JP2000131495A - Method for high-frequency melting treatment of radioactive waste - Google Patents

Method for high-frequency melting treatment of radioactive waste

Info

Publication number
JP2000131495A
JP2000131495A JP10301900A JP30190098A JP2000131495A JP 2000131495 A JP2000131495 A JP 2000131495A JP 10301900 A JP10301900 A JP 10301900A JP 30190098 A JP30190098 A JP 30190098A JP 2000131495 A JP2000131495 A JP 2000131495A
Authority
JP
Japan
Prior art keywords
waste
graphite
frequency melting
radioactive
melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10301900A
Other languages
Japanese (ja)
Inventor
Katsutoshi Heta
勝敏 部田
Yoichi Karita
陽一 刈田
Takeshi Hasebe
猛 長谷部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP10301900A priority Critical patent/JP2000131495A/en
Publication of JP2000131495A publication Critical patent/JP2000131495A/en
Pending legal-status Critical Current

Links

Landscapes

  • General Induction Heating (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for high-frequency melting treatment of radioactive wastes that can duct a melting treatment at a lower temperature than conventional methods and prolonge the life of a melting furnace. SOLUTION: In a method for the high-frequency melting treatment of radioactive wastes where metallic wastes and non-metallic wastes under the influence of radioactivity are heated and melted by high frequency, the wastes are melted in a conductive ceramic melter 3 filled or doped with graphite 10 and a conductive ceramic canister.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、従来より低温度で
溶融処理することができて溶融炉の寿命延長を図ること
ができる放射性廃棄物の高周波溶融処理方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-frequency melting method for radioactive waste, which can be melted at a lower temperature than conventional ones and can extend the life of a melting furnace.

【0002】[0002]

【従来の技術】従来から、放射性を帯びた金属性廃棄物
や非金属性廃棄物の溶融固化方法として高周波加熱を利
用した高周波誘導溶融法が知られている。これは、前記
廃棄物を導電性セラミックキャニスタ内で溶融固化する
方法であり、導電性の金属も非導電性の非金属も溶融で
きるという利点を有するものの、両方の高温融体に対し
耐久性のある導電性セラミックの入手が困難でコストが
高くなるという問題点があった。また、キャニスタを使
い捨てあるいは数回使った程度で捨てるためコスト高に
なるうえにキャニスタ自身が廃棄物になってしまうとい
う問題点があり、更には耐久性の点から一度に大量の溶
融を行うことができないという問題点もあった。そのた
め、使い捨てでなく大量の溶融ができる、いわゆるセラ
ミックメルタ法のルツボ(セラミックメルタ)にこの導
電性セラミックを適用することに困難性があった。
2. Description of the Related Art Conventionally, a high-frequency induction melting method using high-frequency heating has been known as a method for melting and solidifying radioactive metallic waste and nonmetallic waste. This is a method in which the waste is melted and solidified in a conductive ceramic canister, and has an advantage that both a conductive metal and a nonconductive nonmetal can be melted. There is a problem that it is difficult to obtain a certain conductive ceramic and the cost is high. Also, since the canister is disposable or discarded after being used several times, the cost becomes high and the canister itself becomes waste. There was also a problem that it could not be done. For this reason, there is a difficulty in applying this conductive ceramic to a crucible (ceramic melter) of a so-called ceramic melter method that can dissolve a large amount without being disposable.

【0003】一方、高周波誘導溶融法において電気絶縁
性の耐火物をライニングしたり非導電性のルツボを用い
て高周波誘導により溶融することも行われているが、金
属類の廃棄物は容易に溶かすことができるものの非金属
類の廃棄物は少量添加して溶融できるのみであり、廃棄
物組成の変動に対応しにくいという欠点があった。ま
た、この欠点を補うためにプラズマバーナ等で補助加熱
することも提案されているが、溶融炉が構造的に複雑に
なるうえにコスト的にも高くなるという問題点が生じ
た。
On the other hand, in the high-frequency induction melting method, lining of an electrically insulating refractory or melting by high-frequency induction using a non-conductive crucible is performed, but metal waste is easily melted. Although it can be performed, nonmetallic wastes can be added and melted only in a small amount, and there is a drawback that it is difficult to cope with fluctuations in the waste composition. In order to make up for this drawback, auxiliary heating with a plasma burner or the like has been proposed. However, there has been a problem that the melting furnace becomes structurally complicated and the cost becomes high.

