JPH02966B2 - - Google Patents
Info
- Publication number
- JPH02966B2 JPH02966B2 JP59025795A JP2579584A JPH02966B2 JP H02966 B2 JPH02966 B2 JP H02966B2 JP 59025795 A JP59025795 A JP 59025795A JP 2579584 A JP2579584 A JP 2579584A JP H02966 B2 JPH02966 B2 JP H02966B2
- Authority
- JP
- Japan
- Prior art keywords
- water
- tritium
- hydrogen
- exchange reaction
- tower
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 63
- YZCKVEUIGOORGS-NJFSPNSNSA-N Tritium Chemical compound [3H] YZCKVEUIGOORGS-NJFSPNSNSA-N 0.000 claims description 59
- 229910052722 tritium Inorganic materials 0.000 claims description 59
- XLYOFNOQVPJJNP-ZSJDYOACSA-N Heavy water Chemical compound [2H]O[2H] XLYOFNOQVPJJNP-ZSJDYOACSA-N 0.000 claims description 58
- 229910052739 hydrogen Inorganic materials 0.000 claims description 52
- 239000001257 hydrogen Substances 0.000 claims description 52
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 39
- 238000006243 chemical reaction Methods 0.000 claims description 33
- 238000000034 method Methods 0.000 claims description 30
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical compound [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 claims description 12
- 229910052805 deuterium Inorganic materials 0.000 claims description 12
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 12
- 239000003054 catalyst Substances 0.000 claims description 6
- 229910052697 platinum Inorganic materials 0.000 claims description 6
- 230000002209 hydrophobic effect Effects 0.000 claims description 5
- 238000005868 electrolysis reaction Methods 0.000 claims description 2
- 150000002431 hydrogen Chemical class 0.000 description 17
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 8
- 229910052760 oxygen Inorganic materials 0.000 description 8
- 239000001301 oxygen Substances 0.000 description 8
- 230000007613 environmental effect Effects 0.000 description 6
- 238000007796 conventional method Methods 0.000 description 5
- 238000013459 approach Methods 0.000 description 4
- 230000000630 rising effect Effects 0.000 description 4
- 238000004821 distillation Methods 0.000 description 3
- 239000011261 inert gas Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 239000002351 wastewater Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- YZCKVEUIGOORGS-IGMARMGPSA-N Protium Chemical compound [1H] YZCKVEUIGOORGS-IGMARMGPSA-N 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- JEGUKCSWCFPDGT-UHFFFAOYSA-N h2o hydrate Chemical compound O.O JEGUKCSWCFPDGT-UHFFFAOYSA-N 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000001141 propulsive effect Effects 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 239000007784 solid electrolyte Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Landscapes
- Catalysts (AREA)
- Oxygen, Ozone, And Oxides In General (AREA)
Description
本発明は疎水性白金触媒を充填した水/水素系
同位体交換反応塔を用いてトリチウム含有劣化重
水を再濃縮する改良された方法に関する。
トリチウムTは原子核の人工破壊により容易に
