JPH0293287A - Melting device and melting method - Google Patents

Melting device and melting method

Info

Publication number
JPH0293287A
JPH0293287A JP24406588A JP24406588A JPH0293287A JP H0293287 A JPH0293287 A JP H0293287A JP 24406588 A JP24406588 A JP 24406588A JP 24406588 A JP24406588 A JP 24406588A JP H0293287 A JPH0293287 A JP H0293287A
Authority
JP
Japan
Prior art keywords
melting
heating element
melted
electromagnetic coil
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24406588A
Other languages
Japanese (ja)
Inventor
Shigeo Hashida
橋田 榮夫
Hideki Sugano
菅野 秀樹
Chisato Okada
千里 岡田
Kokichi Nakamura
中村 幸吉
Haruki Sumimoto
炭本 治喜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP24406588A priority Critical patent/JPH0293287A/en
Publication of JPH0293287A publication Critical patent/JPH0293287A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce and melt minute grains of oxides such as iron sand to obtain the highly pure cast iron and facilitate the adjustment of the composition of carbon content by disposing an electromagnetic coil around the external surface of the furnace wall to subject a heater to electromagnetic induction heating. CONSTITUTION:The furnace body 1 is lined with ceramic refractory material, and the power having an intermediate frequency range is applied to an electromagnetic coil 2. Lumps 4 of black lead which is electrically conductive and refractory are induction-heated by the electromagnetic coil 2. The material 5 is melted by the radiation heat from the black lead lumps 4 and a small quantity of high-temperature gas which is generated by the reduction of the oxides, and is heated and reduced as it drops through the gaps between the black lead lumps 4 to be discharged from the outlet 3. Even if the material 5 is in the form of powder which can not normally be used or if it has been oxidized, it can be efficiently melted. When the grain size of the material 5 is suitable for the induction heating, the material itself generates heat due to the electromagnetic induction, resulting in the efficient melting. Since the preheating range of material is short, the time between the feeding of material and the discharge of molten metal also becomes short, and the adjustment of the contents can be facilitated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は溶解装置に係り、特に高純度材料の溶解に好適
な導電性耐火物質よりなる発熱体を備えた溶解装置及び
溶解方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a melting device, and more particularly to a melting device and a melting method equipped with a heating element made of a conductive refractory material suitable for melting high-purity materials.

〔従来の技術〕[Conventional technology]

例えば従来の鋳鉄の溶解装置としてはキュポラ及びるつ
ぼ炉が良く知られており、広く利用されている。キュポ
ラは、良く精練された良質の溶湯が連続的に得られる、
いbゆる連続溶解炉であり、るつぼ炉は、溶解温度およ
び成分の調節が容易な、いわゆる間欠溶解炉である。そ
れぞれ一長一短があり、現在ではこれらを併用した二重
溶解法も広く用いられている。なお、この種の装置とし
て関連するものには例えば特公昭52−48564号が
挙げられる。
For example, cupola and crucible furnaces are well known and widely used as conventional cast iron melting devices. Cupola allows you to continuously obtain well-refined, high-quality molten metal.
It is a so-called continuous melting furnace, and the crucible furnace is a so-called intermittent melting furnace in which the melting temperature and components can be easily adjusted. Each method has its advantages and disadvantages, and a dual dissolution method using a combination of these methods is also widely used. Note that related devices of this type include, for example, Japanese Patent Publication No. 52-48564.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

キュポラは炭素物質であるコークスを高温燃焼させるた
めの大量の空気を吹き込む必要があり、次のような欠点
がある。
Cupolas require a large amount of air to be blown in to burn coke, a carbon material, at high temperatures, and have the following disadvantages:

(1)空気を加熱するための余分な熱量を必要とし。(1) Requires extra heat to heat the air.

また高温になる程、燃焼生成ガスのCO□がコークスに
より再び還元されてCOとなるため、熱効率が悪い。
Furthermore, as the temperature increases, CO□ in the combustion generated gas is reduced again by coke and becomes CO, resulting in poor thermal efficiency.

(2)炉内ガス流速が大きく、例えば銑ダライのような
細かい材料は、溶融する前にガスの流れによって溶解装
置外に排出されるため、溶解不可能である。
(2) The gas flow rate in the furnace is high, and fine materials such as pig iron cannot be melted because they are discharged outside the melting device by the gas flow before being melted.

(3)高温高速の燃焼ガスと材料の間で熱交換を行うた
め、予熱帯に大量の材料が存在し、材料投入から溶解ま
でに時間がかかるので応答速度が遅く、C,Si等の含
有成分の変更、調節が非常に困難である。
(3) Because heat is exchanged between the high-temperature, high-velocity combustion gas and the material, a large amount of material is present in the pre-heating zone, and it takes time from material input to melting, so the response speed is slow, and the content of C, Si, etc. It is very difficult to change or adjust the ingredients.

