JPH0294529A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH0294529A
JPH0294529A JP24415788A JP24415788A JPH0294529A JP H0294529 A JPH0294529 A JP H0294529A JP 24415788 A JP24415788 A JP 24415788A JP 24415788 A JP24415788 A JP 24415788A JP H0294529 A JPH0294529 A JP H0294529A
Authority
JP
Japan
Prior art keywords
buffer layer
yas
less
layer
yal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24415788A
Other languages
Japanese (ja)
Other versions
JP2786208B2 (en
Inventor
Tomoyoshi Mishima
友義 三島
Takaro Kuroda
崇郎 黒田
Tomonori Tagami
知紀 田上
Mitsuharu Takahama
高濱 光治
Yoko Uchida
陽子 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63244157A priority Critical patent/JP2786208B2/en
Publication of JPH0294529A publication Critical patent/JPH0294529A/en
Application granted granted Critical
Publication of JP2786208B2 publication Critical patent/JP2786208B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To obtain an InyAl1-yAs buffer layer having high resistance by limiting the In composition of the InyAl1-yAs buffer layer. CONSTITUTION:The In composition ratio (y) of InyAl1-yAs is brought to 0.51 or less or 0.55 or more. Accordingly, a deep-trap-level (a deep electron capture level) is generated in InyAl1-yAs, and electrons generated by an N-type impurity in InyAl1-yAs are captured, thus increasing resistance.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はInP基板上にエピタキシャル成長して作成し
たInA Q As/ InGaAs系ヘテロ構造電界
効果トランジスタの高抵抗バッファ層の構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to the structure of a high-resistance buffer layer of an InA Q As/InGaAs heterostructure field effect transistor formed by epitaxial growth on an InP substrate.

〔従来の技術〕[Conventional technology]

従来、InP基板上に形成されるInxGat−xAs
/InyA Q 1−yAsヘテロ構造FETのIny
A Q t−yAsAsバラフッIn組成比yはInP
基板に格子整合するように、0.52 の値が用いられ
ていた。この最近の良い報告例として1988年春季応
用物理学関係連合講演会予稿集30p−ZB−11/m
p、1003  において論じられている。
Conventionally, InxGat-xAs formed on an InP substrate
/InyA Q 1-yAs heterostructure FET Iny
A Q t-yAsAs rose fill In composition ratio y is InP
A value of 0.52 was used to lattice match the substrate. An example of a recent good report is the Proceedings of the Spring 1988 Applied Physics Conference 30p-ZB-11/m
Discussed in p. 1003.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

InP基板は1011!Ic+++−”程度のn形不純
物が含まれ半絶縁化するためにFeがドーピングされて
いる。上記従来技術ではこの基板上に Ino、I!lzA Q 0.48A8バツフア一層を
エピタキシャル成長すると、このn形不純物がエピタキ
シャル層中に拡散し、InyA Q x−yAsは10
11sCm−”前後の電子濃度を持つn形になり、高抵
抗になりにくい。
InP substrate is 1011! It contains an n-type impurity of the order of Ic+++-" and is doped with Fe to make it semi-insulating. In the conventional technique described above, when a single layer of Ino, I!lzA Q 0.48A8 buffer is epitaxially grown on this substrate, this n-type The impurity diffuses into the epitaxial layer and InyA Q x-yAs is 10
It becomes an n-type with an electron concentration of around 11sCm-'' and is unlikely to have high resistance.

従って、バッファー層リーク電流などの発生により、n
チャンネルInxGax−xAs/ InyA Q t
−yAs系FETにおいて、ピンチオフ不良、高周波特
性不良を生じるという問題があった。
Therefore, due to the occurrence of buffer layer leakage current, n
Channel InxGax-xAs/ InyA Q t
-YAs-based FETs have had problems in that pinch-off failures and high-frequency characteristic failures occur.

