JPH0296400A - High electric resistance cooling device - Google Patents

High electric resistance cooling device

Info

Publication number
JPH0296400A
JPH0296400A JP24887888A JP24887888A JPH0296400A JP H0296400 A JPH0296400 A JP H0296400A JP 24887888 A JP24887888 A JP 24887888A JP 24887888 A JP24887888 A JP 24887888A JP H0296400 A JPH0296400 A JP H0296400A
Authority
JP
Japan
Prior art keywords
water
cooling
supply pipe
cooling water
water supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24887888A
Other languages
Japanese (ja)
Inventor
Ikuo Konishi
郁夫 小西
Hiroaki Nakanishi
博昭 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP24887888A priority Critical patent/JPH0296400A/en
Publication of JPH0296400A publication Critical patent/JPH0296400A/en
Pending legal-status Critical Current

Links

Landscapes

  • Particle Accelerators (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

PURPOSE:To cool an equipment, to which high voltage is applied, directly by normal city water by providing a means for giving fixed quantities of gases into the pipes of a water supply pipe and a water return pipe. CONSTITUTION:A means 5 for giving fixed quantities of gases into the pipes of a water supply pipe 6a and a water return pipe 6b is provided. Since fixed quantities of gases are contained in the pipes of the water supply pipe 6a and the water return pipe 6b, cooling water in each pipe can be separated completely by the gases, and the insulation resistance value of cooling water is elevated extremely. Accordingly, even when normal city water is used as cooling water, insulation resistance between an equipment such as a particle accelerator and the ground can be ensured sufficiently.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、例えば粒子加速器等、高電圧が印加された機
器を冷却する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a device for cooling equipment to which a high voltage is applied, such as a particle accelerator.

〈従来の技術〉 粒子加速器には高電圧が印加されており、このような粒
子加速器の冷却を、通常の水道水によって直接的に行な
うことは、粒子加速器と大地間の絶縁抵抗が不充分にな
るため非常に困難である。
<Prior art> A high voltage is applied to a particle accelerator, and cooling such a particle accelerator directly with ordinary tap water would result in insufficient insulation resistance between the particle accelerator and the ground. It is very difficult to do so.

そこで、従来、高電気抵抗冷媒を用いて粒子加速器を冷
却する一次冷却系と、その−次冷却系を冷却するための
水道水による二次冷却系を設けることがなされている。
Therefore, conventionally, a primary cooling system for cooling the particle accelerator using a high electrical resistance refrigerant and a secondary cooling system for cooling the secondary cooling system using tap water have been provided.

その構成例を第4図に示す。An example of its configuration is shown in FIG.

−次および二次冷却水系AおよびBの管路はともに閉回
路となっている。−次冷却系Aは、純水、フレオンある
いは油等の高電気抵抗冷媒を、循環ポンプ103によっ
て粒子加速器1の電極1a等の内部に形成された冷媒路
2の入口に、熱交換器105を介して導くようになって
おり、粒子加速器1内で熱を奪った冷媒はポンプ103
へと戻る。
- The pipe lines of the primary and secondary cooling water systems A and B are both closed circuits. - The secondary cooling system A supplies a high electrical resistance refrigerant such as pure water, Freon, or oil to the inlet of the refrigerant path 2 formed inside the electrode 1a of the particle accelerator 1 by means of a circulation pump 103, and a heat exchanger 105. The refrigerant that has taken heat inside the particle accelerator 1 is guided through the pump 103.
Return to.

二次冷却系Bは、冷媒として通常の水道水が用いられて
おり、その水道水をクーリングタワー4によって冷却し
、その冷却水を循環ポンプ3によって熱交換器105に
導くことによって、その熱交換器105を通過する一次
冷却系Aの冷媒を冷却するようになっており、熱交換器
105を経た冷却水はクーリングタワー4へと戻る。
In the secondary cooling system B, ordinary tap water is used as a refrigerant, and the tap water is cooled by a cooling tower 4, and the cooling water is guided to a heat exchanger 105 by a circulation pump 3. The refrigerant of the primary cooling system A passing through the heat exchanger 105 is cooled, and the cooling water that has passed through the heat exchanger 105 returns to the cooling tower 4.