(4)コークスの燃焼による連続溶解のため、一定の温
度、含有成分の溶湯を得るための溶解速度の変更、ある
いは溶解の一時停止は不可能に近い。
(4) Because coke is continuously melted by combustion, it is almost impossible to change the melting rate or temporarily stop melting in order to obtain a molten metal containing a constant temperature and components.

本釣に間欠溶解法であり、スタート時にはスターティン
グブロックが必要等問題点がある。また単なる材料の誘
導加熱のみで溶解を行うため、精練効果は望めないとい
う問題点がある。さらに、連続的な鋳造装置に溶湯を供
給するには不便である。
It is an intermittent melting method for main fishing, and there are problems such as the need for a starting block at the start. Furthermore, since the melting is performed simply by induction heating of the material, there is a problem that no scouring effect can be expected. Furthermore, it is inconvenient to feed molten metal to continuous casting equipment.

本発明の目的は銑ダライは勿論、砂鉄のような細かい酸
化物も使用でき、温度、含有成分の調節が可能で、高純
度の溶湯を得るのに好適な溶解装置及び溶解方法を提供
することにある。
The purpose of the present invention is to provide a melting apparatus and a melting method that can use not only pig iron but also fine oxides such as iron sand, can adjust the temperature and contained components, and are suitable for obtaining high-purity molten metal. It is in.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、熱源となる導電性耐火物質からなる発熱体
と上記発熱体を収納する炉壁とからなり、所定材料が溶
解した後上記発熱体の間を通過する溶解装置において、
上記炉壁の外側に電磁コイルを設け、上記発熱体を電磁
誘導加熱することにより達成される。
The above purpose is to provide a melting device that is composed of a heating element made of a conductive refractory material serving as a heat source and a furnace wall that houses the heating element, and in which a predetermined material passes between the heating elements after melting.
This is achieved by providing an electromagnetic coil outside the furnace wall and heating the heating element by electromagnetic induction.

〔作用〕[Effect]

例えば導電性耐火物質である黒鉛、導電性セラミック等
は金属に比較して電気抵抗は大きいものの中周波誘導加
熱にて充分加熱できることから発熱体として利用できる
。このため溶解帯の発熱体を電磁コイルで誘導加熱する
ことにより燃焼以外の手段で溶解炉の熱源を得ることが
できる。
For example, conductive refractory materials such as graphite and conductive ceramics have higher electrical resistance than metals, but can be used as heating elements because they can be sufficiently heated by medium-frequency induction heating. Therefore, by inductively heating the heating element in the melting zone with an electromagnetic coil, a heat source for the melting furnace can be obtained by means other than combustion.

なお、溶解中加熱された黒鉛質発熱体と溶融した鋳鉄が
接触すると、発熱体の黒鉛は容易に鋳鉄に吸収される。
Note that when the graphite heating element heated during melting comes into contact with the molten cast iron, the graphite of the heating element is easily absorbed by the cast iron.

この現象は炭素含有量の少ない微細な鋼屑等の安い材料
から炭素含有量の多い鋳鉄を製造する場合には有利であ
るが、炭素含有量の少ない鋳鉄を生産する場合には不利
である。そこで後者の場合には、黒鉛質発熱体の表面に
アルミナ等のセラミック質をコーティングすることによ
り、黒鉛と鋳鉄の接触を遮断し、炭素含有量の不必要な
増大を防止することができる。さらに、黒鉛質発熱体の
代わりに導電性を付与した導電性サアロンのようなセラ
ミックを発熱体として使用することにより同様の効果を
期待することができる。
This phenomenon is advantageous when producing cast iron with a high carbon content from cheap materials such as fine steel scraps with a low carbon content, but is disadvantageous when producing cast iron with a low carbon content. Therefore, in the latter case, by coating the surface of the graphite heating element with a ceramic material such as alumina, contact between graphite and cast iron can be interrupted and unnecessary increase in carbon content can be prevented. Furthermore, similar effects can be expected by using a ceramic such as a conductive sarlon, which is imparted with conductivity, as the heating element instead of the graphite heating element.

一方、古来日本刀、和鉄の製造法において効果をあげて
いるように、鋳鉄にとって有害な不純物の含有量が少な
い、木炭を原料とした黒鉛質またカーボン質の発熱体を
使用することにより、上記の製造法の欠点である大量の
木炭を消費することなく、不純物の少ない高純度鋳鉄を
得ることができる。
On the other hand, by using a graphite or carbon heating element made from charcoal, which has a low content of impurities harmful to cast iron, as has been effective in the manufacturing method of Japanese swords and Japanese iron since ancient times, High purity cast iron with few impurities can be obtained without consuming large amounts of charcoal, which is a disadvantage of the above production method.

〔実施例〕〔Example〕

以下、本発明の一実施例を図により説明する。 Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

図は、溶解装置の縦断面図である。溶解装置は炉体1、
電磁コイル2よりなる。炉体1は耐火物にて内張すされ
ており、また電磁コイル2には中周波領域の電力が入力
される。導電性耐火物質である黒鉛塊4は電磁コイル2
によって誘導加熱され、黒鉛塊4からの輻射熱及び酸化
物の還元などにより発生する少量の高温ガスにより材料
5は溶解し、黒鉛塊4の間隙をぬって落下して、さらに
加熱。
The figure is a longitudinal sectional view of the melting device. The melting device is furnace body 1,
It consists of an electromagnetic coil 2. The furnace body 1 is lined with a refractory material, and the electromagnetic coil 2 receives power in a medium frequency range. The graphite lump 4, which is a conductive refractory material, is the electromagnetic coil 2.
The material 5 is heated by induction, and is melted by radiant heat from the graphite lump 4 and a small amount of high-temperature gas generated by reduction of oxides, etc., and falls through the gap between the graphite lumps 4 and is further heated.

還元されて、出湯口3より出湯される。このように材料
は通常使用できない粉末状でも、また酸化しているもの
でも効率良く溶解することができる。
The hot water is reduced and discharged from the hot water outlet 3. In this way, even if the material is in powder form, which cannot normally be used, or if it is oxidized, it can be efficiently dissolved.

また、材料5の大きさが誘導加熱に充分な場合には材料
自身も電磁誘導により発熱し、さらに効率良く溶解でき
ることは勿論である。
Moreover, if the size of the material 5 is sufficient for induction heating, it goes without saying that the material itself will generate heat due to electromagnetic induction and can be melted more efficiently.

なお、材料の予熱帯を非常に短くすることができるため
、材料を投入してから出湯までの時間が短く、含有成分
の調節を容易に行うことができる。
In addition, since the pre-heating period for the material can be made very short, the time from when the material is added to when the hot water is discharged is short, and the contained components can be easily adjusted.

また、以下の実施例においては、通気孔の無い場合につ
いて述べたが、本発明においては通気孔を設は空気に限
らず例えば不活性ガス等を吹き込むことも可能である。
Further, in the following embodiments, a case where there is no ventilation hole has been described, but in the present invention, the ventilation hole is not limited to air, and it is also possible to blow inert gas or the like, for example.

さらに、本発明は、連続溶解を行う場合に限らず、出湯
口を一時的に閉鎖し、間欠溶解を行うことができるのは
勿論である。
Furthermore, the present invention is not limited to continuous melting, and of course can perform intermittent melting by temporarily closing the tap.

表に本方法で砂鉄、F e 20 a (ベンガラ)、
電磁鋼板の微細な打ち抜き屑を原料にした場合に得られ
た溶湯の主成分の分析結果をパーセントで示す。
The table shows iron sand, F e 20 a (red iron),
The results of the analysis of the main components of molten metal obtained when using fine punching scraps of electrical steel sheets as raw materials are shown in percentages.

表 各種材料の溶解後の主成分分析結果 〔発明の効果〕 本発明によれば、銑ダライのような微細材料の溶解は勿
論、砂鉄のような微細な酸化物を還元溶解し、高純度の
鋳鉄を得ることができると共に、特にセラミック質の表
面を持つ発熱体を併用することにより、含有炭素などの
成分を容易に調節することが可能である。
Table Results of principal component analysis after melting of various materials [Effects of the invention] According to the present invention, not only fine materials such as pig iron can be dissolved, but also fine oxides such as iron sand can be reduced and dissolved, resulting in high purity. In addition to being able to obtain cast iron, it is also possible to easily adjust the content of carbon and other components, especially by using a heating element with a ceramic surface.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の一実施例の構成を示す断面図である。 1・・・炉体、2・・・電磁コイル、3・・・呂湯口、
4・・・黒鉛塊、5・・・材料、
The figure is a sectional view showing the configuration of an embodiment of the present invention. 1...furnace body, 2...electromagnetic coil, 3...royu mouth,
4... graphite ingot, 5... material,

Claims (1)

【特許請求の範囲】 1、熱源となる加熱された導電性耐火物質よりなる黒鉛
質発熱体の上に投入された金属材料が、溶解した後上記
発熱体の間を通過する溶解装置において、上記発熱体が
、その表面にアルミナ等のセラミック質をコーティング
されて成ることを特徴とする溶解装置。 2、熱源となる加熱された導電性耐火物質よりなる発熱
体の上に投入された金属材料が、溶解した後上記発熱体
の間を通過する溶解装置において、上記発熱体が、導電
性セラミックであることを特徴とする溶解装置。 3、熱源となる加熱された導電性耐火物質よりなる発熱
体の上に投入された金属材料が、溶解した後上記発熱体
の間を通過する溶解装置において、上記発熱体が木炭を
原料とした黒鉛質またはカーボン質であることを特徴と
する溶解装置。 4、発熱体と、上記発熱体を収納する炉壁とからなり、
所定材料が溶解したのち上記発熱体の間を通過する溶解
装置において、上記炉壁の外側に電磁コイルを備え、こ
のコイルで上記発熱体を電磁誘導加熱することを特徴と
する溶解装置。 5、特許請求の範囲4記載の溶解装置により金属を溶解
し、または金属化合物を溶解、還元する溶解方法。
[Scope of Claims] 1. A melting device in which a metal material charged onto a graphite heating element made of a heated conductive refractory material serving as a heat source passes between the heating elements after being melted; A melting device characterized in that a heating element has a surface coated with a ceramic material such as alumina. 2. In a melting device in which a metal material placed on a heating element made of a heated conductive refractory material that serves as a heat source passes between the heating elements after being melted, the heating element is made of conductive ceramic. A dissolving device characterized by: 3. In a melting device in which a metal material placed on top of a heating element made of a heated conductive refractory material that serves as a heat source passes between the heating elements after being melted, the heating element is made of charcoal as a raw material. A melting device characterized by graphite or carbon. 4. Consisting of a heating element and a furnace wall that houses the heating element,
A melting device in which a predetermined material passes between the heating elements after melting, the melting device comprising an electromagnetic coil provided outside the furnace wall, and heating the heating element by electromagnetic induction with the coil. 5. A melting method for melting a metal or melting and reducing a metal compound using the melting apparatus according to claim 4.
JP24406588A 1988-09-30 1988-09-30 Melting device and melting method Pending JPH0293287A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24406588A JPH0293287A (en) 1988-09-30 1988-09-30 Melting device and melting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24406588A JPH0293287A (en) 1988-09-30 1988-09-30 Melting device and melting method

Publications (1)

Publication Number Publication Date
JPH0293287A true JPH0293287A (en) 1990-04-04

Family

ID=17113210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24406588A Pending JPH0293287A (en) 1988-09-30 1988-09-30 Melting device and melting method

Country Status (1)

Country Link
JP (1) JPH0293287A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT502577B1 (en) * 2005-01-27 2008-04-15 Tribovent Verfahrensentwicklg Treating a melt to reduce metal oxides and/or degas the melt in an inductively heated bed or column of coke comprises injecting gas and varying the power supply
US7905940B2 (en) 2005-01-27 2011-03-15 Sgl Carbon Se Method for reducing metal oxide slags or glasses and/or for degassing mineral melts, and device for carrying out said method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT502577B1 (en) * 2005-01-27 2008-04-15 Tribovent Verfahrensentwicklg Treating a melt to reduce metal oxides and/or degas the melt in an inductively heated bed or column of coke comprises injecting gas and varying the power supply
US7905940B2 (en) 2005-01-27 2011-03-15 Sgl Carbon Se Method for reducing metal oxide slags or glasses and/or for degassing mineral melts, and device for carrying out said method

Similar Documents

Publication Publication Date Title
KR100417201B1 (en) The method for the production of solid iron and carbon product, or iron product, and the apparatus for effectuating same
JP5522320B1 (en) Steelmaking slag reduction treatment method
EA006623B1 (en) Method and apparatus for melting metals
GB1472135A (en) Metal smelting
GB2143311A (en) Metal/metal alloy melting furnace equipment
EP0976840B1 (en) Method of operating rotary hearth furnace for reducing oxides
IT1201815B (en) TRANSFORMATION PLANT OF A METAL CHARGE IN SEMIPRODUCTS AND RELATED MELTING AND CASTING PROCESS
JP2914674B2 (en) Heat dissolution method
JPS5835938B2 (en) Jiyungarasu no Koushiyu Hachiyousei
JP2018119693A (en) Hollow electrode for electric furnace and electric furnace
JPH0293287A (en) Melting device and melting method
JPH04263003A (en) Method for operating blast furnace
JPH02110287A (en) Smelting device
JP2503004B2 (en) Melting device
RU2157795C1 (en) Method and apparatus for preparing melt silicate
JPS5953217B2 (en) Manufacturing method of molten iron oxide
JPH0293288A (en) Melting device
JPS59134482A (en) Metallurgical method and low furnace
RU2190034C2 (en) Method of smelting alloys from oxide-containing materials
RU79653U1 (en) RESISTANCE MELT FURNACE
RU2015104C1 (en) Calcium carbide production process
JP2000131495A (en) Method for high-frequency melting treatment of radioactive waste
JPH01255608A (en) Method for flowing down molten metal and nozzle for atomizing device
SU1086025A1 (en) Method and apparatus for casting products from high-melting metals and their compounds
JPS5836275B2 (en) Method for continuous quantitative supply of molten slag