JPS60228996A - Method of processing water containing tritium - Google Patents

Method of processing water containing tritium

Info

Publication number
JPS60228996A
JPS60228996A JP8485984A JP8485984A JPS60228996A JP S60228996 A JPS60228996 A JP S60228996A JP 8485984 A JP8485984 A JP 8485984A JP 8485984 A JP8485984 A JP 8485984A JP S60228996 A JPS60228996 A JP S60228996A
Authority
JP
Japan
Prior art keywords
tritium
water
hydrogen
exchange reaction
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8485984A
Other languages
Japanese (ja)
Inventor
茂雄 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP8485984A priority Critical patent/JPS60228996A/en
Publication of JPS60228996A publication Critical patent/JPS60228996A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は疎水性白金触媒を充填した水/水素系同位体交
換反応塔を用いてトリチウム含有水を処理する改良され
た方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improved method for treating tritium-containing water using a water/hydrogen-based isotope exchange reaction column packed with a hydrophobic platinum catalyst.

トリチウムは不安定な放射性元素で、やわらかいβ線を
出すので、これを含有するものの放出は環境保全上の問
題がオ如、放出する場合の濃度が規制さnている。
Tritium is an unstable radioactive element that emits soft beta rays, so the release of materials containing tritium poses environmental protection problems, and the concentration at which it is released is regulated.

従来、トリチウム含有水の処理方法としては、トリチウ
ムを含有しない大量の水で希釈して、その濃度を規制値
以下として放出する方法、電解法、蒸留法、或いは水/
水素系同位体交換反応法によってトリチウムを濃縮し、
トリチウム含有分の少なくなった水をそのまま、或いは
希釈して放出している。
Conventionally, methods for treating tritium-containing water include diluting it with a large amount of water that does not contain tritium and releasing it with the concentration below the regulated value, electrolytic method, distillation method, or water/distillation method.
Concentrate tritium by hydrogen-based isotope exchange reaction method,
Water with reduced tritium content is released as is or after being diluted.

上記電解法は、分離係数α:6〜30と大きく、トリチ
ウム濃度の高い水を濃縮する方法としては適しているが
、廃棄する水中のトリチウム濃度を低下させるためには
、多くの回収段を必要とする欠点がある。
The above electrolysis method has a large separation coefficient α of 6 to 30, and is suitable as a method for concentrating water with a high tritium concentration, but it requires many recovery stages to reduce the tritium concentration in the water to be disposed of. There is a drawback that.

また、蒸留法は操作が比較的容易であるが、分離系数α
;103〜106と小さく、トリチウム含有水(以下T
−H20と記す)を濃縮する濃縮部およびT−H20濃
度を低下させる回収部ともに理論段数は大きく、段数の
極めて多い蒸留塔を必要とする欠点がある。
In addition, the distillation method is relatively easy to operate, but the separation system number α
; 103 to 106, small, tritium-containing water (hereinafter T
Both the concentration section for concentrating T-H20 and the recovery section for reducing the T-H20 concentration have a large number of theoretical plates, which has the drawback of requiring a distillation column with an extremely large number of plates.

また、水/水素同位体交換反応によるT−H2Oの処理
方法は、第7図に示すように疎水性白金触媒を充填した
水/水素系同位体交換塔C以下交換反応塔という)1、
電解槽2および脱水器3よりなる装置によって行なわれ
ている。すなわち、交換反応塔1の中間部にT−H2O
2を供給し、トリチウムを含有しない水(天然水)5を
交換反応塔10頂部に補助供給し、流下する水を電解槽
2に導入し電解する。発生した電解酸素6は、脱水器3
によって脱水され、乾燥酸素6′として放出され、トリ
チウムを含有する電解水素7は、上記交換反応塔1の底
部に導入され、流下する水との又換反応によって、トリ
チウム含有量は減少し、トリチウム放出許容濃度以下の
水素8となって大気中に放出される。まなトリチウムが
濃縮された水9は、電解槽2より抜き出さnる。しかし
、この方法は、電解槽にトリチウムの濃縮され走水が導
入されるので、特殊な電解槽と、電解酸素6中に蒸気圧
によって含まれるトリチウム含有水を除去して乾燥酸素
6′とする脱水器が必要で、経済的に不利である。
In addition, the method for treating T-H2O by a water/hydrogen isotope exchange reaction is as shown in Figure 7, a water/hydrogen isotope exchange tower packed with a hydrophobic platinum catalyst (hereinafter referred to as an exchange reaction tower) 1,
This is carried out using an apparatus consisting of an electrolytic cell 2 and a dehydrator 3. That is, T-H2O is placed in the middle part of the exchange reaction column 1.
2 is supplied, tritium-free water (natural water) 5 is auxiliary supplied to the top of the exchange reaction tower 10, and the flowing water is introduced into the electrolytic cell 2 and electrolyzed. The generated electrolytic oxygen 6 is sent to the dehydrator 3
The electrolytic hydrogen 7 containing tritium, which is dehydrated and released as dry oxygen 6', is introduced into the bottom of the exchange reaction tower 1, and through the exchange reaction with the flowing water, the tritium content decreases and the tritium content decreases. The hydrogen 8 is released into the atmosphere at a concentration below the allowable release concentration. The water 9 enriched with tritium is extracted from the electrolytic cell 2. However, in this method, since tritium is concentrated and running water is introduced into the electrolytic cell, a special electrolytic cell is used, and the tritium-containing water contained in the electrolytic oxygen 6 is removed by vapor pressure to produce dry oxygen 6'. It requires a dehydrator, which is economically disadvantageous.