生成され、放射性を有するため、原子炉等から出
る劣化重水を再濃縮する場合には、これが環境に
放出されるのを極力防止しなければならない。
従来、トリチウム含有劣化重水の再濃縮方法と
しては、電解法、蒸留法、水/水素系交換反応法
がある。
電解法は、分離系数α=3〜10と大きく、D2O
濃度の高い劣化重水を再濃縮する方法としては適
しているが、廃液中の重水濃度を低くして、D2O
の損失を少なくするとともにトリチウムを放出さ
せないためには、多くの回収段を必要とする欠点
がある。
また、蒸留法は操作が比較的容易であるが、分
離系数α=1.02〜1.05と小さく、トリチウム含有
重水(以下T・D2Oと記す)を濃縮する濃縮部お
よびT・D2O濃度を低下させる回収部はともに理
論段数は大きく、段数の極めて多い蒸留塔を必要
とする欠点がある。
また、従来の水/水素系同位体交換反応塔によ
るトリチウム含有劣化重水(以下劣化T・D2Oと
記す)の再濃縮方法は、第1図に示すように疎水
性白金触媒を充填した分離係数α=2〜5の水/
水素系同位体交換反応塔(以下交換反応塔とい
う)1、電解槽2および再結合器3からなる装置
によつて行なわれている。すなわち、交換反応塔
1の中間部に劣化T・D2O4を供給し、これを濃
縮した製品重水5を電解槽2から採取する。電解
槽2では、交換反応塔1の底部より流下するT・
D2O6が電解され、水素7と酸素8が発生され
る。この水素7は大部分が重水素で小量の軽水素
およびトリチウムを含有する。この大部分が重水
素よりなる電解水素7は、交換反応塔1内を上昇
し、その間に流下する水と向流接触して同位体の
交換反応が行なわれ、流下する水をT・D2Oとす
るとともに、交換反応塔1頂部に行くにしたがつ
てトリチウムおよび重水素は減少し、殆どが軽水
素の水素9となり塔頂部より再結合器3に導入さ
れる。導入された水素9は、電解槽2より発生し
た酸素8と再結合され、結合水10となり交換反
応塔1の頂部に流下されるが、その際結合水の一
部は廃棄水10′として系外に放出される。この
廃棄水10′はトリチウム、重水素が交換反応に
よつて殆ど回収された水素9と電解酸素8との再
結合したものであるのでトリチウムの含有量は微
量で放出しても環境汚染は発生しない。
上記水素9と電解酸素8との従来の再結合法
は、上記再結合器3内に導入される酸素8内に水
素9を吹出して焔として燃焼させその後冷却して
液体水とする方法もあるが、危険を伴なうため、
通常不活性ガスを循環させ、その中に水素および
酸素を爆発限度以内、すなわち不活性ガスを水素
ガス量の約35倍程度にして、白金触媒を用いて再
結合させている。しかし、この方法は大量の不活
性ガスを循環させるので、装置の規模は大きくな
り、循環機のためのスペースを必要とし、その設
置費用、動力費などがかかり経済的に不利とな
る。
また、軽水中のトリチウム除去法として、第2
図に示すような方法が知られている。すなわち、
交換反応塔1の中間部にトリチウム含有軽水11
を供給し、トリチウムを含有しない軽水(天然軽
水)12を交換反応塔1の頂部に補助供給し、流
下する濃縮トリチウム含有軽水13を電解槽2に
導入し電解する。発生した電解酸素8は脱水後放
出され、トリチウムを含有する電解水素14は、
上記交換反応塔1の底部に導入され、流下する水
との交換反応によつてトリチウム含有量は減少
し、トリチウムの放出許容濃度以下の軽水素15
となつて大気中に放出され、トリチウムが濃縮さ
れた軽水16は電解槽2より放出される。
この方法においては、供給液11がトリチウム
含有軽水であるため、再結合器3を用いずに還流
水として天然軽水12を補助供給し、放出水素1
5中のトリチウム濃度を容易に放出許容限度以下
としている。
この軽水中のトリチウム除去のように再結合器
3を使用しないで第2図のシステムに従い劣化
T・D2Oの再濃縮を行なうには、系内に軽水の導
入を極力押えるため第3図に示すようにトリチウ
ムを含まない重水17を交換反応塔1の頂部に補
助供給すべきである。しかし、トリチウムを含ま
ない重水17は極めて高価であり、さらに塔頂よ
り出る水素は高価なトリチウム劣化重水素18と
なり、気体としてそのまま或いは酸化し、水とし
て回収しなければならず、経済的に不利となる。
本発明者は上記の事情に鑑み、再結合器を用い
ず、かつ経済性、環境保全に優れた劣化T・D2O
の再濃縮方法を鋭意研究した結果、交換反応塔頂
部より補助供給する水として天然軽水を用いて
も、劣化T・D2Oの再濃縮が可能なことを知見し
た。
本発明は上記の知見に基づいてなされたもの
で、その要旨は、疎水性白金触媒を充填した水/
水素系同位体交換反応塔の塔中間部にトリチウム
含有劣化重水を供給し、塔頂部に天然軽水を補助
供給して、塔内を流下する水を塔底より電解槽に
導入するとともに、電解槽より電解によつて発生
した水素を上記塔底部に導入して上記流下する水
と向流接触せしめて、水素中のトリチウムおよび
重水素を水の軽水素と交換反応させ、塔頂より交
換反応された水素をそのまま、或いは稀釈して大
気放出し、上記電解槽から再濃縮された重水を取
出すことを特徴とするトリチウム含有劣化重水の
再生濃縮方法にある。
以下本発明の方法を説明する。
第4図は本発明の方法を実施する装置フローの
一例を示すもので、第3図と同一部分には同一符
号を付してその説明を省略する。
本発明の方法においては交換反応塔1の頂部に
は天然軽水12を補助供給するので、塔頂より出
る水素は安価なトリチウム劣化軽水素15とな
る。この水素15は、トリチウムの含有濃度が環
境放出許容値以下であればそのまま大気に放出で
き、また、環境許容値以上であつてもその濃度は
低く、他の一般排気又は空気による稀釈によつて
容易に許容濃度以下となり大気に放出することが
出来る利点がある。
本発明の方法において交換反応塔1頂部に天然
軽水12を補助供給しても劣化T・D2O4の再濃
縮の妨害とならない理由は、第4図において劣化
T・D2O4を交換反応塔1に供給する供給段の上
部においては、上昇する水素ガス中の重水素およ
びトリチウムは流下する軽水へ移動し、又流下す
る天然軽水12の軽水素が上昇する水素ガス中に
移動し、上昇水素流は塔頂に近づくにつれて軽水
素が圧倒的に多量となり、塔頂より放出される時
にはトリチウム劣化軽水素15となる。他方流下
する軽水流は、原料の劣化T・D2O4の供給段に
近づくにつれて劣化T・D2O4の重水およびトリ
チウム濃度に近づく。したがつて、塔1内の原料
供給段より下部では、第1図における交換反応塔
1と同じ挙動で、流下水は塔底に近づくにつれ、
重水素およびトリチウムが、上昇する水素側より
流下水に移動し、流下水の重水およびトリチウム