【0004】[0004]

【発明が解決しようとする課題】本発明は上記のような
従来の問題点を解決して、放射性を帯びた金属性廃棄物
や非金属性廃棄物を従来よりも低温で溶融することがで
きて、導電性セラミックの入手を容易に行うことができ
るとともにエネルギーコストを下げることができ、また
溶融炉の寿命を大幅に延長することができ、更には大量
の廃棄物を効率よく溶融することができる放射性廃棄物
の高周波溶融処理方法を提供することを目的として完成
されたものである。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned conventional problems and can melt radioactive metallic and non-metallic wastes at a lower temperature than before. Therefore, it is possible to easily obtain conductive ceramics, reduce energy costs, greatly extend the life of the melting furnace, and efficiently melt a large amount of waste. It has been completed for the purpose of providing a high-frequency melting treatment method for radioactive waste.

【0005】[0005]

【課題を解決するための手段】上記の課題を解決するた
めになされた本発明は、黒鉛が充填されている導電性の
セラミックメルタ内で放射性を帯びた金属性廃棄物およ
び非金属性廃棄物を前記黒鉛とともに高周波溶融し、次
いで溶湯を型内に出湯後固化して廃棄物処理するように
したことを特徴とする放射性廃棄物の高周波溶融処理方
法を請求項1に係る発明とし、黒鉛が添加されている導
電性のセラミックキャニスタ内で放射性を帯びた金属性
廃棄物および非金属性廃棄物を前記黒鉛とともに高周波
溶融し、次いで溶湯をキャニスタごと冷却固化して廃棄
物処理するようにしたことを特徴とする放射性廃棄物の
高周波溶融処理方法を請求項2に係る発明とするもので
ある。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a radioactive metallic waste and a nonmetallic waste in a conductive ceramic melter filled with graphite. And high-frequency melting of the radioactive waste, wherein the molten metal is discharged into a mold and then solidified and then treated for waste treatment. The radioactive metallic waste and the non-metallic waste are melted together with the graphite in a conductive ceramic canister to be added, and then the molten metal is cooled and solidified together with the canister for waste treatment. A high-frequency melting treatment method for radioactive waste characterized by the following features.

【0006】[0006]

【発明の実施の形態】以下に、図面を参照しつつ本発明
の好ましい実施の形態を示す。図1はセラミックメルタ
式の炉を用いて高周波溶融を行う場合を示すものであっ
て、図中1は高周波溶融炉のカバー、2は誘導コイル、
3はセラミックメルタ、4は出湯口、5は鉄やセラミッ
ク等からなる坩堝や成形型等の型であり、セラミックメ
ルタ3内に入れた放射性廃棄物を高周波により加熱溶融
し、その後、溶湯を型5内へ取り出して冷却固化し、得
られた固化体をドラム缶などに詰めて廃棄処理する点は
従来のセラミックメルタ式の高周波溶融による処理方法
と基本的に同じである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a case where high-frequency melting is performed using a ceramic melter type furnace, in which 1 is a cover of the high-frequency melting furnace, 2 is an induction coil,
Reference numeral 3 denotes a ceramic melter, 4 denotes a tap hole, 5 denotes a mold such as a crucible or a molding die made of iron, ceramic, or the like. The radioactive waste put in the ceramic melter 3 is heated and melted by high frequency, and thereafter, the molten metal is formed. It is basically the same as the conventional ceramic melter-type high-frequency melting method in that it is taken out, cooled and solidified, and the obtained solidified product is packed in a drum or the like and discarded.