本発明は上記の事情に鑑み、特殊な電解槽や脱水器を用
いず、経済性、環境保全に優nた’f’−H20の処理
方法を提供することを目的とするものでその要旨は、疎
水性白金触媒を充填した水/水素交換反応塔の塔頂部に
トリチウム含有水を供給し、塔底部よシ水索ガスを供給
して、流下する水と向流接触せしめて、水中のトリチウ
ムを水素中の軽水素と交換反応させ、塔頂よシ交換反応
されたトリチウム含有水素をそのまま、或いは希釈を−
て大気中に放出し、上記反応塔底部より トリチウム水
除去した水を取出すことを特徴とするトリチウム含有水
の処理方法にあ・る。
In view of the above circumstances, it is an object of the present invention to provide a method for processing 'f'-H20 that is economical and environmentally friendly without using a special electrolytic cell or dehydrator. Tritium-containing water is supplied to the top of a water/hydrogen exchange reaction tower packed with a hydrophobic platinum catalyst, and water line gas is supplied from the bottom of the tower to bring it into countercurrent contact with the flowing water, thereby removing tritium in the water. is exchange-reacted with light hydrogen in hydrogen, and the exchange-reacted tritium-containing hydrogen is directly or diluted at the top of the column.
The present invention provides a method for treating tritium-containing water, characterized in that the water is discharged into the atmosphere and the water from which tritium has been removed is taken out from the bottom of the reaction tower.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

第2図は、本発明の方法を実施する装置のフローの一例
を示すもので、第1図と同一部分には同一符号が付しで
ある。
FIG. 2 shows an example of the flow of an apparatus for carrying out the method of the present invention, and the same parts as in FIG. 1 are given the same reference numerals.

上記方法においては、交換反応塔1の頂部よ〃T−Hz
04を供給し、塔底部からは天然氷5の電解によって発
生するトリチウムを含まない水素10を供給して向流接
触させる。こnによって(1)式に示す同位体交換反応
が行なわn1塔項HTO+H# H20+HT ・・・
・・・ (1)に行くに従って水素中のトリチウム濃度
が増加し、HTを含有した水素11として大気中に放出
さnる。また、トリチウムの含有量が少なくなった水1
2が交換反応塔1の塔底よシ抜き出さ九る。また電解槽
2より発生する酸素13は、水分を含有しているが、こ
の水分は天然水であるので危険はなく、そのまま大気中
に放出さfる。
In the above method, from the top of the exchange reaction column 1
04 is supplied, and tritium-free hydrogen 10 generated by electrolysis of natural ice 5 is supplied from the bottom of the column to cause countercurrent contact. As a result, the isotope exchange reaction shown in formula (1) is carried out, and the n1 column term HTO+H# H20+HT...
... As we go to (1), the tritium concentration in hydrogen increases and is released into the atmosphere as hydrogen 11 containing HT. In addition, water 1 with reduced tritium content
2 is extracted from the bottom of exchange reaction column 1. Further, the oxygen 13 generated from the electrolytic cell 2 contains water, but since this water is natural water, it is not dangerous and is released into the atmosphere as it is.

本発明の方法は、トリチウムを含有した水と軽水素とを
交換反応せしめて、水のトリチウム濃度を低下せしめる
とともにトリチウムを含有する水素を生成せしめるとと
Kよって環境保全上優れた効果を発揮せしめたものであ
るが、ここで、トリチウムをトリチウム含有水として放
出する場合と、トリチウム含有ガスとして放出する場合
、許容さるべきトリチウムの濃度について説明する。
The method of the present invention causes an exchange reaction between tritium-containing water and light hydrogen, thereby reducing the tritium concentration in the water and producing tritium-containing hydrogen. However, here, the allowable concentration of tritium will be explained when tritium is released as tritium-containing water and when it is released as tritium-containing gas.