〈発明が解決しようとする課題〉 ところで、上述の構成によれば、−次および二次の二つ
の冷却系を設けるため、冷却装置全体が複雑で、かつ、
高価になるという問題があるばかりでなく、−次冷却系
に特殊な冷媒を用いるので、例えば純水を冷媒とする場
合、その純度を維持するために第4図に示すイオン交換
器10日を設ける必要がある等、−次冷却系の冷媒の絶
縁抵抗値を維持するための手段を講じる必要もある。
<Problems to be Solved by the Invention> By the way, according to the above-mentioned configuration, since two cooling systems, the secondary and the secondary, are provided, the entire cooling device is complicated, and
Not only is it expensive, but since a special refrigerant is used in the secondary cooling system, for example, if pure water is used as the refrigerant, an ion exchanger shown in Figure 4 must be used for 10 days to maintain its purity. It is also necessary to take measures to maintain the insulation resistance value of the refrigerant in the secondary cooling system.

ここで、粒子加速器等を一つの冷却系で冷却する方法と
して、空気を冷媒として用いる方法が挙げられるが、空
気は比熱が小さく、冷却効率が悪いため、水等に比して
大容量のポンプが必要になるばかりでなく、大きな冷却
負荷には対応できないという問題がある。
Here, one method of cooling particle accelerators etc. with one cooling system is to use air as a refrigerant, but air has a small specific heat and has poor cooling efficiency, so it requires a large capacity pump compared to water etc. Not only is this necessary, but there is also the problem that it cannot handle large cooling loads.

本発明の目的は、高電圧が印加された機器を、通常の水
道水により直接的に冷却することのできる、冷却装置を
提供することにある。
An object of the present invention is to provide a cooling device that can directly cool equipment to which a high voltage is applied using ordinary tap water.

く課題を解決するための手段〉 上記の目的を達成するための構成を、実施例に対応する
第1図を参照しつつ説明すると、本発明は、高電圧が印
加される機器(粒子加速器)1に形成した冷却水路2と
、その冷却水路2の水入口および出口2aおよび2bに
、それぞれ連通ずる絶縁性材料製の水供給管6aおよび
水戻し管6bと、水冷却手段(例えばクーリングタワー
4)によって冷却された冷却水を水供給管6aを介して
冷却水路2の水入口2aに供給するためのポンプ3と、
水供給管6aおよび水戻し管6bの管内に所定量の気体
を存在させるための手段(例えば気泡混入機5)を備え
ていることを特徴としている。
Means for Solving the Problems> The configuration for achieving the above objects will be explained with reference to FIG. 1 corresponding to the embodiment. 1, a water supply pipe 6a and a water return pipe 6b made of an insulating material and communicating with the water inlet and outlet 2a and 2b of the cooling waterway 2, respectively, and a water cooling means (for example, a cooling tower 4). a pump 3 for supplying the cooling water cooled by the cooling water to the water inlet 2a of the cooling water channel 2 via the water supply pipe 6a;
The water supply pipe 6a and the water return pipe 6b are characterized by being equipped with means (for example, a bubble mixer 5) for making a predetermined amount of gas exist within the water supply pipe 6a and the water return pipe 6b.

〈作用〉 水供給管6aおよび水戻し管6bの管内に所定量の気体
を存在させることにより、それぞれの管内の冷却水をそ
の気体によって完全に分離することが可能で、これによ
り、冷却水の絶縁抵抗値はきわめて高くなる。従って、
冷却水として通常の水道水を用いても粒子加速器等の機
器と大地間の絶縁抵抗を充分に確保することが可能にな
る。
<Function> By allowing a predetermined amount of gas to exist in the water supply pipe 6a and the water return pipe 6b, it is possible to completely separate the cooling water in each pipe by the gas. The insulation resistance value becomes extremely high. Therefore,
Even if ordinary tap water is used as cooling water, it is possible to ensure sufficient insulation resistance between equipment such as a particle accelerator and the earth.

〈実施例〉 本発明の実施例を、以下、図面に基づいて説明する。<Example> Embodiments of the present invention will be described below based on the drawings.

第1図は本発明実施例の構成図であって、粒子加速器に
本発明を適用した例を示す。
FIG. 1 is a block diagram of an embodiment of the present invention, and shows an example in which the present invention is applied to a particle accelerator.