本発明の目的は、高抵抗のInyA Q z−yAsバ
ッファー層を提供することにある。
It is an object of the present invention to provide a high resistance InyA Q z-yAs buffer layer.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、InyA Q 5−yAs
バッファー層のIn組成yを0.51以下ないし0.5
5以上の値とした。
In order to achieve the above purpose, InyA Q 5-yAs
The In composition y of the buffer layer is 0.51 or less to 0.5
The value was set as 5 or more.

また、Inx(GayA n 1−7)1−XAS系材
料をバッファー層として用いる場合には、5.864Å
以下ないし5.880Å以上の格子定数を採用する。
In addition, when using Inx(GayA n 1-7)1-XAS material as a buffer layer, the thickness of 5.864 Å
A lattice constant of 5.880 Å or less is adopted.

ここで、バッファー層の不純物含有量は零(真性)又は
1016cm−”以下のp形不純物である。
Here, the impurity content of the buffer layer is zero (intrinsic) or p-type impurity of 10<16>cm<-> or less.

〔作用〕[Effect]

InyA Q z−yAsのIn組成比yを0.51 
以下ないし、0.55以上にすることによってInyA
 Q 1−yAs中にディープ・トラップ・レベル(深
い電子捕獲準位)が発生し、InyA Q z−yAs
中のn形不純物により発生した電子を捕獲し高抵抗にな
る。
In composition ratio y of InyA Q z-yAs is 0.51
InyA by setting it less than or equal to 0.55
A deep trap level (deep electron trap level) occurs in Q 1-yAs, and InyA Q z-yAs
The electrons generated by the n-type impurities inside are captured, resulting in high resistance.

第2図はアンドープInyGat−yAsバッファー層
中の電子濃度とyの関係を示したものである。電子濃度
はyが0.51 以下で急激に、0.53 から0.5
5 にかけてゆるやかに減少している。
FIG. 2 shows the relationship between the electron concentration in the undoped InyGat-yAs buffer layer and y. The electron concentration suddenly increases from 0.53 to 0.5 when y is less than 0.51.
It is gradually decreasing until 5th.

Inx(GayA Q 5−y)1−xAs系材料によ
るバッファー層を用いた場合では、格子定数で5.86
4Å以下及び5.880Å以上の範囲で電子濃度の低下
がみられた。
When using a buffer layer made of Inx(GayA Q 5-y)1-xAs-based material, the lattice constant is 5.86.
A decrease in electron concentration was observed in the range of 4 Å or less and 5.880 Å or more.

なお、当然ながら、これらのバッファー層にBeやZn
などのP形不純物を1015cm−8以下ドーピングし
てもピンチオフ特性改善になどにおいて効果があるのは
接合論上明らかである。
Of course, these buffer layers contain Be and Zn.
It is clear from junction theory that doping with P-type impurities such as 10@15 cm@-8 or less is effective in improving pinch-off characteristics.

〔実施例〕〔Example〕

実施例1 本発明の実施例1の選択ドープヘテロ構造FETを第1
図により説明する。Feドープ半絶縁性InP基板1上
に分子線エピタキシー法によりアンドープIno 、 
soA Q o 、 !l0Asバッファー層2を11
00n、アンドープIno、 5aGao、4oAs層
3を50 n m 。
Example 1 The selectively doped heterostructure FET of Example 1 of the present invention was
This will be explained using figures. Undoped Ino,
soAQo,! l0As buffer layer 2 to 11
00n, undoped Ino, 5aGao, 4oAs layer 3 of 50 nm.

アンドープIno 、 !IOA Q o 、 5oA
s層4を2nm、Siドープ(2X 10 ”cm−8
) Ino、noA Q o、nAs層5を15 n 
m 、アンドープIno、aoA Q omsoAs層
6を40nm順次成長した。このウェハ上にAuGeN
iオーミック電極によりソース7とドレイン8を形成し
、更に、0.6μm長のAflゲート9を形成した。
Undoped Ino! IOA Qo, 5oA
The s-layer 4 is 2 nm thick and Si-doped (2X 10"cm-8
) Ino, noA Q o, n As layer 5 is 15 n
m, undoped Ino, and aoA Q omsoAs layers 6 were sequentially grown to a thickness of 40 nm. AuGeN on this wafer
A source 7 and a drain 8 were formed using i-ohmic electrodes, and an Afl gate 9 having a length of 0.6 μm was further formed.