【0007】そして本発明では、前記廃棄物をブロック
状の黒鉛10を充填した導電性のセラミックメルタ3内
で溶融するようにした点に特徴的構成を有する。即ち、
高周波による発熱と熱伝導性に優れた黒鉛10による加
熱とによって、表面からの放射冷却を防止しつつ比較的
低温度でセラミックメルタ3内全体を均一かつ効率的に
溶融するのである。更に詳述すれば、溶融処理時におい
てはセラミックメルタ3の上部にスラグ相が形成され、
このスラグは熱伝導率が低いために表面からの放射冷却
により温度が低下し粘性が上昇して出湯時に流れにくく
なる欠点があり、これを回避するには高温にする必要が
あって、セラミックメルタ3の寿命が短くなるとともに
エネルギーコストも高くなるという問題点があった。こ
れに対し、本発明では熱伝導性に優れたブロック状の黒
鉛10を入れておくことにより、比較的低温度でスラグ
の粘性を落とすことなく良好に加熱溶融を行うことがで
き、この結果、セラミックメルタ3の寿命を長くするこ
とができることとなるのである。またこの黒鉛ブロック
は、高周波誘導により発熱するので更に効率よく溶融可
能となる。なお導電性のセラミックメルタ3は、該セラ
ミックメルタを形成するセラミック組成中にカーボンブ
ラックやグラファイト等の導電性物質の微粉末を混入・
焼成して得ることができる。
The present invention has a characteristic configuration in that the waste is melted in a conductive ceramic melter 3 filled with block-shaped graphite 10. That is,
By the heat generated by the high frequency and the heating by the graphite 10 having excellent thermal conductivity, the entire inside of the ceramic melter 3 is uniformly and efficiently melted at a relatively low temperature while preventing radiation cooling from the surface. More specifically, a slag phase is formed on the upper part of the ceramic melter 3 during the melting process,
Since this slag has a low thermal conductivity, the temperature decreases due to radiant cooling from the surface and the viscosity increases, making it difficult to flow at the time of tapping. 3 has a problem that the life is shortened and the energy cost is increased. On the other hand, in the present invention, by inserting the block-shaped graphite 10 having excellent thermal conductivity, the slag can be satisfactorily heated and melted at a relatively low temperature without lowering the viscosity of the slag. Thus, the life of the ceramic melter 3 can be extended. Further, the graphite block generates heat by high-frequency induction, so that it can be more efficiently melted. The conductive ceramic melter 3 is obtained by mixing fine powder of a conductive substance such as carbon black or graphite into a ceramic composition forming the ceramic melter.
It can be obtained by firing.

【0008】また前記ブロック状の黒鉛10は、炭素鋼
やステンレス鋼からなる金属性廃棄物と反応して鉄中の
Cが上昇し、それに伴って融点が下がることとなる。即
ち、鋳鉄のようになって比較的低温度で鉄を溶かすこと
が可能となるのである。因みに、従来は約1500℃で
加熱していた(この時、セラミックメルタ内の鉄の温度
は1550℃以上で、スラグ層の温度は1400〜14
50℃程度)のに対し、本発明では1450℃以下、通
常は1300〜1400℃で溶融可能(この時、セラミ
ックメルタ内の鉄の温度は1350〜1450℃である
が、鋳鉄化により融点が1250℃程度のため流動性が
良い。また、スラグ層の温度も低下が少ないため流動性
のよいものとなっている)となり、流動性がよいため良
好な出湯が達成されることとなり、大幅なエネルギーの
コストダウンとセラミックメルタ3の寿命延長が確保で
きた。
In addition, the block-shaped graphite 10 reacts with a metallic waste made of carbon steel or stainless steel to increase C in iron, thereby lowering the melting point. That is, it becomes possible to melt iron at a relatively low temperature like cast iron. Conventionally, heating was performed at about 1500 ° C. (at this time, the temperature of the iron in the ceramic melter was 1550 ° C. or more, and the temperature of the slag layer was 1400 to 14 ° C.)
In contrast, the present invention can melt at 1450 ° C. or lower, usually 1300 to 1400 ° C. (at this time, the iron temperature in the ceramic melter is 1350 to 1450 ° C., but the melting point is 1250 ° ° C and good fluidity because the temperature of the slag layer is small and the fluidity is good. And the service life of the ceramic melter 3 can be extended.

【0009】なお黒鉛10は、酸化されて徐々に消耗さ
れるため、セラミックメルタ3内に黒鉛の消耗を防止す
るクリプトル等の加炭剤を添加することが好ましく、ま
た粉粒状の炭化珪素や使用済みの炭化珪素質セラミック
フィルタを用いてもよい。また、セラミックメルタ3の
溶湯面には溶融温度保持用の黒鉛粉末や藁等の粉末状保
温材を投入しておくことも好ましい。更には、スラグの
融点や粘性を調整する目的で若干の流動化剤などを必要
に応じて添加してもよいことは勿論である。
Since the graphite 10 is gradually oxidized and gradually consumed, it is preferable to add a carburizing agent such as kryptor for preventing the graphite from being consumed in the ceramic melter 3. A used silicon carbide ceramic filter may be used. It is also preferable that a powdery heat insulating material such as graphite powder or straw for maintaining the melting temperature is put on the molten metal surface of the ceramic melter 3. Further, it is needless to say that a slight fluidizing agent may be added as needed for the purpose of adjusting the melting point and viscosity of the slag.