粒子加速器1には駆動すべき電圧を供給するための高圧
電源(図示せず)が接続されており、その全体が高電圧
に絶縁された状態となっている。この粒子加速器1の加
速電極1a内には、その電極1aを許容温度以下に維持
するために冷却水路2が形成されている。
The particle accelerator 1 is connected to a high voltage power source (not shown) for supplying a driving voltage, and the entire particle accelerator 1 is insulated from the high voltage. A cooling water channel 2 is formed within the accelerating electrode 1a of the particle accelerator 1 in order to maintain the electrode 1a at a permissible temperature or lower.

一方、接地側には、クーリングタワー4および循環ポン
プ3が配設されており循環ポンプ3の吸込口はクーリン
グタワー4の水槽内に連絡管6Cを介して連通している
On the other hand, on the ground side, a cooling tower 4 and a circulation pump 3 are arranged, and the suction port of the circulation pump 3 communicates with the water tank of the cooling tower 4 via a communication pipe 6C.

循環ポンプ3の吐出口に連通ずる冷却水供給管6aは三
方に分岐しており、その一方は粒子加速器1の冷却水路
2の水入口2aに、また他方は気泡混入機5のアキュー
ムレータ51の出口51aに、それぞれ連通している。
The cooling water supply pipe 6a that communicates with the discharge port of the circulation pump 3 is branched into three directions, one of which is connected to the water inlet 2a of the cooling channel 2 of the particle accelerator 1, and the other is connected to the outlet of the accumulator 51 of the bubble mixer 5. 51a, respectively.

ク−リグタワー4の散水口は冷却水戻し管6bを介して
粒子加速器1の冷却水路2の水出[」2bに連通してお
り、この冷却水戻し管6bおよび上述した冷却水供給管
6aは、ともにテフロンチューブ等の高い絶縁抵抗値を
もつ絶縁性材料製のチューブが用いられている。
The water sprinkling port of the Kurig tower 4 communicates with the water outlet 2b of the cooling water channel 2 of the particle accelerator 1 via a cooling water return pipe 6b, and the cooling water return pipe 6b and the above-mentioned cooling water supply pipe 6a , both use tubes made of insulating materials with high insulation resistance values, such as Teflon tubes.

アキュームレータ51の内部には、チャツギ弁51cを
介して出口51aに連通ずる球状の蓄圧室51bが形成
されており、この蓄圧室51b内には圧縮空気供給源(
図示せず)から圧縮空気が可変絞り弁52を介して供給
されるようになっている。
A spherical pressure accumulation chamber 51b is formed inside the accumulator 51 and communicates with the outlet 51a via a chatty valve 51c, and a compressed air supply source (
Compressed air is supplied from a source (not shown) via a variable throttle valve 52.

このようなアキュームレータ51の動作を説明すると、
蓄圧室51bの内圧は圧縮空気によって上昇し、その圧
力が冷却水供給管6a内の水圧以上に達するとチャツキ
弁51cが開き、蓄圧室51bの空気が冷却水供給管6
a内に流出するとともに蓄圧室51bの内圧が低下する
。そして、蓄圧室51bの内圧が冷却水供給管6a内の
水圧以下に時点でチャツキ弁51cが閉じ、蓄圧室51
bの内圧は再び上昇する。以上の動作が順次繰り返され
、冷却水供給管6a内には気泡が間欠的に挿入されるこ
とになる。ここで、気泡の大きさは、その気泡が冷却水
供給管6aの内壁面全周に当接する程度、つまり気泡に
よって冷却水供給管6a内の冷却水が完全に分離される
程度の大きさが必要であり、このような大きさの気泡が
冷却水供給管6a内に挿入されるよう、可変絞り弁52
の調整を行っておく。
To explain the operation of such an accumulator 51,
The internal pressure of the pressure accumulation chamber 51b is increased by the compressed air, and when the pressure reaches the water pressure in the cooling water supply pipe 6a or higher, the check valve 51c opens, and the air in the pressure accumulation chamber 51b is supplied to the cooling water supply pipe 6.
The internal pressure of the pressure accumulating chamber 51b decreases as it flows into the interior of the pressure accumulating chamber 51b. Then, when the internal pressure of the pressure accumulation chamber 51b becomes lower than the water pressure in the cooling water supply pipe 6a, the check valve 51c closes, and the pressure accumulation chamber 51
The internal pressure of b rises again. The above operations are repeated in sequence, and air bubbles are intermittently inserted into the cooling water supply pipe 6a. Here, the size of the bubbles is such that the bubbles contact the entire circumference of the inner wall surface of the cooling water supply pipe 6a, that is, the size is such that the bubbles completely separate the cooling water in the cooling water supply pipe 6a. The variable throttle valve 52 is necessary so that bubbles of such a size are inserted into the cooling water supply pipe 6a.
Make adjustments.