本実施例によれば、Ino、2IoA Q o*5oA
sバッファー層2が高抵抗になり、第3図に示すような
ピンチオフ特性の良好なFETが得られる。一方、バッ
ファー層に従来のようなInPに格子整合するようなI
no、3zA Q 0.411A8を用いた場合Ino
、szA Q O,4!IAsは2.5 X 1011
1cm−sのn形を示し、第4図に示すようなピンチオ
フ特性不良を生じた。
According to this embodiment, Ino, 2IoA Q o*5oA
The s-buffer layer 2 has a high resistance, and an FET with good pinch-off characteristics as shown in FIG. 3 can be obtained. On the other hand, in the buffer layer, I
no, when using 3zA Q 0.411A8 Ino
, szA Q O, 4! IAs is 2.5 x 1011
It exhibited an n-type of 1 cm-s, and a pinch-off characteristic failure as shown in FIG. 4 occurred.

第3図の特性を示したトランジスタはJT=120GH
zを示したが、第4図の特性を示したトランジスタはf
r=20GHzに留まった。
The transistor exhibiting the characteristics shown in Figure 3 is JT=120GH.
z, but the transistor exhibiting the characteristics shown in Figure 4 is f.
r remained at 20 GHz.

実施例2 第5図は、p −i −n接合形FETの構造で、Fe
ドープInP基板10上にアンドープIno、go(G
ao、2oA Q a、no)o、5oASバツフア一
層11を1100n、SiドープIno、nGao、t
BAs層(n= 2.X 1017cm−8) 12を
1100n、アンドープIno、soA Q 0.5O
AS層13を40nm、BeドープIno 、 l5o
A Q o 、 5oAs層(p = 5 X 10 
”cm−3)14を10nm、アンドープIno、so
A Q o、5oAs層15を2nm順次エピタキシャ
ル成長し、AuGcNj合金でソース電極16.ドレイ
ン電極17を形成後AQゲート電極(ゲート長0.6μ
m)を形成しFET構造とした。バッファー層11の格
子定数は5.859人でキャリア濃度10 ”cm−’
以下を示し、第3図と同等の良好なピンチオフ特性が得
られた。このトランジスタはf丁=60GHzの高性能
を示している。
Example 2 FIG. 5 shows the structure of a p-i-n junction type FET.
Undoped Ino, go (G
ao, 2oA Q a, no) o, 5o AS buffer single layer 11 1100n, Si-doped Ino, nGao, t
BAs layer (n = 2.X 1017cm-8) 12 to 1100n, undoped Ino, soA Q 0.5O
The AS layer 13 is 40 nm thick, Be-doped Ino, l5o.
A Q o , 5oAs layer (p = 5 x 10
"cm-3) 14 to 10 nm, undoped Ino, so
A Q o, 5oAs layer 15 is epitaxially grown to 2 nm in thickness, and a source electrode 16 is made of an AuGcNj alloy. After forming the drain electrode 17, the AQ gate electrode (gate length 0.6μ
m) to form an FET structure. The lattice constant of the buffer layer 11 is 5.859, and the carrier concentration is 10"cm-'
As shown below, good pinch-off characteristics equivalent to those shown in FIG. 3 were obtained. This transistor exhibits high performance of f = 60 GHz.