【0010】図2は、セラミックキャニスタを用いるイ
ンキャン溶融法に適用した場合を示すものであって、図
中6は導電性のセラミックキャニスタであり、該セラミ
ックキャニスタ6内には黒鉛が添加されている。そし
て、従来は約1500℃で加熱していた(この時、キャ
ニスタ内の鉄の温度は1550℃以上で、スラグ層の温
度は1400〜1450℃程度)のに対し、本発明では
1300〜1400℃で溶融可能(この時、キャニスタ
内の鉄の温度は1350〜1450℃であるが、鋳鉄化
により融点が1250℃程度のため流動性が良い。ま
た、スラグ層の温度も低下が少ないため流動性のよいも
のとなっている)となり、粘性の高いときのような空隙
が極めて少なくなってキャニスタを構成するセラミック
の選択に自由度が増すとともに、大幅なエネルギーのコ
ストダウンと低コストキャニスタ(例えば、薄肉のキャ
ニスタ、低温焼成キャニスタや低級原料使用キャニスタ
等)の使用が可能となった。また導電性のキャニスタ6
は、該キャニスタを形成するセラミック組成中にカーボ
ンブラックやグラファイト等の導電性物質の微粉末を混
入・焼成して得ることができる。なお高周波誘導溶融法
の場合、前記黒鉛としてはキャニスタ内で嵩張ることを
防止するため粉末状のものや粒状であるクリプトルや炭
化珪素(使用済み炭化珪素質フィルタを含む)を用いる
ことが好ましく、また粉末状保温材や流動化剤などを添
加してもよいことも勿論である。なお、黒鉛は溶融終了
直前には溶融保持時間を設けて溶湯組成を均一化すると
ともに酸化消耗させておくことも有効である。
FIG. 2 shows a case where the present invention is applied to an in-can melting method using a ceramic canister. In the figure, reference numeral 6 denotes a conductive ceramic canister, and graphite is added to the ceramic canister 6. . Conventionally, heating was performed at about 1500 ° C. (at this time, the temperature of the iron in the canister is 1550 ° C. or more, and the temperature of the slag layer is about 1400 to 1450 ° C.). (At this time, the temperature of the iron in the canister is 1350 to 1450 ° C., but the melting point is about 1250 ° C. due to casting, so that the fluidity is good. ), The voids when the viscosity is high are extremely small, and the degree of freedom in selecting the ceramic constituting the canister increases, and the energy cost is significantly reduced and the low cost canister (for example, Thin canisters, low-temperature firing canisters, canisters using low-grade raw materials, etc.) can be used. The conductive canister 6
Can be obtained by mixing and firing a fine powder of a conductive substance such as carbon black or graphite in a ceramic composition forming the canister. In the case of the high-frequency induction melting method, as the graphite, it is preferable to use powdery or granular cryptol or silicon carbide (including used silicon carbide-based filters) in order to prevent bulkiness in the canister, and Needless to say, a powdered heat insulating material or a fluidizing agent may be added. Immediately before the completion of melting, it is also effective to provide a melt holding time to make the molten metal composition uniform and to consume it by oxidation.

【0011】このように本発明によれば、放射性を帯び
た金属性廃棄物や非金属性廃棄物を溶融固化体として処
理するため核種閉じ込め性、および減容効果に優れてお
り、安全で信頼のおける廃棄物処理ニーズに応えるもの
である。しかも、従来に比べて低温かつ大量溶融が可能
であるため、溶融エネルギーの削減とセラミックメルタ
の寿命延長や低コストセラミックキャニスタの採用が図
れるものである。
As described above, according to the present invention, since radioactive metallic waste and nonmetallic waste are treated as a molten and solidified product, they have excellent nuclide confinement and volume reduction effects, and are safe and reliable. To meet the needs of waste disposal. In addition, since melting can be performed at a lower temperature and in a larger amount than in the past, melting energy can be reduced, the life of the ceramic melter can be extended, and a low-cost ceramic canister can be employed.

【0012】[0012]

【発明の効果】以上の説明からも明らかなように、本発
明は放射性を帯びた金属性廃棄物や非金属性廃棄物を従
来よりも低温で溶融することができて、導電性セラミッ
クの入手を容易に行うことができるとともにエネルギー
コストを下げることができ、また溶融炉の寿命を大幅に
延長することができ、更には大量の廃棄物を効率よく溶
融することができるものである。よって本発明は従来の
問題点を一掃した放射性廃棄物の高周波溶融処理方法と
して、産業の発展に寄与するところは極めて大である。
As is apparent from the above description, the present invention can melt a radioactive metallic waste or a nonmetallic waste at a lower temperature than before and obtain a conductive ceramic. Can be performed easily, the energy cost can be reduced, the life of the melting furnace can be greatly extended, and a large amount of waste can be efficiently melted. Therefore, the present invention greatly contributes to industrial development as a high-frequency melting treatment method for radioactive waste that has eliminated the conventional problems.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の第1の実施の形態を示す断面図であ
る。
FIG. 1 is a cross-sectional view showing a first embodiment of the present invention.

【図2】 本発明の第2の実施の形態を示す断面図であ
る。
FIG. 2 is a sectional view showing a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1:高周波溶融炉のカバー、3:セラミックメルタ、
5:型、6:セラミックキャニスタ、10:黒鉛。
1: Cover of high-frequency melting furnace, 3: Ceramic melter,
5: mold, 6: ceramic canister, 10: graphite.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 長谷部 猛 愛知県名古屋市瑞穂区須田町2番56号 日 本碍子株式会社内 Fターム(参考) 3K059 AA08 AB04 AB07 AB15 AB27 AB28 AD00 AD03 AD35 CD44 CD72  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Takeshi Hasebe 2-56, Suda-cho, Mizuho-ku, Nagoya-shi, Aichi Japan F Co., Ltd. F-term (reference) 3K059 AA08 AB04 AB07 AB15 AB27 AB28 AD00 AD03 AD35 CD44 CD72

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 黒鉛が充填されている導電性のセラミッ
クメルタ内で放射性を帯びた金属性廃棄物および非金属
性廃棄物を前記黒鉛とともに高周波溶融し、次いで溶湯
を型内に出湯後固化して廃棄物処理するようにしたこと
を特徴とする放射性廃棄物の高周波溶融処理方法。
In a conductive ceramic melter filled with graphite, radioactive metallic waste and nonmetallic waste are melted by high frequency together with the graphite, and then the molten metal is poured into a mold and solidified. A high-frequency melting treatment method for radioactive waste, characterized in that the radioactive waste is treated by waste.
【請求項2】 黒鉛が添加されている導電性のセラミッ
クキャニスタ内で放射性を帯びた金属性廃棄物および非
金属性廃棄物を前記黒鉛とともに高周波溶融し、次いで
溶湯をキャニスタごと冷却固化して廃棄物処理するよう
にしたことを特徴とする放射性廃棄物の高周波溶融処理
方法。
2. A radioactive metallic waste and a nonmetallic waste are melted together with the graphite in a conductive ceramic canister to which graphite is added by radio frequency melting, and then the molten metal is cooled and solidified together with the canister and disposed. A radio frequency melting treatment method for radioactive waste, characterized in that the material is treated.
【請求項3】 高周波溶融の際に黒鉛の消耗を防止する
加炭剤を添加しておく請求項1に記載の放射性廃棄物の
高周波溶融処理方法。
3. The high-frequency melting method for radioactive waste according to claim 1, wherein a carburizing agent for preventing the consumption of graphite during the high-frequency melting is added.
【請求項4】 高周波溶融の際に溶湯面に溶融温度保持
用の粉末状保温材を投入する請求項1または2または3
に記載の放射性廃棄物の高周波溶融処理方法。
4. A powder heat insulating material for maintaining a melting temperature at a molten metal surface during high frequency melting.
3. The high-frequency melting treatment method for radioactive waste according to claim 1.
JP10301900A 1998-10-23 1998-10-23 Method for high-frequency melting treatment of radioactive waste Pending JP2000131495A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10301900A JP2000131495A (en) 1998-10-23 1998-10-23 Method for high-frequency melting treatment of radioactive waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10301900A JP2000131495A (en) 1998-10-23 1998-10-23 Method for high-frequency melting treatment of radioactive waste