次に、作用について述べる。まず、冷却水として通常の
水道水を用い、水道水を粒子加速器1の冷却水路2、ク
ーリングタワー4の水槽および配管系に充填しておく。
Next, we will discuss the effect. First, ordinary tap water is used as cooling water, and the tap water is filled into the cooling channel 2 of the particle accelerator 1, the water tank of the cooling tower 4, and the piping system.

この状態で循環ポンプ3を駆動すると、クーリングタワ
ー4の水槽内の貯留水は粒子加速器1の冷却水路2を通
過してクーリングタワー4へと戻り、その散水口から噴
出して水槽内に再び収容される。このように循環される
冷却水は、粒子加速器1の冷却水路2内を通過する際に
加速電極1aの熱を奪った後、クーリングタワー4によ
って冷却されて再び冷却水路2内を通過することになり
、これにより、粒子加速器1の加速電極1aが冷却され
ることになる。また、冷却水には、冷却水供給管6aの
途中で、気泡混入機5によって気泡が間欠的に挿入され
、その気泡は冷却水の循環に伴って順次移動し、冷却水
路2および冷却水戻し管6bを経てクーリングタワー4
に到達する。すなわち、冷却水供給管6aおよび冷却水
戻し管6bの管内には、常に気泡が存在することになる
。なお、気泡はクーリングタワー4において大気中へと
放出される。
When the circulation pump 3 is driven in this state, the water stored in the water tank of the cooling tower 4 passes through the cooling channel 2 of the particle accelerator 1, returns to the cooling tower 4, is ejected from the water spout, and is stored in the water tank again. . The cooling water circulated in this manner absorbs heat from the accelerating electrode 1a when passing through the cooling water channel 2 of the particle accelerator 1, and then is cooled by the cooling tower 4 and passes through the cooling water channel 2 again. As a result, the accelerating electrode 1a of the particle accelerator 1 is cooled. In addition, air bubbles are intermittently inserted into the cooling water by the air bubble mixer 5 in the middle of the cooling water supply pipe 6a, and the air bubbles move sequentially as the cooling water circulates, and are transferred to the cooling water channel 2 and the cooling water return. Cooling tower 4 via pipe 6b
reach. That is, bubbles always exist within the cooling water supply pipe 6a and the cooling water return pipe 6b. Note that the air bubbles are released into the atmosphere in the cooling tower 4.

ここで、気泡が挿入された水道水の絶縁抵抗値について
の実験例を、第2図を参照して説明する。
Here, an experimental example regarding the insulation resistance value of tap water into which air bubbles have been inserted will be explained with reference to FIG.

内径411、長さ500mmのテフロンチューモ水道水
を充填した状態で、両端の金属プラグbおよびb2間の
抵抗をlkv絶縁抵抗計(通称メガ−)Cを用いて測定
し、次いで、テフロンチューブaの中央部に約10龍幅
の気泡を挿入して同様な測定を行った。その結果、前者
の場合、絶縁抵抗値が約4にΩ程度であったのに対し、
後者の場合には2000 MΩ以上の絶縁抵抗値が得ら
れることが判明した。この実験結果から明らかなように
、管内の水道水を気泡によって完全に分離することによ
ってその絶縁抵抗値はきわめて高くなる。従って、冷却
水供給管6aおよび冷却水戻し管6bの管内に気泡を存
在させることにより、粒子加速器1と接地側の循環ポン
プ3およびクーリングタワー4との間の絶縁抵抗を充分
に確保できることになる。
A Teflon tube with an inner diameter of 411 mm and a length of 500 mm was filled with tap water, and the resistance between the metal plugs b and b2 at both ends was measured using an lkv insulation resistance tester (commonly known as megger) C, and then the Teflon tube a A similar measurement was carried out by inserting an air bubble approximately 10 dragons wide in the center of the tube. As a result, in the former case, the insulation resistance value was about 4Ω,
It has been found that in the latter case, an insulation resistance value of 2000 MΩ or more can be obtained. As is clear from the results of this experiment, by completely separating the tap water in the pipe with air bubbles, the insulation resistance value becomes extremely high. Therefore, by providing air bubbles in the cooling water supply pipe 6a and the cooling water return pipe 6b, sufficient insulation resistance can be ensured between the particle accelerator 1 and the ground-side circulation pump 3 and cooling tower 4.

なお、被冷却機器の冷却水路が複雑で、その冷却水路内
に気泡が滞留する虞れがある場合には、上記の実施例の
構成に加えて、冷却水路の水入口部に気水分離器を設け
、さらに水出口部に気泡混入機を設ければ、冷却水路内
に気泡が進入することを防止できる。
If the cooling waterways of the equipment to be cooled are complex and there is a risk that air bubbles may accumulate in the cooling waterways, in addition to the configuration of the above embodiment, a steam separator may be installed at the water inlet of the cooling waterways. If a bubble mixer is further provided at the water outlet, it is possible to prevent bubbles from entering the cooling waterway.

また、気泡混入機5の構成に替えて、冷却水供給管6a
の一部に、第3図に示すようなトラップを形成し、その
頂部に気泡を閉じ込めておくとともに、その気泡がトラ
ップの底部を越えない程度の量の冷却水を間欠的に循環
するよう構成してもよい。ただし、この場合、冷却水戻
し管6bにも同様なトラップが必要である。
In addition, instead of the configuration of the air bubble mixer 5, the cooling water supply pipe 6a
A trap as shown in Figure 3 is formed in a part of the trap, air bubbles are trapped at the top of the trap, and cooling water is intermittently circulated in an amount that does not allow the air bubbles to exceed the bottom of the trap. You may. However, in this case, a similar trap is also required for the cooling water return pipe 6b.

以上は、粒子加速器に本発明を適用した例について説明
したが、本発明はこれに限られることなく、例えば高周
波加熱用電子管発振器等の他の任意の機器にも適用でき
る。
Although an example in which the present invention is applied to a particle accelerator has been described above, the present invention is not limited to this, and can be applied to any other equipment such as an electron tube oscillator for high-frequency heating.

なお、本発明は、機器を所定温度に加熱する加熱装置に
も応用可能であることは勿論である。
It goes without saying that the present invention can also be applied to a heating device that heats equipment to a predetermined temperature.

〈発明の効果〉 以上説明したように、本発明によれば、機器に形成した
冷却水路の水入口および出口それぞれに連通する水供給
管および水戻し管の管内に所定量の気体が存在するよう
にしたから、冷却水として通常の水道水を用いても、そ
の冷却水の絶縁抵抗ちをきわめて高くすることが可能に
なり、従って、高電位の機器を、純水等の特殊な冷媒を
使用することなく、通常の水道水により直接的に冷却す
ることができる結果、装置全体を簡略化することができ
、ひいては、装置の低コスト化をはかることができる。
<Effects of the Invention> As explained above, according to the present invention, a predetermined amount of gas is present in the water supply pipe and the water return pipe that communicate with the water inlet and outlet of the cooling channel formed in the equipment, respectively. This makes it possible to make the insulation resistance of the cooling water extremely high even when using regular tap water as cooling water, making it possible to use special refrigerants such as pure water in high-potential equipment. As a result, the entire device can be simplified and the cost of the device can be reduced.

ここで、本発明によると、冷却水の配管内に気泡を挿入
することにより、その冷却水の絶縁抵抗値を高くするこ
とが可能なことから11例えば、冷媒として純水を用い
、一つの冷却水系により機器を冷却する装置において、
従来、充分な絶縁抵抗を確保するために、冷却水配管を
冷却水を循環するのに必要な長さ以上に長くしていたの
に対し、その配管長を必要最小限にまで短縮化すること
が可能になるという効果もある。
Here, according to the present invention, by inserting air bubbles into the cooling water piping, it is possible to increase the insulation resistance value of the cooling water. In equipment that uses water to cool equipment,
In the past, in order to ensure sufficient insulation resistance, cooling water piping was made longer than necessary to circulate the cooling water, but now the length of the piping has been shortened to the minimum necessary. It also has the effect of making it possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明実施例の構成図、 第2図は作用を説明するための図、 第3図は本発明の他の実施例を説明するための図、第4
図は高電気抵抗冷却装置の一般的な構成例を示す図であ
る。 1・・・粒子加速器 1a・・・加速電極 2・・・冷却水路 2a・・・水入口 2b・・・水出口 3・・・循環ポンプ 4・・・クーリングタワー 5・・・気泡混入機 6a・・・・冷却水供給管 6b・・・冷却水戻し管
Fig. 1 is a configuration diagram of an embodiment of the present invention, Fig. 2 is a diagram for explaining the operation, Fig. 3 is a diagram for explaining another embodiment of the present invention, and Fig. 4 is a diagram for explaining another embodiment of the present invention.
The figure is a diagram showing a general configuration example of a high electrical resistance cooling device. 1...Particle accelerator 1a...Acceleration electrode 2...Cooling channel 2a...Water inlet 2b...Water outlet 3...Circulation pump 4...Cooling tower 5...Bubble mixer 6a... ...Cooling water supply pipe 6b...Cooling water return pipe