〔発明の効果〕〔Effect of the invention〕

本発明によれば高抵抗バッファー層が再現性良く得られ
るので、ピンチオフ特性・高周波特性に優れたトランジ
スタが作製できる。
According to the present invention, a high resistance buffer layer can be obtained with good reproducibility, so a transistor with excellent pinch-off characteristics and high frequency characteristics can be manufactured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例1の選択ドープInxGaz−
xAs/ InyA Q z−yAs F E Tの縦
断面図、第2図はアンドープInyAΩz−yAs層の
電子濃度とInn組成比上の関係を示す図、第3図は実
施例1・・・FeドープInP基板、2・・・Ino 
、 aoA Q o 、 l5oAsバッファ層、3・
・・Ino、I!gGao、asAs層、4 =4no
、8oA Q o、IIoAs層、5− S iドープ
Ino、aoA Q O,5OAS層、6・・・Ino
、soA Q o、IIoAs層、7・・・ソース電極
、8・・・ドレイン電極、9・・・ゲート電極、1o・
・・FeドープInP基板、 11 …Ino、3o(
Gao、zoA (l o、go)o、aoAsバッフ
ァー層、12−8iドープIno、n4Gao、4oA
s層、13 =4no、soA Q o、5oAs層 
、14−BeドープIno、3oA Q 0.6OAS
層、15 =Ino、aoA Q o、rsoAs層、
16・・・ソース電極、17・・・ドレイン電極、18
・・・ゲート電極−
FIG. 1 shows selectively doped InxGaz-
xAs/InyA Qz-yAs FET. Fig. 2 is a diagram showing the relationship between the electron concentration and Inn composition ratio of the undoped InyAΩz-yAs layer. Fig. 3 is Example 1... Fe-doped. InP substrate, 2... Ino
, aoA Q o , l5oAs buffer layer, 3.
...Ino, I! gGao, asAs layer, 4 = 4no
, 8oA Qo, IIoAs layer, 5-Si doped Ino, aoA QO, 5OAS layer, 6...Ino
, soA Q o, IIoAs layer, 7... Source electrode, 8... Drain electrode, 9... Gate electrode, 1o.
...Fe-doped InP substrate, 11...Ino, 3o (
Gao, zoA (lo, go)o, aoAs buffer layer, 12-8i doped Ino, n4Gao, 4oA
s layer, 13 = 4no, soA Q o, 5oAs layer
, 14-Be doped Ino, 3oA Q 0.6OAS
layer, 15 = Ino, aoA Q o, rsoAs layer,
16... Source electrode, 17... Drain electrode, 18
...Gate electrode-

Claims (1)

【特許請求の範囲】 1、半絶縁性InP基板上に真性又は10^1^5cm
^−^3以下のp形不純物を含むIn_yAl_1_−
_yAs(0<y<1)バッファー層を介してエピタキ
シャル成長素子部が形成されたIn_xGa_1_−_
xAs/In_yAl_1_−_yAs(0≦x≦1、
0≦y≦1)系ヘテロ構造電界効果トランジスタにおい
て、上記In_yAl_1_−_yAsバッファー層の
In組成比yは、0.51以下ないし0.55以上であ
ることを特徴とする半導体装置。 2、上記In_yAl_1_−_yAsバッファー層の
厚さは、各yにおける転位発生臨界膜厚以下である特許
請求の範囲第1項記載の半導体装置。 3、半絶縁性InP基板上に真性又は10^1^5cm
^−^3以下のp形不純物を含むIn_x(GaAl_
1_−_y)_1_−_xAs(0≦x≦1、0≦y≦
1)バッファー層を介してエピタキシャル成長素子部が
形成された In_x(Ga_yAl_1_−_y)_1_−_xA
s(0<x<1、0<y<1)系ヘテロ構造電界効果ト
ランジスタにおいて、上記バッファー層の格子定数は5
.864Å以下ないし5.880Å以上であることを特
徴とする半導体装置。 4、上記バッファー層の厚さはその格子定数における転
位発生臨界膜厚以下である特許請求の範囲第3項記載の
半導体装置。
[Claims] 1. Intrinsic or 10^1^5 cm on semi-insulating InP substrate
In_yAl_1_- containing p-type impurities of ^-^3 or less
_yAs (0<y<1) In_xGa_1_-_ with epitaxially grown element part formed via buffer layer
xAs/In_yAl_1_-_yAs(0≦x≦1,
0≦y≦1) type heterostructure field effect transistor, wherein the In composition ratio y of the In_yAl_1_-_yAs buffer layer is from 0.51 or less to 0.55 or more. 2. The semiconductor device according to claim 1, wherein the thickness of the In_yAl_1_-_yAs buffer layer is equal to or less than the critical film thickness for dislocation generation at each y. 3. Intrinsic or 10^1^5cm on semi-insulating InP substrate
In_x (GaAl_
1_-_y)_1_-_xAs(0≦x≦1, 0≦y≦
1) In_x(Ga_yAl_1_-_y)_1_-_xA with an epitaxially grown element part formed through a buffer layer
In the s (0<x<1, 0<y<1) type heterostructure field effect transistor, the lattice constant of the buffer layer is 5.
.. A semiconductor device characterized in that the thickness is from 864 Å or less to 5.880 Å or more. 4. The semiconductor device according to claim 3, wherein the thickness of the buffer layer is less than or equal to the critical film thickness for dislocation generation based on the lattice constant of the buffer layer.
JP63244157A 1988-09-30 1988-09-30 Semiconductor device Expired - Fee Related JP2786208B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63244157A JP2786208B2 (en) 1988-09-30 1988-09-30 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63244157A JP2786208B2 (en) 1988-09-30 1988-09-30 Semiconductor device

Publications (2)

Publication Number Publication Date
JPH0294529A true JPH0294529A (en) 1990-04-05
JP2786208B2 JP2786208B2 (en) 1998-08-13

Family

ID=17114612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63244157A Expired - Fee Related JP2786208B2 (en) 1988-09-30 1988-09-30 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2786208B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63142808A (en) * 1986-12-05 1988-06-15 Sumitomo Electric Ind Ltd Manufacture of semiconductor device
JPS6466972A (en) * 1987-09-07 1989-03-13 Fujitsu Ltd Heterojunction fet

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63142808A (en) * 1986-12-05 1988-06-15 Sumitomo Electric Ind Ltd Manufacture of semiconductor device
JPS6466972A (en) * 1987-09-07 1989-03-13 Fujitsu Ltd Heterojunction fet

Also Published As

Publication number Publication date
JP2786208B2 (en) 1998-08-13

Similar Documents

Publication Publication Date Title
EP0133342B1 (en) A superlattice type semiconductor structure having a high carrier density
Ketterson et al. Characterization of InGaAs/AlGaAs pseudomorphic modulation-doped field-effect transistors
US5837565A (en) Semiconductor device
JPS6313355B2 (en)
JP2914049B2 (en) Compound semiconductor substrate having heterojunction and field effect transistor using the same
US5907164A (en) InAlAs/InGaAs heterojunction field effect type semiconductor device
US5550388A (en) Heterojunction FET having barrier layer consisting of two layers between channel and buffer layers
KR920006434B1 (en) Resonant tunelling barrier structure device
JPS63153867A (en) Resonance tunneling semiconductor device
US20010005016A1 (en) Field effect transistor
Razeghi et al. Ga0. 51In0. 49P/GaxIn1-xAs lattice-matched (x= 1) and strained (x= 0.85) two-dimensional electron gas field-effect transistors
US7126171B2 (en) Bipolar transistor
JP2661556B2 (en) Field effect type semiconductor device
Aardvark et al. Devices and desires in the 2-4 mu m region based on antimony-containing III-V heterostructures grown by MOVPE
JPH0294529A (en) Semiconductor device
JPS6242569A (en) Field effect transistor
JPS61176160A (en) Field-effect transistor
Bolognesi et al. InAs channel heterostructure‐field effect transistors with InAs/AlSb short‐period superlattice barriers
JPH09237889A (en) Semiconductor crystal laminate and semiconductor device using the laminate
Hsu et al. On the improvement of gate voltage swings in delta-doped GaAs/In/sub x/Ga/sub 1-x/As/GaAs pseudomorphic heterostructures
JPS62252975A (en) Semiconductor heterojunction field-effect transistor
JP2712252B2 (en) High resistance AlInAs crystal film and transistor
Kao et al. Improved mobilities and concentrations in double quantum well InGaAsGaAs pseudomorphic HFETs using multi-coupled δ-doped GaAs
JPH02246344A (en) Epitaxial wafer and its manufacture
JPH036029A (en) Modulation doping heterojunction field-effect transistor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees