conductor can be made smooth. Moreover, improved cooling performance makes it possible to increase the duty ratio of current to the coil and to make it continuous, greatly expanding the range of applications as a linear motor.In addition, the overall device size and cost can be reduced. can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第7図は本発明の第1実施例を示したもので
、第1図は走行用空隙内に2次導体が進入したときの冷
却風の流れを示す断面図、第2図は走行用空隙から2次
導体が出ていったときの冷却風の流れを示す断面図、第
3図は要部の縦断正面図、第4図は同縦断側面図、第5
図は1次側固定子の部分拡大側面図、第6図は固定子鉄
心の部分拡大平面゛図、第7図は搬送システムの平面図
、第8図は本発明の第2実施例を示す冷却ファン付き両
側式リニアモータの斜視図である。そして、第9図乃至
第14図は従来例を示したもので、第9図は第7図相当
図、第10図は第3図相当図、第11図は第4図相当図
、第12図はコイルへの通電サイクルを示す電圧波形図
、第13図は通電時間と2次導体の温度との関係を示す
特性図、第14図は2次導体の温度と始動推力との関係
を示す特性図である。 図面中、12は搬送テーブル、13は両側式リニアモー
タ、]6は1次側固定子、17は固定子鉄心、18はス
ロット、19はコイル、22は走行用空隙、23は2次
導体、25はコイルエンド、26は通風用空隙、27は
ティース、28は冷却ファンである。 出願人  株式会社  東  芝 第 図 第 図 第 図 第 図 g岬動R
1 to 7 show a first embodiment of the present invention, and FIG. 1 is a cross-sectional view showing the flow of cooling air when the secondary conductor enters the running gap, and FIG. is a cross-sectional view showing the flow of cooling air when the secondary conductor exits the running gap, Figure 3 is a vertical front view of the main part, Figure 4 is a vertical side view of the same, and Figure 5 is a vertical cross-sectional view of the main part.
The figure shows a partially enlarged side view of the primary stator, FIG. 6 shows a partially enlarged plan view of the stator core, FIG. 7 shows a plan view of the conveyance system, and FIG. 8 shows a second embodiment of the present invention. FIG. 2 is a perspective view of a double-sided linear motor with a cooling fan. 9 to 14 show conventional examples. FIG. 9 is a diagram equivalent to FIG. 7, FIG. 10 is a diagram equivalent to FIG. 3, FIG. 11 is a diagram equivalent to FIG. The figure is a voltage waveform diagram showing the energization cycle to the coil, Figure 13 is a characteristic diagram showing the relationship between the energization time and the temperature of the secondary conductor, and Figure 14 is the relationship between the temperature of the secondary conductor and the starting thrust. It is a characteristic diagram. In the drawing, 12 is a transfer table, 13 is a double-sided linear motor, 6 is a primary stator, 17 is a stator core, 18 is a slot, 19 is a coil, 22 is a running gap, 23 is a secondary conductor, 25 is a coil end, 26 is a ventilation gap, 27 is a tooth, and 28 is a cooling fan. Applicant: Toshiba Corporation

Claims (1)

【特許請求の範囲】[Claims] 1、互いに対向する両側の固定子鉄心の各スロットに各
コイルを収納して1次側固定子を構成し、前記両側の固
定子鉄心間の走行用空隙に沿って2次導体を走行させる
ようにしたものにおいて、前記各コイルのコイルエンド
の間に前記固定子鉄心の各テイースの端面に沿って形成
された通風用空隙と、両側のコイルエンドを挾んで互い
に対向するように設けられ冷却風を両側のコイルエンド
の外側から前記通風用空隙を通して前記走行用空隙側へ
向けて送風する冷却ファンとを具備して成る両側式リニ
アモータ。
1. Each coil is housed in each slot of the stator cores on both sides facing each other to form a primary stator, and the secondary conductor is made to run along the running gap between the stator cores on both sides. A ventilation gap is formed along the end face of each tooth of the stator core between the coil ends of each of the coils, and a cooling air gap is provided so as to face each other with the coil ends on both sides in between. and a cooling fan that blows air from the outside of both coil ends through the ventilation gap toward the running gap.
JP24931288A 1988-10-03 1988-10-03 Double-sided linear motor Pending JPH0297266A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24931288A JPH0297266A (en) 1988-10-03 1988-10-03 Double-sided linear motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24931288A JPH0297266A (en) 1988-10-03 1988-10-03 Double-sided linear motor

Publications (1)

Publication Number Publication Date
JPH0297266A true JPH0297266A (en) 1990-04-09

Family

ID=17191120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24931288A Pending JPH0297266A (en) 1988-10-03 1988-10-03 Double-sided linear motor

Country Status (1)

Country Link
JP (1) JPH0297266A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5258671A (en) * 1991-01-16 1993-11-02 Utdc Inc. Cooling structure for linear induction motor
WO2013101442A3 (en) * 2011-12-29 2014-03-27 Bose Corporation Motor cooling system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5258671A (en) * 1991-01-16 1993-11-02 Utdc Inc. Cooling structure for linear induction motor
WO2013101442A3 (en) * 2011-12-29 2014-03-27 Bose Corporation Motor cooling system
US9444308B2 (en) 2011-12-29 2016-09-13 Ta Instruments-Waters L.L.C. Linear motor cooling system
CN107257181A (en) * 2011-12-29 2017-10-17 Ta仪器-沃特斯有限责任公司 Motor cooling system
US10879767B2 (en) 2011-12-29 2020-12-29 Ta Instruments-Waters L.L.C. Linear motor cooling system

Similar Documents

Publication Publication Date Title
US6489591B1 (en) Cooling air circuits for welding machine
GB2289992A (en) Improvements in or relating to cooling arrangements in rotating electrical machines
KR101673333B1 (en) Cooling unit of drive motor
JPH10271780A (en) Randel core type electric rotating machine
JP6665344B2 (en) Vehicle electric motor
JPH0297266A (en) Double-sided linear motor
JP3878939B2 (en) Air-cooled coil unit of linear motor
US4039871A (en) Cooling device for use in a low inertia electric motor
KR101550509B1 (en) Tightly closed and air cooled moter
JPS60118039A (en) Linear motor with cooler
KR100261814B1 (en) Cooling apparatus of linear induction motor
JP2002010619A (en) Linear motor
JP2585818Y2 (en) Stator for canned linear motor
US3921018A (en) Apparatus for cooling armature end turns
JP3661978B2 (en) Moving coil linear motor
CN117219407B (en) Dry-type transformer cooling device and cooling method thereof
JP3493524B2 (en) Water-cooled cooler in electric vehicle transformer
JPS63265545A (en) Ac generator for vehicle
JP7343061B1 (en) linear conveyor
JP2002247831A (en) Linear motor
JPS6219064Y2 (en)
ES2037351T3 (en) AIR REFRIGERATOR.
JP3838314B2 (en) Moving coil linear motor
CN117219407A (en) Dry-type transformer cooling device and cooling method thereof
JPH01184342A (en) Radiant cooler/heater