濃度は上昇するので、塔頂に天然軽水12を補助
供給しても何ら妨害とはならない。さらに本発明
の方法の場合、塔頂付近における塔1内を流下す
る水のトリチウム濃度は、トリチウムを含有しな
い天然軽水12を供給しているため、第1図に示
す従来方法より著しく低く、トリチウムが流下水
に移行するドライビングホース(推進力)が高く
なり、交換反応塔1の回収部段数が少なくなる利
点があ。また第3図のようにトリチウムを含まな
い重水17を供給する場合においても、天然軽水
12に比較すればトリチウム濃度が高いので、ト
リチウムの交換効果は小さい。
次に、(A)第1図の従来法、(B)第3図のトリチウ
ムを含まない重水を塔頂より補助供給する方法、
(C)本発明の方法の結果を数値をもつて比較し、本
発明の効果を説明する。
上記各方法によつて同じ劣化T・D2Oを処理し
た場合の各数値を第1表に示す。表より明らかな
ように、(A)は、劣化トリチウム含有水の放出はあ
るがトリチウム含有水素の放出がなく、製品重水
も満足なものが得られるが、再結合器3が必要で
ある。(B)は、交換反応塔1頂部より出る水素中の
トリチウムを低下させることが出来るが、この水
素は高価な重水素が主体となつているので、これ
を回収しなければならない経経済的な欠点をもつ
ている。これに対し本発明の方法(C)は、再結合器
3が不要で、交換反応塔1の頂部より出る水素
は、
The present invention relates to an improved method for reconcentrating tritium-containing degraded heavy water using a water/hydrogen isotope exchange reaction column packed with a hydrophobic platinum catalyst. Since tritium T is easily produced by the artificial destruction of atomic nuclei and is radioactive, when depleted heavy water from nuclear reactors is reconcentrated, it is necessary to prevent its release into the environment as much as possible. Conventionally, methods for reconcentrating tritium-containing degraded heavy water include electrolytic methods, distillation methods, and water/hydrogen exchange reaction methods. The electrolytic method has a large separation number α of 3 to 10, and D 2 O
Although it is suitable as a method for reconcentrating degraded heavy water with a high concentration, it is possible to reduce the concentration of heavy water in the waste liquid and reduce the concentration of D 2 O.
In order to reduce the loss of tritium and prevent the release of tritium, many recovery stages are required. In addition, although the distillation method is relatively easy to operate, it has a small separation system number α of 1.02 to 1.05, and requires a concentrating section for concentrating tritium-containing heavy water (hereinafter referred to as T・D 2 O) and a concentration of T・D 2 O. Both of the recovery sections to be lowered have a large number of theoretical plates, and have the disadvantage of requiring a distillation column with an extremely large number of plates. In addition, the conventional method for reconcentrating tritium-containing degraded heavy water (hereinafter referred to as degraded T・D 2 O) using a water/hydrogen-based isotope exchange reaction column is a separation method packed with a hydrophobic platinum catalyst, as shown in Figure 1. Water with coefficient α=2 to 5/
This is carried out using an apparatus consisting of a hydrogen-based isotope exchange reaction tower (hereinafter referred to as an exchange reaction tower) 1, an electrolytic cell 2, and a recombiner 3. That is, degraded T·D 2 O 4 is supplied to the middle part of the exchange reaction tower 1 , and product heavy water 5 obtained by concentrating it is collected from the electrolytic cell 2 . In the electrolytic cell 2, T.
D 2 O 6 is electrolyzed and hydrogen 7 and oxygen 8 are generated. This hydrogen 7 is mostly deuterium and contains small amounts of light hydrogen and tritium. The electrolyzed hydrogen 7, which is mostly made up of deuterium, rises in the exchange reaction tower 1, and during that time comes into countercurrent contact with the flowing water to carry out an isotope exchange reaction, converting the flowing water into T・D 2 Along with O, tritium and deuterium decrease toward the top of the exchange reaction column 1, and most of them become hydrogen 9, which is light hydrogen, and are introduced into the recombiner 3 from the top of the column. The introduced hydrogen 9 is recombined with oxygen 8 generated from the electrolytic cell 2, becomes bound water 10, and flows down to the top of the exchange reaction tower 1. At this time, a part of the bound water is drained into the system as waste water 10'. released outside. Since this waste water 10' is a recombination of hydrogen 9 and electrolyzed oxygen 8, in which tritium and deuterium are mostly recovered through an exchange reaction, environmental pollution occurs even if the tritium content is released in small amounts. do not. A conventional method for recombining the hydrogen 9 and the electrolyzed oxygen 8 is to blow the hydrogen 9 into the oxygen 8 introduced into the recombiner 3, burn it as a flame, and then cool it to form liquid water. However, because it is dangerous,
Usually, an inert gas is circulated, hydrogen and oxygen are kept within the explosive limit, that is, the amount of inert gas is about 35 times the amount of hydrogen gas, and recombined using a platinum catalyst. However, since this method circulates a large amount of inert gas, the scale of the apparatus becomes large, space is required for the circulator, and installation costs and power costs are required, making it economically disadvantageous. In addition, the second method for removing tritium from light water is
A method as shown in the figure is known. That is,
Tritium-containing light water 11 is placed in the middle of the exchange reaction tower 1.
is supplied, tritium-free light water (natural light water) 12 is supplementarily supplied to the top of the exchange reaction tower 1, and concentrated tritium-containing light water 13 flowing down is introduced into the electrolytic cell 2 and electrolyzed. The generated electrolytic oxygen 8 is released after dehydration, and the electrolytic hydrogen 14 containing tritium is
The tritium content is reduced by the exchange reaction with the flowing water introduced into the bottom of the exchange reaction tower 1, and the tritium content is reduced to below the allowable release concentration of tritium 15.
The tritium-enriched light water 16 is released into the atmosphere and released from the electrolytic cell 2. In this method, since the feed liquid 11 is tritium-containing light water, the natural light water 12 is auxiliary supplied as reflux water without using the recombiner 3, and the released hydrogen 1
The tritium concentration in No. 5 is easily below the allowable release limit. In order to reconcentrate degraded T・D 2 O according to the system shown in Figure 2 without using the recombiner 3, as in the case of removing tritium from light water, it is necessary to use the system shown in Figure 3 to suppress the introduction of light water into the system as much as possible. Tritium-free heavy water 17 should be auxiliary fed to the top of the exchange reaction column 1 as shown in FIG. However, heavy water 17 that does not contain tritium is extremely expensive, and the hydrogen released from the top of the column becomes expensive tritium-depleted deuterium 18, which must be recovered as gas or oxidized and recovered as water, which is economically disadvantageous. becomes. In view of the above circumstances, the present inventor has developed a method for producing degraded T・D 2 O that does not use a recombiner and is economical and environmentally friendly.
As a result of intensive research on the reconcentration method for T.D.sub.2O, it was found that it is possible to reconcentrate degraded T.D.sub.2O even if natural light water is used as supplementary water supplied from the top of the exchange reaction column. The present invention was made based on the above findings, and its gist is that water/hydrophobic platinum catalyst-filled
Tritium-containing degraded heavy water is supplied to the middle part of the hydrogen-based isotope exchange reaction tower, natural light water is supplemented to the top of the tower, and water flowing down the tower is introduced into the electrolytic cell from the bottom of the tower. Hydrogen generated by electrolysis is introduced into the bottom of the tower and brought into countercurrent contact with the flowing water, causing tritium and deuterium in the hydrogen to undergo an exchange reaction with light hydrogen in the water, and an exchange reaction occurs from the top of the tower. The present invention provides a method for regenerating and concentrating tritium-containing degraded heavy water, which comprises releasing the hydrogen as it is or diluting it into the atmosphere, and then taking out the reconcentrated heavy water from the electrolytic cell. The method of the present invention will be explained below. FIG. 4 shows an example of the flow of an apparatus for carrying out the method of the present invention, and the same parts as in FIG. 3 are given the same reference numerals and their explanation will be omitted. In the method of the present invention, natural light water 12 is supplementarily supplied to the top of the exchange reaction column 1, so that the hydrogen coming out from the top of the column becomes cheap tritium-depleted light hydrogen 15. This hydrogen 15 can be released into the atmosphere as is if the concentration of tritium is below the environmental release limit, or even if it is above the environmental limit, the concentration is low and it can be diluted with other general exhaust or air. It has the advantage that the concentration can easily be reduced to below the permissible level and released into the atmosphere. In the method of the present invention, the reason why supplementary supply of natural light water 12 to the top of the exchange reaction column 1 does not interfere with the reconcentration of degraded T・D 2 O4 is that as shown in FIG. In the upper part of the supply stage that supplies hydrogen gas to hydrogen gas 12, deuterium and tritium in the rising hydrogen gas move to the light water flowing down, and the light hydrogen in the natural light water 12 flowing down moves into the rising hydrogen gas, and the rising hydrogen As the stream approaches the top of the column, the amount of light hydrogen becomes overwhelmingly large, and when it is discharged from the top of the column, it becomes tritiated light hydrogen 15. On the other hand, the downstream light water stream approaches the heavy water and tritium concentration of the degraded T.D.sub.2 O.sub.4 as it approaches the supply stage of the feedstock, the degraded T.D.sub.2 O.sub.4. Therefore, below the raw material supply stage in the column 1, the behavior is the same as in the exchange reaction column 1 in FIG. 1, and as the flowing water approaches the bottom of the column,
Deuterium and tritium move from the rising hydrogen side to the flowing water, and the concentrations of heavy water and tritium in the flowing water increase, so supplementary supply of natural light water 12 to the top of the tower does not cause any interference. Furthermore, in the case of the method of the present invention, the tritium concentration in the water flowing down inside the column 1 near the top of the column is significantly lower than that in the conventional method shown in FIG. 1 because the natural light water 12 containing no tritium is supplied. This has the advantage that the driving hose (propulsive force) through which the water is transferred to the flowing sewage is increased, and the number of stages in the recovery section of the exchange reaction tower 1 is reduced. Furthermore, even when heavy water 17 that does not contain tritium is supplied as shown in FIG. 3, the tritium concentration is higher than that of natural light water 12, so the tritium exchange effect is small. Next, (A) the conventional method shown in Figure 1, (B) the method of auxiliary supply of tritium-free heavy water from the top of the tower as shown in Figure 3,
(C) Compare the results of the method of the present invention numerically and explain the effects of the present invention. Table 1 shows the numerical values obtained when the same degraded T·D 2 O was treated by each of the above methods. As is clear from the table, in (A), degraded tritium-containing water is released, but tritium-containing hydrogen is not released, and a satisfactory product heavy water can be obtained, but a recombiner 3 is required. (B) can reduce the tritium in the hydrogen coming out from the top of the exchange reaction column 1, but since this hydrogen is mainly composed of expensive deuterium, it is economically and economically necessary to recover it. It has shortcomings. On the other hand, the method (C) of the present invention does not require the recombiner 3, and the hydrogen coming out from the top of the exchange reaction column 1 is
【表】【table】
【表】
殆どが安価な軽水素で、かつトリチウムの含有
量も低く、環境放出許容濃度以下ならそのまま大
気に放出可能で、又環境放出許容濃度以上であつ
ても一般排気或いは空気によつて稀釈することに
よつて大気放出可能となる程度の濃度であるの
で、経済性、環境性を損なわない容易な処理が出
来る利点がある。
なお、本発明に使用する水/水素系同位体交換
反応塔1の型式としては、疎水性白金触媒を充填
したトリクルベツド方式、又は水素/水蒸気系同
位体交換反応部および水蒸気/水系同位体交換反
応部を分離した分離ベツド方式が採用できる。ま
た、水電解槽1の型式としては、アルカリ電解液
を用いた従来の水電解槽又は固体電解質を用いた
水電解槽が用いられる。
以上述べたように、本発明に係るトリチウム含
有劣化重水の再濃縮法は、再結合器を必要とせ
ず、安価な天然軽水を系内に補助供給することに
よつて、大気中に放出可能な軽水素が発生され、
かつ満足な製品再濃縮重水が得られるので、経済
性および環境保全に優れ、原子力設備などから排
出されるトリチウム含有劣化重水の再濃縮方法と
して多くの利点を有するものである。[Table] Most of the hydrogen is cheap light hydrogen and has a low tritium content, so it can be released directly into the atmosphere if it is below the allowable concentration for environmental release, and even if it is above the allowable concentration for environmental release, it can be diluted with general exhaust gas or air. By doing so, the concentration is such that it can be released into the atmosphere, so there is an advantage that it can be easily processed without impairing economic efficiency or environmental efficiency. The type of the water/hydrogen isotope exchange reaction column 1 used in the present invention is a trickle bed system filled with a hydrophobic platinum catalyst, or a hydrogen/steam isotope exchange reaction section and a water vapor/water isotope exchange reaction column. A separate bed system in which the parts are separated can be adopted. Further, as the type of water electrolyzer 1, a conventional water electrolyzer using an alkaline electrolyte or a water electrolyzer using a solid electrolyte is used. As described above, the reconcentration method of tritium-containing degraded heavy water according to the present invention does not require a recombiner and can be released into the atmosphere by supplementally supplying inexpensive natural light water into the system. light hydrogen is generated,
Moreover, since a satisfactory reconcentrated heavy water product can be obtained, this method is excellent in economic efficiency and environmental protection, and has many advantages as a method for reconcentrating tritium-containing degraded heavy water discharged from nuclear facilities and the like.
第1図は従来の方法のフローを示す図、第2図
は、トリチウム含有軽水のトリチウム除去法のフ
ローを示す図、第3図は、第2図の方法をトリチ
ウム含有重水再濃縮に適用したブローを示す図、
第4図は、本発明に係る方法のフローを示す図で
ある。
1……水/水素系同位体交換反応塔(交換反応
塔)、2……電解槽、3……再結合器、4……ト
リチウム含有劣化重水(劣化T・D2O)、5……
製品重水、6……トリチウム含有重水(T・
D2O)、7……電解水素(重水素高濃度の水素)、
8……電解酸素、9……殆どが軽水素の水素、1
0……結合水、10′……廃棄水、11……トリ
チウム含有軽水、12……トリチウムを含有しな
い軽水(天然軽水)、13……濃縮トリチウム含
有軽水、14……電解水素(トリチウム含有水
素)、15……劣化トリチウム軽水素、16……
トリチウム濃縮軽水、17……トリチウムを含ま
ない重水、18……トリチウムを含まない重水
素。
Figure 1 shows the flow of the conventional method, Figure 2 shows the flow of the method for removing tritium from tritium-containing light water, and Figure 3 shows the method in Figure 2 applied to reconcentration of tritium-containing heavy water. Diagram showing blow,
FIG. 4 is a diagram showing the flow of the method according to the present invention. 1... Water/hydrogen-based isotope exchange reaction tower (exchange reaction tower), 2... Electrolytic cell, 3... Recombiner, 4... Tritium-containing degraded heavy water (degraded T・D 2 O), 5...
Product heavy water, 6...Tritium-containing heavy water (T.
D 2 O), 7... Electrolytic hydrogen (hydrogen with high concentration of deuterium),
8... Electrolyzed oxygen, 9... Hydrogen, mostly light hydrogen, 1
0...Bound water, 10'...Waste water, 11...Tritium-containing light water, 12...Tritium-free light water (natural light water), 13...Concentrated tritium-containing light water, 14...Electrolytic hydrogen (tritium-containing hydrogen) ), 15... Degraded tritium light hydrogen, 16...
Tritium-enriched light water, 17...heavy water that does not contain tritium, 18...deuterium that does not contain tritium.