Claims (1)

【特許請求の範囲】[Claims]  高電圧が印加される機器を冷却する装置であって、冷
却すべき機器に形成した冷却水路と、その冷却水路の水
入口および出口に、それぞれ連通する絶縁性材料製の水
供給管および水戻し管と、水冷却手段によって冷却され
た冷却水を上記水供給管を介して上記冷却水路の水入口
に供給するためのポンプと、上記水供給管および上記水
戻し管の管内に所定量の気体を存在させるための手段を
備えていることを特徴とする、高電気抵抗冷却装置。
A device for cooling equipment to which high voltage is applied, including a cooling channel formed in the equipment to be cooled, and a water supply pipe and water return made of an insulating material that communicate with the water inlet and outlet of the cooling channel, respectively. a pump for supplying cooling water cooled by the water cooling means to the water inlet of the cooling waterway through the water supply pipe, and a predetermined amount of gas in the water supply pipe and the water return pipe. A high electrical resistance cooling device characterized by comprising means for causing the presence of.
JP24887888A 1988-09-30 1988-09-30 High electric resistance cooling device Pending JPH0296400A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24887888A JPH0296400A (en) 1988-09-30 1988-09-30 High electric resistance cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24887888A JPH0296400A (en) 1988-09-30 1988-09-30 High electric resistance cooling device

Publications (1)

Publication Number Publication Date
JPH0296400A true JPH0296400A (en) 1990-04-09

Family

ID=17184775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24887888A Pending JPH0296400A (en) 1988-09-30 1988-09-30 High electric resistance cooling device

Country Status (1)

Country Link
JP (1) JPH0296400A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6786167B2 (en) 2000-10-04 2004-09-07 Ishigaki Company Limited Propulsion system for boats

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6786167B2 (en) 2000-10-04 2004-09-07 Ishigaki Company Limited Propulsion system for boats

Similar Documents

Publication Publication Date Title
US9810456B2 (en) Heat pump apparatus
EP2973841B1 (en) Fluid bath cooled energy storage system
CN1131892C (en) ESRF chamber cooling system and process
CN111276897A (en) Self-cooling ring main unit based on sulfur hexafluoride insulation
JPH0296400A (en) High electric resistance cooling device
US7260958B2 (en) Electrohydrodynamic condenser device
JP2022132708A (en) Cooling block and industrial magnetron
CN1311707A (en) ESRF coolant degassing process
CN206533652U (en) Electronic and electrical equipment storing apparatus and electronic and electrical equipment
CN104676978A (en) Water source heat pump unit system for low temperature water source
JPH0370953A (en) Refrigerant filling in system for refrigerating cycle
JP2000346503A (en) Refrigerant filling device
JP4107631B2 (en) Concentrated ozone production equipment
US2916200A (en) Compressor for refrigeration system
CN210716097U (en) Reversing valve system and air conditioning system comprising same
JP2003262424A (en) Heat pump
JP2010091151A (en) Air conditioner
CN105841437A (en) Gas low-temperature separation device and method
Andersson et al. A mono-phase cooling system for detector front-end electronics: the example of the ATLAS TRT detector
SU1108305A1 (en) Heat pump
CN204438608U (en) Be applicable to the Water source heat pump unit group system of low-temperature water source
CN1082180A (en) Cold and heat electronic generator
RU2170608C1 (en) Method for drying of internal lines of temperature control system
JPS63279600A (en) Cooling device for equipment impressed with high voltage
CN105531844B (en) Energy storage equipment