JPH0296919A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPH0296919A
JPH0296919A JP24928488A JP24928488A JPH0296919A JP H0296919 A JPH0296919 A JP H0296919A JP 24928488 A JP24928488 A JP 24928488A JP 24928488 A JP24928488 A JP 24928488A JP H0296919 A JPH0296919 A JP H0296919A
Authority
JP
Japan
Prior art keywords
layer
substrate
film
buffer layer
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24928488A
Other languages
Japanese (ja)
Inventor
Kiyotaka Yamaguchi
山口 希世登
Keiji Okubo
大久保 恵司
Hisashi Yamazaki
山崎 恒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP24928488A priority Critical patent/JPH0296919A/en
Publication of JPH0296919A publication Critical patent/JPH0296919A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To relieve the generation of internal stresses by forming a buffer layer formed by alternately laminating Si3N4 films having a compressive stress and tensile stress as well as a nonmagnetic metallic underlying layer, a magnetic layer and a protective lubricating layer successively in this order in a substrate having a prescribed compsn. CONSTITUTION:Plastic is used for the substrate 1a and the buffer layer 6 is interposed between the substrate 1a and the nonmagnetic metallic underlying layer 3. A polyether imide resin is used for the substrate material and is molded by a metallic mold having prescribed surface accuracy to form the substrate 1a. The buffer layer 6 is formed on this substrate 1a by alternately laminating the Si3N4 films (2 to 5X10<9>dyn/cm<2>) 6a having the compressive stress and the Si3N4 films (-1 to -4X10<9>dn/cm<2>) 6b having the tensile stress thereon. The case in which the number of the laminations is 6 layer is shown in the figure, in which both the films 6a, 6b are formed to 50A. The nonmagnetic metallic underlying layer 3 consisting of Cr is formed to 2,000A thickness on this buffer layer 6 and the magnetic layer 4 consisting of a Cr alloy consisting of 30at.% Co and 7.5at.% Ni to 500A thickness, and the protective lubricating layer 5 consisting of carbon to 500A thickness, respectively continuously by sputtering within the same reaction vessel, by which the magnetic recording medium is obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は磁気記録装置に用いられる磁気ディスクなどの
磁気記録媒体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a magnetic recording medium such as a magnetic disk used in a magnetic recording device.

〔従来の技術〕[Conventional technology]

第3圀は従来用いられている磁気記録媒体の模式的な要
部構成断面図を示したものである。第3図の磁気記録媒
体はA−6−Mg合金基板lの上に非磁性金属基体層2
を被覆し、この非磁性金属基体層2上にさらに非磁性金
属下地層3を介して例えばCo−Ni−Cr合金薄膜の
磁性層4を被覆し、磁性層4上に保護潤滑層5を設けて
あり、基板1に非磁性金属基体層2から保護潤滑層5ま
でをこの符号順に積み重ねたように構成したものである
The third panel shows a schematic cross-sectional view of the main part of a conventionally used magnetic recording medium. The magnetic recording medium in FIG. 3 has a nonmagnetic metal base layer 2 on an A-6-Mg alloy substrate 1
A magnetic layer 4 of, for example, a Co-Ni-Cr alloy thin film is further coated on the non-magnetic metal base layer 2 via a non-magnetic metal underlayer 3, and a protective lubricant layer 5 is provided on the magnetic layer 4. The structure is such that a nonmagnetic metal base layer 2 to a protective lubricant layer 5 are stacked on a substrate 1 in the order of the numbers.

このように構成された磁気記録媒体は製造過程で基板1
を所定の面粗さ、平行度および平面度に仕上げ、非磁性
金属基体層2はN1−P合金を無電解めりきもしくは基
板1自体をアルマイト処理することにより形成するのが
好ましく、いずれも所定の硬さを必要とし、表面は機械
的研磨を行なって所定の面精度まで仕上げる。非磁性金
属下地層3は一般にCrを用いてスバ、タ形成し、引続
きCo−Ni−Cr合金などの磁性層4.さらにカーボ
ンもしくは別02などの保護潤滑層5を連続的にスバ、
りして被覆する。
In the magnetic recording medium configured in this way, the substrate 1 is
The non-magnetic metal substrate layer 2 is preferably formed by electroless plating of N1-P alloy or by alumite treatment of the substrate 1 itself, both of which have a predetermined surface roughness, parallelism and flatness. The surface must be mechanically polished to a specified level of surface accuracy. The non-magnetic metal underlayer 3 is generally formed using Cr, followed by a magnetic layer 4 such as a Co-Ni-Cr alloy. Furthermore, a protective lubricant layer 5 such as carbon or another 02 is continuously applied.
and cover.