Publications (1)

Publication Number Publication Date
JP2000131495A true JP2000131495A (en) 2000-05-12

Family

ID=17902484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10301900A Pending JP2000131495A (en) 1998-10-23 1998-10-23 Method for high-frequency melting treatment of radioactive waste

Country Status (1)

Country Link
JP (1) JP2000131495A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101200780B1 (en) * 2012-05-03 2012-11-13 한전원자력연료 주식회사 Melting decontamination method of radioactivity metal
WO2019009261A1 (en) * 2017-07-03 2019-01-10 電気興業株式会社 Induction heating device, radioactive waste melting process device equipped with said induction heating device, and radioactive waste melting and solidification process device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101200780B1 (en) * 2012-05-03 2012-11-13 한전원자력연료 주식회사 Melting decontamination method of radioactivity metal
US8829261B2 (en) 2012-05-03 2014-09-09 Kepco Nuclear Fuel Co., Ltd. Method of treating radioactive metal waste using melt decontamination
WO2019009261A1 (en) * 2017-07-03 2019-01-10 電気興業株式会社 Induction heating device, radioactive waste melting process device equipped with said induction heating device, and radioactive waste melting and solidification process device
JP2019016439A (en) * 2017-07-03 2019-01-31 電気興業株式会社 Induction heating apparatus, melting apparatus for treating radioactive waste having induction heating apparatus, and melting apparatus for solidification treatment of radioactive waste
KR20200026197A (en) * 2017-07-03 2020-03-10 덴키 코교 가부시키가이샤 Induction heating apparatus and melt processing apparatus for radioactive waste provided with the induction heating apparatus, melt solidification processing apparatus for radioactive waste
US11570856B2 (en) 2017-07-03 2023-01-31 Denki Kogyo Company, Limited Induction heating device, radioactive waste melting process device equipped with said induction heating device, and radioactive waste melting and solidification process device
KR102544903B1 (en) * 2017-07-03 2023-06-19 덴키 코교 가부시키가이샤 Induction heating device, radioactive waste melt processing device equipped with the induction heating device, and radioactive waste melting and solidification processing device

Similar Documents

Publication Publication Date Title
Hara et al. Continuous pig iron making by microwave heating with 12.5 kW at 2.45 GHz
EA006623B1 (en) Method and apparatus for melting metals
Lingappa et al. Melting of bulk non-ferrous metallic materials by microwave hybrid heating (MHH) and conventional heating: a comparative study on energy consumption
JP2000131495A (en) Method for high-frequency melting treatment of radioactive waste
JPS5835938B2 (en) Jiyungarasu no Koushiyu Hachiyousei
CN113429115B (en) Crucible, induction coil for cavity of crucible and material processing equipment
JPS5847300A (en) Method and apparatus for solidifying radioactive waste by ceramics
RU2157795C1 (en) Method and apparatus for preparing melt silicate
TW201800338A (en) Process for melting and purification of metals, in particular scrap metals
KR100992837B1 (en) Processing method of melt that use porousplug
JPS5953217B2 (en) Manufacturing method of molten iron oxide
JPH02110287A (en) Smelting device
JP3602039B2 (en) High frequency induction furnace for melting miscellaneous solid waste and method for melting miscellaneous solid waste
US2870006A (en) Process for melting metals
JPH01255608A (en) Method for flowing down molten metal and nozzle for atomizing device
JP4240959B2 (en) How to recycle phosphate sludge
JPH10332890A (en) Device for batch dissolution and lumping and method for dissolution and lumping
JP2001264491A (en) Treatment device for melting/solidifying and treatment method
JP2503004B2 (en) Melting device
JPS5836275B2 (en) Method for continuous quantitative supply of molten slag
JP2005055017A (en) Molten metal tapping device
JP2004091246A (en) Method for melting iron-phosphate glass
CA1236856A (en) Refractory cement
JPS595723Y2 (en) Bath slag pouring gutter
RU2091875C1 (en) Method for producing starting melt in cold-crucible induction furnaces during vitrification of radioactive wastes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070323

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070710