我が国では放射線を放出する同位元素の規制等を定める
科学技術庁告示ココ号において、トリチウムの許容濃度
は第1表のように定められている。
In Japan, the permissible concentration of tritium is set as shown in Table 1 in the Science and Technology Agency's Notification No. 7, which stipulates the regulation of isotopes that emit radiation.

第 7 表 この告示2コ号は、空気中のトリチウムは、水がそのま
ま水蒸気になったものとみなし、トリチウム水(HTO
)、トリチウム水素(HT)両方の体内′$曝の影響が
同じという第2表に示すICRp−2(/り!り年)の
報告に基づいてつくらnたものである。
Table 7 Item 2 of this notification assumes that tritium in the air is water that has turned into steam, and that tritium water (HTO) is treated as tritium in the air.
) and tritium hydrogen (HT), which was created based on the report of ICRp-2 (/ri!ri) shown in Table 2 that the effects of exposure to both tritium hydrogen (HT) in the body are the same.

第 −表 但し、最大許容濃度は次のように定義される。Chapter - Table However, the maximum allowable concentration is defined as follows.

体内の放射性物質の量が最大許容負荷量になるような水
、或いは空気中の濃度を計算によ請求めた。
They calculated and requested the concentration in water or air that would bring the amount of radioactive material in the body to the maximum allowable load.

しかし、その後研究が進むにつnて、経口および皮膚経
由で摂取さ九るHTOとHTの挙動が全く異なり、HT
O方が被曝量が少ないことが判明したことから、ICR
P−JO(/り7り年)においては、両者を区別し、H
Tの方を第3表に示すように大幅に緩和している。
However, as research progressed, it became clear that the behavior of HTO and HT, which are ingested orally and through the skin, is completely different.
Since it was found that the O person was exposed to less radiation, ICR
In P-JO (/7 years), we distinguish between the two and
T is significantly relaxed as shown in Table 3.

第 3 表 但し、誘導空気濃度は次のように定義される。Table 3 However, the induced air concentration is defined as follows.

年間の摂取限度量の摂取が吸入によシ生ずる場合を考え
年間の作業時間を2000時間として空気中の濃度を計
算によってめたもの。
The concentration in the air was calculated based on the assumption that the annual intake limit is due to inhalation, and the annual working hours are 2000 hours.

現在各国ともICRP−30に基づいて改正を検討して
おり、我国においても告示−コの改正が行なわ几ること
か予想される。
Currently, all countries are considering revisions based on ICRP-30, and it is expected that revisions to the notification will be made in Japan as well.

このようにトリチウムをトリチウム水として放出するよ
シも、トリチウムガスとして放出する方がはるかに安全
でおり、また高濃度のトリチウム水を取扱わないですみ
、又電解槽も一般仕様のものがそのまま使用可能で、経
済的にも優れている。
Even though tritium is released as tritium water in this way, it is much safer to release tritium gas, and there is no need to handle highly concentrated tritium water, and the electrolyzer can be used as is with standard specifications. It is possible and economically advantageous.

本発明に係るトリチウム含有水の処理方法に使用する主
な機器は、疎水性白金触媒を充填した水/水素系同位体
交換反応塔および水素発生器である。交換反応塔の型式
としては疎水性白金触媒を充填したトリクルベッド方式
又は水素/水蒸気系同位体交換反応部および水蒸気/水
系同位体交換反応部を分離した分離ベッド方式が採用出
来る。
The main equipment used in the method for treating tritium-containing water according to the present invention is a water/hydrogen isotope exchange reaction column filled with a hydrophobic platinum catalyst and a hydrogen generator. As the type of the exchange reaction column, a trickle bed system filled with a hydrophobic platinum catalyst or a separation bed system in which a hydrogen/steam isotope exchange reaction section and a steam/water isotope exchange reaction section are separated can be adopted.

また、水素発生器としては、通常の水電解槽が使用出来
、さらに処理量が少ない場合には、ボンベ入水素を用い
てもよい。 1 次に実施例を示して本発明を具体的に説明する。
Further, as a hydrogen generator, a normal water electrolyzer can be used, and if the amount to be processed is small, hydrogen in a cylinder may be used. 1 Next, the present invention will be specifically explained with reference to Examples.

疎水性白金触媒を充填した分離ベッド方式の内径70f
inの水/水素同位体交換反応塔を用いた。
Separated bed type inner diameter 70f filled with hydrophobic platinum catalyst
An in water/hydrogen isotope exchange reaction column was used.

トリチウムをsoμC1/1ttlを含む水を170t
d/hrの流量で温度を70℃に保持した変換反応塔の
塔頂に供給した。−刃交換反応塔の塔底にトリチウムを
含まない水素をコNyy//hrの流量で供給し、向流
接触させた。
170t of water containing soμC1/1ttl of tritium
It was supplied at a flow rate of d/hr to the top of the conversion reaction column whose temperature was maintained at 70°C. - Tritium-free hydrogen was supplied to the bottom of the blade-exchanging reaction tower at a flow rate of Nyy//hr, and brought into countercurrent contact.

その結果、交換反応塔底部からはトリチウム濃度O,t
μC1/dのトリチウム除去水が得ら九塔頂からは、ト
リチウム濃度OコμC1/mlの水素が得られた。
As a result, the tritium concentration from the bottom of the exchange reaction tower is O, t.
Tritium-free water with a concentration of μC1/d was obtained, and from the top of the column, hydrogen with a tritium concentration of O μC1/ml was obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の水/水素同位体交換反応による装置のフ
ローを示す図、第一図は本発明に係る方法を実施する装
置の一例を示す図である。 1・・・・・・水/水素系同位体交換反応塔(交換反応
塔)、2・・・・・・電解槽、4・・・・・・トリチウ
ム含有水、5・・・・・・トリチウムを含有しない水(
天然水)、1゜・・・・・・トリチウムを含まない水素
(天然水の電解水素)、11・・・・・・交換反応でト
リチウムを含有した水素、12・・・・・・トリチウム
の含有量が少なくなった水、13・・・・・・天然水の
電解酸素。 第1図 第2図 1’l’l’! L?J
FIG. 1 is a diagram showing the flow of a conventional apparatus for water/hydrogen isotope exchange reaction, and FIG. 1 is a diagram showing an example of an apparatus for carrying out the method according to the present invention. 1... Water/hydrogen isotope exchange reaction tower (exchange reaction tower), 2... Electrolytic cell, 4... Tritium-containing water, 5... Tritium-free water (
Natural water), 1゜...Hydrogen that does not contain tritium (electrolyzed hydrogen of natural water), 11...Hydrogen containing tritium by exchange reaction, 12...Hydrogen containing tritium Water with reduced content, 13... Electrolyzed oxygen in natural water. Figure 1 Figure 2 1'l'l'! L? J

Claims (1)

【特許請求の範囲】[Claims] 疎水性白金触媒を充填しt水/水素系同位体交換反応塔
の塔頂部にトリチウム含有水を供給し、塔底部よシ水素
ガスを供給して、流下する水と向流接触せしめて、水中
のトリチウムを水素中の軽水素と交換反応させ、塔頂よ
り交換反応さf′したトリチウム含有水素をそのまま、
或いは希釈して大気中に放出し、上記反応塔底部よりト
リチウムを除去した水を取り出すことを特徴とするトリ
チウム含有水の処理方法。
Tritium-containing water is supplied to the top of a water/hydrogen isotope exchange reaction tower packed with a hydrophobic platinum catalyst, and hydrogen gas is supplied from the bottom of the tower to bring it into countercurrent contact with the flowing water. The tritium of is subjected to an exchange reaction with light hydrogen in hydrogen, and the tritium-containing hydrogen subjected to the exchange reaction f' is left as is from the top of the column.
Alternatively, a method for treating tritium-containing water, which comprises diluting the water and releasing it into the atmosphere, and then taking out the water from which tritium has been removed from the bottom of the reaction tower.
JP8485984A 1984-04-26 1984-04-26 Method of processing water containing tritium Pending JPS60228996A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8485984A JPS60228996A (en) 1984-04-26 1984-04-26 Method of processing water containing tritium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8485984A JPS60228996A (en) 1984-04-26 1984-04-26 Method of processing water containing tritium

Publications (1)

Publication Number Publication Date
JPS60228996A true JPS60228996A (en) 1985-11-14

Family

ID=13842532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8485984A Pending JPS60228996A (en) 1984-04-26 1984-04-26 Method of processing water containing tritium

Country Status (1)

Country Link
JP (1) JPS60228996A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006133197A (en) * 2004-11-09 2006-05-25 National Institutes Of Natural Sciences Tritium removal method at manufacturing of pharmaceutical products for positron emission tomography diagnosis
JP2006133198A (en) * 2004-11-09 2006-05-25 National Institutes Of Natural Sciences Tritium removal method at manufacturing of pharmaceutical products for positron emission tomography diagnosis
JP2015187552A (en) * 2014-03-26 2015-10-29 三菱重工環境・化学エンジニアリング株式会社 Radioactive matter treatment system
JP2017020964A (en) * 2015-07-14 2017-01-26 中国電力株式会社 Radioactive waste liquid processing apparatus
JP2020144108A (en) * 2019-03-08 2020-09-10 コリア アトミック エナジー リサーチ インスティテュートKorea Atomic Energy Research Institute Method and device for purifying tritium-containing raw water

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5381899A (en) * 1976-12-27 1978-07-19 Power Reactor & Nuclear Fuel Dev Corp Manufacturing method of tritium
JPS54129299A (en) * 1978-03-30 1979-10-06 Hitachi Ltd Generating set with use of heavy water moderated reactor
JPS54150599A (en) * 1978-05-18 1979-11-26 Atomic Energy Of Canada Ltd Device for removing tritium from light water and heavy water

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5381899A (en) * 1976-12-27 1978-07-19 Power Reactor & Nuclear Fuel Dev Corp Manufacturing method of tritium
JPS54129299A (en) * 1978-03-30 1979-10-06 Hitachi Ltd Generating set with use of heavy water moderated reactor
JPS54150599A (en) * 1978-05-18 1979-11-26 Atomic Energy Of Canada Ltd Device for removing tritium from light water and heavy water

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006133197A (en) * 2004-11-09 2006-05-25 National Institutes Of Natural Sciences Tritium removal method at manufacturing of pharmaceutical products for positron emission tomography diagnosis
JP2006133198A (en) * 2004-11-09 2006-05-25 National Institutes Of Natural Sciences Tritium removal method at manufacturing of pharmaceutical products for positron emission tomography diagnosis
JP4613306B2 (en) * 2004-11-09 2011-01-19 大学共同利用機関法人自然科学研究機構 Tritium removal method for manufacturing positron emission tomography medicines
JP4613307B2 (en) * 2004-11-09 2011-01-19 大学共同利用機関法人自然科学研究機構 Tritium removal method for manufacturing positron emission tomography medicines
JP2015187552A (en) * 2014-03-26 2015-10-29 三菱重工環境・化学エンジニアリング株式会社 Radioactive matter treatment system
JP2017020964A (en) * 2015-07-14 2017-01-26 中国電力株式会社 Radioactive waste liquid processing apparatus
JP2020144108A (en) * 2019-03-08 2020-09-10 コリア アトミック エナジー リサーチ インスティテュートKorea Atomic Energy Research Institute Method and device for purifying tritium-containing raw water

Similar Documents

Publication Publication Date Title
JPS5843717B2 (en) Device for removing tritium from light and heavy water
US4275045A (en) Method of extraction, trapping and storage of radioactive iodine contained in irradiated nuclear fuels
US5433828A (en) Method for the removal of hydrogen sulfide and/or carbon disulfide from waste gases
JPS60228996A (en) Method of processing water containing tritium
JPS61181516A (en) Treatment of gaseous mixture
US3477815A (en) Process for recovering sulfur dioxide from flue gas
US2143222A (en) Process of producing iodine
US4196183A (en) Process for purifying geothermal steam
US4012487A (en) Process for the removal of SO2 from a stack gas
Spagnolo et al. Enrichment and volume reduction of tritiated water using combined electrolysis catalytic exchange
JPS6117762B2 (en)
CA1165536A (en) Process for separating and recovering hydrogen isotope
JPS6241698B2 (en)
US2997366A (en) Gas purification
RU2126362C1 (en) Method of recovery of anhydrous hydrogen fluoride from depleted uranium hexafluoride
GB2039866A (en) Process for the extraction of tritium from heavy water
JPS56147618A (en) Recording method for mixture isotope of hydrogen
US3917810A (en) Process for purifying electrolytic hydrogen
US3101256A (en) Separation of hydrogen isotopes
KR890014383A (en) Purification Method of High Purity Silica
JPH02966B2 (en)
Butler et al. Removal and recovery of tritium from light and heavy water
US2028099A (en) Process for extracting iodine
JPS5511041A (en) Tritium separating apparatus from water containing tritium
CA1155794A (en) Removal of helium from deuterium/tritium using catalytic oxidation