かくして得られたa−気記録媒体は強度2寸法精度など
の機械的特性および磁気特性も良好であり、例えばAJ
−Mg合金基板1上に被覆したN1−P基体層2にCr
の非磁性金属下地層3を200OA 。
The thus obtained a-air recording medium has good mechanical properties such as strength and two-dimensional accuracy, and magnetic properties, such as AJ
-Cr is applied to the N1-P base layer 2 coated on the Mg alloy substrate 1.
200OA of non-magnetic metal underlayer 3.

Co−30at%Ni−7.5at%Cr fil性層
4を500Aおよびカーボン保護潤滑層5を500A連
続スバ、りして形成したものの代宍的な磁気特性として
保磁力Hcは9000eでである。
The Co-30at%Ni-7.5at%Cr film layer 4 was formed by a 500A continuous wave and the carbon protective lubricant layer 5 was formed by a 500A continuous wave, but the coercive force Hc was 9000e as a substitute magnetic property.

以上のような磁気記録媒体は緒特性の向上とともに近年
ますます軽量化とコストの低減に対する要求が高められ
ている。
As magnetic recording media such as those described above have improved in magnetic properties, there has been an increasing demand for lighter weight and lower costs in recent years.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

記録媒体の軽量化とコスト低減に対して考慮すべき点は
基板材料の選択である。すなわち、AJ−Mg合金を基
板に用いているために、この上に硬いN1−P層を設け
ねばならず、基板面とN1−P層の表面研磨加工に多大
の時間を要し、このことがコストに大きな比率を占めて
いる。したがって、この加工工数を短縮するためには、
所定の面粗さ、平行度および平面度に仕上げなければな
らないので、大幅な工数省略は不可能であってコストの
低減には限界があり、 AJ −Mg合金を用いる限り
多くを期待することができない。
A point to consider in order to reduce the weight and cost of a recording medium is the selection of the substrate material. In other words, since the AJ-Mg alloy is used for the substrate, a hard N1-P layer must be provided on top of the AJ-Mg alloy, and it takes a lot of time to polish the surfaces of the substrate and the N1-P layer. accounts for a large proportion of costs. Therefore, in order to shorten this machining time,
Since the surface must be finished to a specified level of roughness, parallelism, and flatness, it is impossible to significantly reduce man-hours, and there is a limit to cost reduction.As long as AJ-Mg alloy is used, much can be expected. Can not.

−1基板材料の選択に関しては記録媒体の軽量化も含め
て、プラスチックもしくはプラスチックとセラミ、りの
複合材料を用いるのが有望である。
-1 Regarding the selection of the substrate material, it is promising to use plastic or a composite material of plastic and ceramic, including reducing the weight of the recording medium.

これらの材料はAJ3− Mg合金より軽く、金型を用
いて成形することができるので、金型の表面を高精度に
加工しておくことにより、成形後の表面研磨を行なうこ
となく十分に良好な面粗さや平行度が得られるという利
点があるからである。
These materials are lighter than AJ3-Mg alloy and can be formed using a mold, so by processing the surface of the mold with high precision, they can be made in a sufficiently good condition without the need for surface polishing after molding. This is because it has the advantage of providing good surface roughness and parallelism.

しかしながら、基板としてプラスチックまたはその複合
材を用いるときは、別な問題が起きる。
However, other problems arise when using plastic or a composite thereof as the substrate.

それは、プラスチックと金属の熱膨張係数に大きな差が
あるためプラスチック基板上に成膜した金属膜にクラッ
クが発生しやすい点である。このクラックは、その大き
さおよび数量により、媒体の耐食性低下や磁気記録信号
のエラー増加をひきおこす原因となる。したがって1.
リーMg合金に代りプラスチックなどを基板に用いたと
きも記録媒体の信頼性を損なわないようにする必要があ
る。
This is because there is a large difference in coefficient of thermal expansion between plastic and metal, so cracks are likely to occur in the metal film formed on the plastic substrate. These cracks, depending on their size and quantity, can cause a decrease in the corrosion resistance of the medium and an increase in errors in magnetic recording signals. Therefore 1.
Even when plastic or the like is used for the substrate instead of the Lee-Mg alloy, it is necessary to ensure that the reliability of the recording medium is not impaired.

本発明は上述の点に鑑みてなされたものであり、その目
的は磁気記録媒体をより軽量とし、コストを低減するた
めにプラスチックまたはプラスチ。
The present invention has been made in view of the above points, and its purpose is to make magnetic recording media lighter and to reduce costs using plastic or plastic.

りとセラミ、りの複合材料を用い、しかも良好な磁気特
性を有し、金属膜のクラ、り発生を防止することができ
る構造を有する磁気記録媒体を提供することにある。
It is an object of the present invention to provide a magnetic recording medium that uses a composite material of silica, ceramic, and silica, has good magnetic properties, and has a structure that can prevent cracking and cracking of a metal film.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の磁気記録媒体はプラスチックなどの非磁性基板
上に、圧線応力をもつ5iaN4膜と引張応力をもつS
isNaMとを交互に積み重ねたパ、ファ層、非磁性金
属下地層eiB性層および保独詞ノーをこの顔にスパッ
タ形成したものである。
The magnetic recording medium of the present invention has a 5iaN4 film with a pressure line stress and an S film with a tensile stress on a non-magnetic substrate such as plastic.
On this face are sputter-formed a Pa layer, a Fa layer, a non-magnetic metal underlayer, an eiB layer, and an interpolation layer consisting of alternately stacked isNaM layers.

〔作用〕[Effect]

熱膨張係数の大きいプラスチック基板(約ム×1o /
℃)とこれよりかなり熱膨張係数の小さい金属II (
Cr :約8.4 XIG /”C)との間に成膜時の
熱履歴(昇温と降温)によって生ずる内部応力を吸収ま
たは緩和させるために、パ、ファ層を設けるのが有効で
ある。このバッファ層は単一材料で形成すると例えば少
な(とも1000 A程度の厚さを必要とする。しかし
バッファ層の厚さは必要以上にあまり大きくすることは
できないから、所定の厚さ内にバッファ層を収めるとき
、単一材料を用いてただ一層としたのではその中を応力
が伝播するだけでLカを吸収または緩和する役割を果た
すことができない。
Plastic substrate with a large coefficient of thermal expansion (approx.
℃) and metal II with a significantly smaller coefficient of thermal expansion (
Cr: approx. 8.4 If this buffer layer is formed from a single material, it will require a small thickness (approximately 1000 A).However, the thickness of the buffer layer cannot be made much larger than necessary, so it must be within a predetermined thickness. When the buffer layer is housed, if a single layer is made of a single material, stress will only propagate therein, and it will not be able to absorb or relax the L force.

そこで本発明のようにバッファ層を同種の形態の異なる
膜を多層に積み重ねたものとして形成し、応力伝播を遅
らせ、それぞれの膜の界面において応力緩和を分担させ
ることにより、全体の応力緩和に寄与させることが可能
となる。しかもこれらの膜は磁気記録媒体の製造工程上
、成膜が容易であることに加えて、成膜時の条件設定に
よって形態の異なる同種の膜を交互に積層できるもので
なければならない。このようなこと刀)ら、バッファ層
としては圧縮応力をもつSi3N4’Mと引張応力をも
つ58aNn 1111との組み合わせは両者の密層性
、整合性の点からも好適であり、これらを交互に積層す
ると、バッファ層全体として所定の厚さの中に形態の異
なる同種の膜が一つ置きに積み重ねられたものとなり、
このバッファ層がプラスチック基板と金属膜との熱膨張
係数の大きな差によって生ずる内部応力を緩和し、金に
/4膜のクラ、り発生を防止するように作用する。
Therefore, as in the present invention, the buffer layer is formed as a multilayer stack of different films of the same type, which delays stress propagation and shares stress relaxation at the interface of each film, thereby contributing to overall stress relaxation. It becomes possible to do so. Moreover, in view of the manufacturing process of magnetic recording media, these films must not only be easy to form, but also be capable of alternately stacking films of the same type with different shapes depending on the conditions set during film formation. In view of the above, the combination of Si3N4'M, which has compressive stress, and 58aNn 1111, which has tensile stress, is suitable for the buffer layer in terms of the denseness and consistency of both, and these can be used alternately. When laminated, the buffer layer as a whole consists of films of the same type with different shapes stacked every other time within a predetermined thickness.
This buffer layer acts to relieve the internal stress caused by the large difference in coefficient of thermal expansion between the plastic substrate and the metal film, and to prevent the occurrence of cracking in the gold/metal film.

〔実施例〕〔Example〕

以下本発明を実施例に基づき説明する。 The present invention will be explained below based on examples.

第1図は本発明により得られた磁気記録媒体の模式的な
要部構成断面口を示したものであり、第3図と共通部分
を同一符号で衆わしである。第1図は第3図と基本的な
構成は同じであるが、第1図が第3図と異なる点は基板
1aにプラスチックを用い、基板1aと非磁性金属下地
層3との間に、非磁性金属下地層2ではなく、バッファ
層6が介在するように構成したこと5こある。
FIG. 1 shows a schematic cross-sectional view of the main parts of a magnetic recording medium obtained according to the present invention, and parts common to those in FIG. 3 are designated by the same reference numerals. The basic configuration of FIG. 1 is the same as that of FIG. 3, but the difference between FIG. 1 and FIG. 3 is that plastic is used for the substrate 1a, and between the substrate 1a and the nonmagnetic metal underlayer 3, There are five cases in which a buffer layer 6 is provided instead of a non-magnetic metal underlayer 2.

この磁気記録媒体はまず基板材料にポリエーテルイミド
樹脂の商品名ウルテム1000を用い、所定の表面精度
をもった金型により成形して基板1aを作製し、この基
板la上に圧縮応力をもつSisNaM (2〜5 X
 10” dy”/cd ) 6aと引張応力をモツS
i3N4711 (−1〜−4XIO’ ””/cd 
) 6 b ヲ交互1c積層してなるバッファ層6を形
成するが4第1図では便宜上これら薄膜の積層数を6W
Iとした場合で示してあり、圧縮応力をもつSi3Na
 J[[6aと引張応力をもつ5iaN4膜6bの膜厚
はいずれも導入である。さらにこのバッファ層6上にC
rの非磁性金属下地層3を2000 A # Co 3
0 at % Nt−7,5at%Cr合金の磁性層4
を500iカーボンの保護潤滑層5を50OA同一反応
槽内で連続的にスバ、り形成することにより第1図の磁
気記録媒体を構成したものである。
This magnetic recording medium is manufactured by first using a polyetherimide resin (trade name Ultem 1000) as a substrate material and molding it with a mold with a predetermined surface accuracy to produce a substrate 1a. (2~5 X
10"dy"/cd) 6a and tensile stress
i3N4711 (-1~-4XIO'""/cd
) 6b A buffer layer 6 is formed by laminating 1c layers alternately.4 In FIG. 1, for convenience, the number of laminated layers of these thin films is 6W.
I is shown in the case of Si3Na with compressive stress.
The film thicknesses of J[[6a and 5iaN4 film 6b with tensile stress are both introduced. Further, on this buffer layer 6, C
r non-magnetic metal underlayer 3 of 2000 A # Co 3
0 at % Nt-7, 5 at % Cr alloy magnetic layer 4
The magnetic recording medium shown in FIG. 1 was constructed by continuously forming a protective lubricant layer 5 of 500i carbon in the same reaction tank.

ここで圧縮応力をもつSi3Na膜6aと引張応力をも
つ5laNa膜6bは次のようにして形成される。
Here, the Si3Na film 6a having compressive stress and the 5laNa film 6b having tensile stress are formed as follows.

すなわち、同一反応槽内でECRプラズマCVDとDC
スパッタとが可能な装置により、ECRプラズマCVD
法を用いて、基板温度(資)℃以下とし、原料の5IH
a 、 f’hガスを導入して成膜圧力は0.5〜5 
mTorrの範囲で変化させる。このとき成膜圧力が1
 mTorr以下で圧縮応力をもつSi3N4膜6aが
形成され、成膜圧力を1 mTorr以上にすると引張
応力をもりたSi、sN4膜6bを形成することができ
る。この成膜圧力の変化を繰り返し行ない、膜6aと膜
6bがそれぞれ50Aの厚さとなるように交互に成膜積
層することによりバッファ層6が得られる。
In other words, ECR plasma CVD and DC
ECR plasma CVD using equipment capable of sputtering
Using the method, the substrate temperature (material) is below ℃, and the 5IH of the raw material is
a, f'h gas was introduced and the film forming pressure was 0.5 to 5.
It is varied within the range of mTorr. At this time, the film forming pressure was 1
A Si3N4 film 6a having compressive stress is formed at mTorr or less, and an Si, sN4 film 6b having tensile stress can be formed at a film forming pressure of 1 mTorr or more. The buffer layer 6 is obtained by repeating this change in film forming pressure and alternately forming and stacking the films 6a and 6b so that each film has a thickness of 50A.

このとき圧縮応力をもつSi3N4膜6aと引張応力を
もつ5i3N4膜6bを形成するための成膜圧力を変え
る回数、すなわちこれらの膜が交互に積み重ねられる積
層故については、その効果を確かめるために、各成膜圧
力条件10回の繰り返しによる10/jigまでの積層
数を有する梳々のバッファ層6を形成した。また比較の
ために、l mTorr以下の成膜圧力、それ以上の成
膜圧力をそれぞれ単独で行なった圧縮応力をもつSi3
N4膜6aのみと、引張応力をもつ5iaN4HA 6
 bのみのバッファ層を作製し、一方ボリエスデル樹脂
と炭酸カルシウムとの複合材料からなる基板も作製した
At this time, in order to confirm the effect of the number of times of changing the film forming pressure to form the Si3N4 film 6a with compressive stress and the 5i3N4 film 6b with tensile stress, that is, the lamination process in which these films are stacked alternately, By repeating each film forming pressure condition 10 times, a combed buffer layer 6 having a laminated number of up to 10/jig was formed. For comparison, Si3 with compressive stress was subjected to a film formation pressure of less than 1 mTorr and a film formation pressure of more than 1 mTorr.
Only N4 film 6a and 5ia N4HA 6 with tensile stress
A buffer layer containing only b was prepared, and a substrate made of a composite material of Boriesder resin and calcium carbonate was also prepared.

さらにバッファ層6上に順次形成する非磁性金属下地層
3のCr、at磁性層のco−NムーCr合金および保
護潤滑層5のカーボンの成膜をいずれもDCスパッタ法
により次の条件により行なう。
Further, Cr for the non-magnetic metal underlayer 3, a co-Nmu-Cr alloy for the at magnetic layer, and carbon for the protective lubricant layer 5, which are sequentially formed on the buffer layer 6, are all formed by DC sputtering under the following conditions. .

基板温度:80℃以下 原  料:Crターゲ、ト*  Co−Nt  Cr合
金ターゲ、トウCターゲットか、 Arガス 成膜圧カニ10mTorr 次に以上のごとくして得られたそれぞれの磁気記録媒体
について金属膜に発生するクラ、り数と耐賞性能につい
て比較を行ない、その結果を第2図(a) 、 (b)
に示す。第2図(ωは縦軸を非磁性金属下地層3のCr
に発生する単位面積(−)あたりの1pm以上のクラッ
ク数とし、横軸をバッファ層6内に交互に積み重ねるよ
うに成膜した圧縮応力をもつSi3N4膜62と引張応
力をもつSi3N4膜6bとの積層数とし、それぞれの
磁気記録媒体について10点測定した平均値をプロット
したものである。
Substrate temperature: 80°C or less Raw materials: Cr target, *Co-Nt Cr alloy target, Tow C target, Ar gas film formation pressure 10 mTorr Next, for each magnetic recording medium obtained as described above, metal We compared the number of cracks and cracks that occur in the film and the award resistance performance, and the results are shown in Figure 2 (a) and (b).
Shown below. Figure 2 (ω is the vertical axis of Cr of the non-magnetic metal underlayer 3)
The horizontal axis represents the Si3N4 film 62 with compressive stress and the Si3N4 film 6b with tensile stress, which are formed so as to be alternately stacked in the buffer layer 6, with the number of cracks of 1 pm or more per unit area (-) occurring in the buffer layer 6. The average value obtained by measuring the number of layers at 10 points for each magnetic recording medium is plotted.

第2図rb>は、縦軸を媒体の代表的な磁気特性である
残留磁束密匿Brと、磁性層4の膜厚δの積値Br―δ
について、(資)℃、80%RH1i境内に放置した1
ケ月耐食性試験後の減少率ΔBr・δとし、横軸は第2
図(−と同様膜6aと膜6bの積層数を表わし、プロ、
トは同じ(10点行なうて平均値を用いた。
In Fig. 2 rb>, the vertical axis is the product value Br - δ of the residual magnetic flux density Br, which is a typical magnetic property of the medium, and the film thickness δ of the magnetic layer 4.
1 left in the precincts at ℃, 80% RH1i.
The reduction rate after the corrosion resistance test is ΔBr・δ, and the horizontal axis is the second
Figure (- represents the number of laminated layers of membrane 6a and membrane 6b,
The scores were the same (10 points were tested and the average value was used).

第2図<a) 、 (b)ともに、本発明によるバッフ
ァ層6を形成するのにプラスチック基板を用いたもの(
0)、同じくプラスチック複合材の基板を用いたもの(
0)、比較のためのプラスチック基板を用いた圧縮応力
をもつSi3N4膜6a単独のもの(ム)および引張応
力をもつ3i3N4膜6b単独のもの(×)を併記しで
ある。
FIGS. 2(a) and 2(b) both show a case in which a plastic substrate is used to form the buffer layer 6 according to the present invention (
0), which also uses a plastic composite substrate (
0), a single Si3N4 film 6a with compressive stress (mu) and a single 3i3N4 film 6b with tensile stress (×) using a plastic substrate for comparison are also shown.

第2図(al 、 (b)の両図を参照すればわかるよ
うに、バッファ層6が単一材料の一層のみではFiX 
6 a +膜6bのいずれの場合も%Cr下地層3に8
0m以上のクラ、りが発生し、それが原因となってΔ)
13r・δ値は5%以上に達する。このことは単一材料
の場合この実施例の範囲で膜厚を変化させても同じであ
る。ΔBr−a値が5%以上になると磁気記録媒体の記
録、再生の繰り返しによるエラーが増加するので、バッ
ファ16としては単一材料のみで形成するのが適当でな
いことは明らかである。
As can be seen from both FIGS. 2(al) and (b), if the buffer layer 6 is made of only one layer of a single material, the FiX
In both cases of 6 a + film 6 b, 8% Cr is added to the underlayer 3.
A crack of 0m or more occurred, which caused Δ)
13r·δ value reaches 5% or more. This holds true even if the film thickness is varied within the range of this embodiment in the case of a single material. When the ΔBr-a value exceeds 5%, errors due to repeated recording and reproduction of the magnetic recording medium increase, so it is obvious that it is not appropriate to form the buffer 16 using only a single material.

これに対して、圧縮応力をもつ5iiN4膜6aと圧縮
応力をもつSi3Na膜6bとを交互に&層したバッフ
ァ層6を有する本発明の磁気記録媒体では、膜6aとi
6bの積層数が増すとともにOr下地層3に生ずるクラ
ック数は急速に減少し、ΔBr・δ値も小さ(なる。こ
の積層数が4以上になると、第3図に示した従来の、す
合金基板1にN1−Pめりきの非磁性金属下地層2を被
覆した磁気記録媒体におけるΔBr e δ値1.5%
〜2%とほぼ同等の値が得られる。また同時に作製した
ポリエステル樹脂と炭酸カルシウムとの複合材料を基板
とする磁気記録媒体も、ポリエーテルイミドa(詣の基
板を用いたものと同様の効果があることを第2図(ω。
On the other hand, in the magnetic recording medium of the present invention, which has a buffer layer 6 in which a 5iiN4 film 6a having compressive stress and a Si3Na film 6b having compressive stress are alternately layered, the film 6a and i
As the number of laminated layers of 6b increases, the number of cracks occurring in the Or base layer 3 rapidly decreases, and the ΔBr・δ value also decreases (becomes).When the number of laminated layers increases to 4 or more, the conventional ΔBr e δ value of 1.5% in a magnetic recording medium in which a substrate 1 is coated with an N1-P plated nonmagnetic metal underlayer 2
A value approximately equivalent to ~2% is obtained. Furthermore, a magnetic recording medium using a composite material of polyester resin and calcium carbonate as a substrate, which was also produced at the same time, has the same effect as that using a substrate of polyetherimide a (Fig. 2 (ω)).

ら)から確認することができる。It can be confirmed from

圧縮応力をもつSi3N4膜6aや引張応力をもつSi
3N4膜6bを単独にバッファ層6として用いるときは
、その膜厚は1000 A以上を必要とすると考えられ
るが、本発明では圧縮応力をもつ5iaN4膜6aと整
合性のよい引張応力をもつSi3N4膜6bとの積層体
としてバッファ層6を形成したために、膜6aと膜6b
の厚さがいずれも50Aであるから、10層重ねたとし
ても、バッファ層6の膜厚は500Aで足りることにな
る。
Si3N4 film 6a with compressive stress and Si with tensile stress
When the 3N4 film 6b is used alone as the buffer layer 6, it is thought that the film thickness needs to be 1000 A or more, but in the present invention, a Si3N4 film with a tensile stress that matches well with the 5iaN4 film 6a, which has a compressive stress, is used. Since the buffer layer 6 is formed as a laminate with the film 6a and the film 6b,
Since the thickness of each buffer layer 6 is 50A, even if 10 layers are stacked, the thickness of the buffer layer 6 is only 500A.

以上のように圧縮応力をもつSisN41m 6 aと
引張応力をもつSi3Na膜6bを交互に積層形成した
バッファ層6を有する本発明の磁気記録媒体は、基板1
aと非磁性金属下地層3のCrとの大きな熱膨張係数の
相違憂こ起因して生ずる内部応力を膜6aとU6bがそ
れぞれの界面で吸収または緩和するように働き、その結
果金属下地層3のCrにクラックが発生するのを防止す
ることができる。
As described above, the magnetic recording medium of the present invention has the buffer layer 6 in which SisN41m 6 a having compressive stress and Si3Na film 6b having tensile stress are alternately laminated.
The films 6a and U6b work at their respective interfaces to absorb or relax the internal stress caused by the large difference in coefficient of thermal expansion between a and Cr of the nonmagnetic metal underlayer 3, and as a result, the metal underlayer 3 It is possible to prevent cracks from occurring in the Cr.

また本発明の磁気記録媒体を磁気記録装置に組み込んで
C8S試験を行なりた結果、2万回のコンタクト・スタ
ート−ストップに対しても、この媒体表面にはなんら−
の発生は見られず、再生出力もほとんど低下することな
く、十分な耐久性をもりていることを確認することがで
きた。
Furthermore, as a result of conducting a C8S test by incorporating the magnetic recording medium of the present invention into a magnetic recording device, it was found that even after 20,000 contact start-stops, no -
No occurrence of this phenomenon was observed, and there was almost no decrease in playback output, confirming that the device had sufficient durability.

そのほか本発明の磁気記録媒体は基板にプラスチックま
たはその複合材料を用いているために、従来のパノーM
、合金基板より約60%軽量になるとともに、複雑な研
磨工程を必要とせず、基板上に堆積させる各層は本発明
に係るバッファ層も含めて同一反応槽内で順次形成させ
ればよいという利点もある。
In addition, since the magnetic recording medium of the present invention uses plastic or a composite material thereof for the substrate, it is different from the conventional PanorM.
The advantage is that it is about 60% lighter than an alloy substrate, does not require a complicated polishing process, and that each layer deposited on the substrate, including the buffer layer according to the present invention, can be formed sequentially in the same reaction tank. There is also.

〔発明の効果〕〔Effect of the invention〕

磁気記録媒体は経世にするとともIこ、コストの低減が
望まれており、加工工数の多い従来のA2合金基板に代
りて、後加工なしで高い表面精度の得られるプラスチッ
クまたはその複合材料を用いることができるが、これら
プラスチック糸材料の基板は、その上に形成される金属
膜(Cr)と熱膨張係数が太き(異なるため、成膜後の
金属膜にクラ、りを発生し、このことが原因となって媒
体の耐食性能が著しく低下する。これに対して本発明の
磁気記録媒体は実施例で述べたように、プラスチック系
基板と金属膜との間に、成膜圧力を変化させることによ
り形成される圧縮応力をもつSi3N4膜と引張応力を
もつ5i3Ni膜とを交互に積み重ねたバッファ層を介
在させるようにしたため、基板と金属膜の熱膨張係数の
差により生ずる内部応力を、積層されたそれぞれの膜の
界面で吸収または緩和するように分担することが可能と
なり、これが単一材料のバッファ層では不可能であった
500A以下の膜厚のバッファ層で応力緩和を実現させ
、その結果金属膜にクラ、りが発生するのを防ぐことが
できる。
As magnetic recording media age, it is desired to reduce costs, and instead of the conventional A2 alloy substrate, which requires many processing steps, plastic or its composite material, which can obtain high surface precision without post-processing, is used. However, the substrates made of these plastic thread materials have thicker (different) thermal expansion coefficients than the metal film (Cr) formed on it, which causes cracks and slag in the metal film after film formation. As a result, the corrosion resistance performance of the medium is significantly reduced.On the other hand, the magnetic recording medium of the present invention, as described in the embodiment, uses a method that changes the film formation pressure between the plastic substrate and the metal film. By interposing a buffer layer in which Si3N4 films with compressive stress and 5i3Ni films with tensile stress are alternately stacked, the internal stress caused by the difference in thermal expansion coefficient between the substrate and the metal film can be reduced. It is now possible to share stress absorption or relaxation at the interface of each stacked film, and this makes it possible to achieve stress relaxation with a buffer layer with a thickness of 500A or less, which was impossible with a buffer layer made of a single material. As a result, it is possible to prevent cracks and scratches from occurring in the metal film.

以上のことから、本発明の磁気記録媒体はアルミニウム
系基板を用いたときに起きる本質的な欠点を排除し、従
来の人!合金基板を用いた媒体と同様の耐食性能および
信頼性を維持するものである。
From the above, it can be concluded that the magnetic recording medium of the present invention eliminates the essential drawbacks that occur when using an aluminum-based substrate, and is superior to conventional magnetic recording media. It maintains the same corrosion resistance and reliability as media using alloy substrates.

【図面の簡単な説明】[Brief explanation of drawings]

第1因は本発明の磁気記録媒体の要部構成を示す模式断
面図、第2図(atは本発明の磁気記録媒体のバッファ
層内の積層数と非磁性金属下地層に生ずるクラック数と
の関係線図、纂2図(b)は同じ(バッファ層内の積層
数とΔBr・δとの関係線図、第3図は従来の磁気記録
媒体の要部構成を示す模式断面図である。 1、la・・・基板、2・・・非磁性金属基体層%3・
・・非磁性金属下地層、4・・・磁性層、5・・・保@
自滑層、6・・・バッファ層、6a・・・圧縮応力をも
つSi3N4膜、6b・・・引張応力をもつ3i 3 
N41A 。 第1図 第3図
The first factor is shown in FIG. 2, which is a schematic cross-sectional view showing the main structure of the magnetic recording medium of the present invention (at is the number of laminated layers in the buffer layer of the magnetic recording medium of the present invention and the number of cracks occurring in the non-magnetic metal underlayer). Figure 2 (b) is the same (relationship diagram between the number of laminated layers in the buffer layer and ΔBr and δ). Figure 3 is a schematic cross-sectional view showing the main part configuration of a conventional magnetic recording medium. 1. la...substrate, 2... nonmagnetic metal base layer%3.
...Nonmagnetic metal underlayer, 4...Magnetic layer, 5...Main @
Self-sliding layer, 6... Buffer layer, 6a... Si3N4 film with compressive stress, 6b... 3i with tensile stress 3
N41A. Figure 1 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 1)プラスチックまたはプラスチックとセラミックの複
合材料からなる基板上に圧縮応力をもつSi_3N_4
膜と引張応力をもつSi_3N_4膜とを交互に積み重
ねたバッファ層、非磁性金属下地層、磁性層および保護
潤滑層をこの順に形成してなることを特徴とする磁気記
録媒体。
1) Si_3N_4 with compressive stress on a substrate made of plastic or a composite material of plastic and ceramic
1. A magnetic recording medium comprising a buffer layer in which Si_3N_4 films having tensile stress are alternately stacked, a nonmagnetic metal underlayer, a magnetic layer, and a protective lubricant layer formed in this order.
JP24928488A 1988-10-03 1988-10-03 Magnetic recording medium Pending JPH0296919A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24928488A JPH0296919A (en) 1988-10-03 1988-10-03 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24928488A JPH0296919A (en) 1988-10-03 1988-10-03 Magnetic recording medium

Publications (1)

Publication Number Publication Date
JPH0296919A true JPH0296919A (en) 1990-04-09

Family

ID=17190678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24928488A Pending JPH0296919A (en) 1988-10-03 1988-10-03 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH0296919A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6911256B2 (en) 2003-06-30 2005-06-28 Imation Corp. Buffer layers for magnetic media with a plastic substrate
US7087290B2 (en) * 1999-02-12 2006-08-08 General Electric Data storage media utilizing a substrate including a plastic resin layer, and method thereof
JP2010210782A (en) * 2009-03-09 2010-09-24 Ricoh Co Ltd Micromirror apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7087290B2 (en) * 1999-02-12 2006-08-08 General Electric Data storage media utilizing a substrate including a plastic resin layer, and method thereof
US6911256B2 (en) 2003-06-30 2005-06-28 Imation Corp. Buffer layers for magnetic media with a plastic substrate
JP2010210782A (en) * 2009-03-09 2010-09-24 Ricoh Co Ltd Micromirror apparatus

Similar Documents

Publication Publication Date Title
JPH0296919A (en) Magnetic recording medium
US6027801A (en) Magnetic recording medium
US5552217A (en) Magnetic recording medium and a method for producing it
JPH06318516A (en) Soft magnetic multilayer film and magnetic head using same
JPH0296921A (en) Magnetic recording medium
JPH0296918A (en) Magnetic recording medium
JPH0296917A (en) Magnetic recording medium
JPH0296920A (en) Magnetic recording medium
JPH01165023A (en) Magnetic recording medium
JPH01122032A (en) Magnetic recording medium
JPH01122031A (en) Magnetic recording medium
JPH01243222A (en) Magnetic recording medium
JPH01165020A (en) Magnetic recording medium
JPH01165021A (en) Magnetic recording medium
JPH01165019A (en) Magnetic recording medium
JPH01165022A (en) Magnetic recording medium
JPH01122030A (en) Magnetic recording medium
JPS63259825A (en) Magnetic recording medium
JPH04268202A (en) Magnetic head
KR100324730B1 (en) Method for fabricating magnetic head
JPS59117729A (en) Production of magnetic head core
JPH10334442A (en) Magnetic recording medium
JPH0421921A (en) Magnetic recording medium
JP2000276727A (en) Magnetic recording medium
JPS59142744A (en) Magnetic recording medium