Claims (1)
交換反応塔の塔中間部にトリチウム含有劣化重水
を供給し、塔頂部に天然軽水を補助供給して、塔
内を流下する水を塔底より電解槽に導入するとと
もに、電解槽より電解によつて発生した水素を上
記塔底部より導入して上記流下する水と向流接触
せしめて、水素中のトリチウムおよび重水素を水
の軽水素と交換反応させ、塔頂より交換反応され
た水素をそのまま、或いは稀釈して大気放出し、
上記電解槽から再濃縮された重水を取出すことを
特徴とするトリチウム含有劣化重水の再濃縮法。1. Tritium-containing degraded heavy water is supplied to the middle part of the water/hydrogen isotope exchange reaction tower packed with a hydrophobic platinum catalyst, natural light water is auxiliary supplied to the top of the tower, and the water flowing down inside the tower is transferred to the bottom of the tower. At the same time, hydrogen generated by electrolysis from the electrolytic cell is introduced from the bottom of the column and brought into countercurrent contact with the flowing water, thereby converting tritium and deuterium in the hydrogen into light hydrogen in the water. The exchange reaction is carried out, and the exchange-reacted hydrogen is released into the atmosphere from the top of the column as it is or diluted.
A method for reconcentrating degraded heavy water containing tritium, which comprises removing reconcentrated heavy water from the electrolytic cell.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2579584A JPS60168520A (en) | 1984-02-14 | 1984-02-14 | Re-concentration of tritium-containing deteriorated deuterium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2579584A JPS60168520A (en) | 1984-02-14 | 1984-02-14 | Re-concentration of tritium-containing deteriorated deuterium |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60168520A JPS60168520A (en) | 1985-09-02 |
JPH02966B2 true JPH02966B2 (en) | 1990-01-10 |
Family
ID=12175769
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2579584A Granted JPS60168520A (en) | 1984-02-14 | 1984-02-14 | Re-concentration of tritium-containing deteriorated deuterium |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60168520A (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5843717A (en) * | 1981-09-08 | 1983-03-14 | 長谷川 春男 | Pruning circular saw plate and pruning apparatus |
-
1984
- 1984-02-14 JP JP2579584A patent/JPS60168520A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5843717A (en) * | 1981-09-08 | 1983-03-14 | 長谷川 春男 | Pruning circular saw plate and pruning apparatus |
Also Published As
Publication number | Publication date |
---|---|
JPS60168520A (en) | 1985-09-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4190515A (en) | Apparatus for removal and recovery of tritium from light and heavy water | |
US4197421A (en) | Synthetic carbonaceous fuels and feedstocks | |
US4148708A (en) | Combination ion exchange and electrodialysis fluid purification apparatus | |
US3505017A (en) | Process for removing protium and tritium from heavy water | |
US4021313A (en) | Method for purifying actinides which are in low oxidation states | |
US4190507A (en) | Process for concentrating tritium and/or tritium hydride and separating it from tritium water | |
JPH02966B2 (en) | ||
Chow et al. | Continuous extraction of molten chloride salts with liquid cadmium alloys | |
US4304645A (en) | Process for removing helium and other impurities from a mixture containing deuterium and tritium, and a deuterium/tritium mixture when purified in accordance with such a process | |
US4191626A (en) | Apparatus for finishing and upgrading of heavy water | |
US2930738A (en) | Regeneration of reactor fuel elements | |
JPS60228996A (en) | Method of processing water containing tritium | |
JPS54109599A (en) | Water-hydrogen isotope exchange reactor having economizer | |
GB2206341A (en) | Treatment of organically-based waste matter | |
CA1107034A (en) | Process for removing tritium from tritium-containing heavy water to recover tritium gas of high purity | |
GB2039866A (en) | Process for the extraction of tritium from heavy water | |
US20240350973A1 (en) | Method and system for separating a tritiated heavy water stream into a tritium-lean heavy water stream and a tritium-enriched heavy water stream | |
CA3188265C (en) | Method and system for separating a tritiated heavy water stream into a tritium-lean heavy water stream and a tritium-enriched heavy water stream | |
RU2126362C1 (en) | Method of recovery of anhydrous hydrogen fluoride from depleted uranium hexafluoride | |
JPH05802A (en) | Separation of hydrogen isotope | |
Butler et al. | Removal and recovery of tritium from light and heavy water | |
JPH0448093A (en) | Energy convertor | |
Butler et al. | Method and apparatus for enrichment or upgrading heavy water | |
CA1155794A (en) | Removal of helium from deuterium/tritium using catalytic oxidation | |
CN112380703A (en) | Method for calculating tritium concentration distribution in catalytic exchange tower |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |