JPH01255608A - Method for flowing down molten metal and nozzle for atomizing device - Google Patents
Method for flowing down molten metal and nozzle for atomizing deviceInfo
- Publication number
- JPH01255608A JPH01255608A JP8056688A JP8056688A JPH01255608A JP H01255608 A JPH01255608 A JP H01255608A JP 8056688 A JP8056688 A JP 8056688A JP 8056688 A JP8056688 A JP 8056688A JP H01255608 A JPH01255608 A JP H01255608A
- Authority
- JP
- Japan
- Prior art keywords
- nozzle
- molten metal
- flowing down
- vessel
- atomizing device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002184 metal Substances 0.000 title claims abstract description 53
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 53
- 238000000034 method Methods 0.000 title claims description 14
- 239000004020 conductor Substances 0.000 claims abstract description 9
- 239000010419 fine particle Substances 0.000 claims description 2
- 239000007788 liquid Substances 0.000 claims description 2
- 238000001816 cooling Methods 0.000 abstract description 5
- 238000010438 heat treatment Methods 0.000 description 12
- 238000000889 atomisation Methods 0.000 description 8
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 6
- 230000006698 induction Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 4
- 239000000919 ceramic Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000000956 alloy Substances 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000001294 propane Substances 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000009749 continuous casting Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000009689 gas atomisation Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000000395 magnesium oxide Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- 238000009692 water atomization Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 239000003779 heat-resistant material Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000011819 refractory material Substances 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910052845 zircon Inorganic materials 0.000 description 1
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、ガスアトマイズ法、水アトマイズ法などにお
いて用いられる溶融金属供給ノズルおよびそれらの予熱
に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to molten metal supply nozzles used in gas atomization methods, water atomization methods, etc., and their preheating.
ガスアトマイズ、水アトマイズ等に用いられる溶融金属
供給ノズルは、従来マグネシア、ジルコン、シリカ等の
酸化物系耐火物で構成されていた。Molten metal supply nozzles used for gas atomization, water atomization, etc. have conventionally been made of oxide-based refractories such as magnesia, zircon, and silica.
上記アトマイズ法によって得られる金属粉末の粒度は、
溶融金属供給ノズルの径が小さいほど、小さくなること
が知られている。粉末粒度を小さくするために、溶融金
属供給ノズルの径を小さくすると、ノズル内での溶融金
属の冷却凝固によるノズル閉塞の頻度が著しく高まり、
アトマイズを安定に続けることができなくなる。したが
って、−般には5I径以上のノズルが利用されている。The particle size of the metal powder obtained by the above atomization method is
It is known that the smaller the diameter of the molten metal supply nozzle, the smaller it becomes. If the diameter of the molten metal supply nozzle is made smaller in order to reduce the powder particle size, the frequency of nozzle blockage due to cooling solidification of the molten metal within the nozzle increases significantly.
It becomes impossible to continue atomization stably. Therefore, a nozzle with a diameter of 5I or more is generally used.
ノズルを通して流下する溶融金属のノズル内での冷却凝
固を防止する方法として、特開昭59−218246号
は、連続鋳造プロセスにおける流下量低下時の対策とし
て、ノズルを導電性耐火物で構成するとともに、該ノズ
ルの上部溶融金属内へ不活性ガスを吹き込むことにより
、ノズル内溶融金属への通電による加熱効果を高めるこ
とを提案している。As a method for preventing the molten metal flowing down through the nozzle from cooling and solidifying within the nozzle, JP-A-59-218246 discloses a method in which the nozzle is constructed of a conductive refractory as a countermeasure against a decrease in the flow rate in the continuous casting process. proposed to increase the heating effect of energizing the molten metal in the nozzle by blowing an inert gas into the molten metal in the upper part of the nozzle.
前記のように従来製品である金属粉末の微細化を計るた
めに、溶融金属供給ノズルの径を小さくする場合、ノズ
ル内で溶融金属が冷却され、凝固し、ノズル閉塞を生ず
る頻度が高まり、安定した金属粉末の製造が困難になる
という問題点があった。As mentioned above, when reducing the diameter of the molten metal supply nozzle in order to make the metal powder used in conventional products finer, the molten metal cools and solidifies in the nozzle, which increases the frequency of nozzle clogging and increases stability. There was a problem in that it was difficult to manufacture the metal powder.
本発明の目的は、溶融金属の凝固によるノズル閉塞の発
生頻度を著しく低減させるノズルを提供することである
。すなわち本発明は、溶融金属注入に先行して行なわれ
るタンデイツシュの予熱において、特にノズル部の予熱
を効果的に行なって、該部の冷却による閉塞を防止する
方法、および予熱または作業中の加熱を容易化するアト
マイズ装置用ノズルを提供することを目的とする。An object of the present invention is to provide a nozzle that significantly reduces the frequency of occurrence of nozzle blockage due to solidification of molten metal. That is, the present invention provides a method for effectively preheating a nozzle part in particular to prevent clogging due to cooling of the nozzle part in preheating a tundish dish prior to injection of molten metal, and a method for preheating or heating during operation. It is an object of the present invention to provide a nozzle for an atomization device that facilitates the use of atomization devices.
〔課題を解決するための手段〕
本発明は、溶融金属をそれを収容する容器の底部に設け
たノズルを介して流下する方法において、ノズル本体お
よびその近傍の少なくともいずれかを導電性材料で構成
し、前記容器へ前記溶融金属を収容する以前に前記ノズ
ルをジュール勢で予熱することを特徴とする溶融金属の
流下方法、および流下する溶融金属をガスまたは液体の
ジェットで微細粒化するアトマイズ装置用ノズルにおい
て、ノズル本体およびその近傍の少なくともいずれかを
導電性材料で構成したことを特徴とするアトマイズ装置
用ノズルである。[Means for Solving the Problems] The present invention provides a method in which molten metal flows down through a nozzle provided at the bottom of a container containing the molten metal, in which at least one of the nozzle body and its vicinity is made of a conductive material. and a method for flowing down molten metal, characterized in that the nozzle is preheated by Joule force before storing the molten metal in the container, and an atomization device for atomizing the flowing molten metal into fine particles with a jet of gas or liquid. This is a nozzle for an atomizing device, characterized in that at least one of the nozzle body and its vicinity is made of a conductive material.
溶融金属を収容する容器であるタンデイツシュは、使用
前バーナー等により内側から十分予熱しておく必要があ
る。しかし、本発明者は特に小径のノズルの場合、ノズ
ル部が形状的および材質的な点から断熱性が低く、十分
な予熱が困難であり、予熱直後、使用中とも温度が低下
し易いことを見出した。そこで本発明は、誘導加熱また
はトランス等の給電装置からの電流によるジュール熱に
よす、十分な予熱を行ない、冷却による閉塞を防止せん
とするものである。The tundish, which is a container for storing molten metal, needs to be sufficiently preheated from the inside using a burner or the like before use. However, the inventor has found that, especially in the case of small-diameter nozzles, the nozzle part has poor insulation properties due to its shape and material, making it difficult to preheat it sufficiently, and the temperature tends to drop both immediately after preheating and during use. I found it. Therefore, the present invention aims to perform sufficient preheating using induction heating or Joule heat generated by a current from a power supply device such as a transformer to prevent blockage due to cooling.
また、本発明は特に小径ノズルが要求されるアトマイズ
装置用として、予熱および使用中の加熱が可能なノズル
を提供するものである。Further, the present invention provides a nozzle that can be preheated and heated during use, especially for use in an atomizing device that requires a small diameter nozzle.
本発明で使用する導電性材料としては、黒鉛、シリコン
カーバイド、導電性サイアロン等のような耐熱性材料を
使用する他、これらの導電性またはその温度依存性を補
償するため、高融点金属等との複合化を行なってもよい
。The conductive materials used in the present invention include heat-resistant materials such as graphite, silicon carbide, and conductive sialon, as well as high-melting point metals and the like to compensate for their conductivity or their temperature dependence. may be combined.
本発明は、鉄系合金またはニッケル系合金のように融点
の高い溶融金属をノズルを介して流出させる場合に、特
に効果がある。従来のノズルは。The present invention is particularly effective when a molten metal with a high melting point, such as an iron-based alloy or a nickel-based alloy, is flowed out through a nozzle. Conventional nozzle.
タンデイツシュに装着したまま一般に灯油、プロパン等
の燃焼熱を利用してタンデイツシュの内側から加熱され
るが、ノズル径が小さく、その断面積が小さいのでこの
断面を通して流れる高温ガス量は少なくノズルの温度を
十分に高く保持することができず、さらに溶融金属を供
給する前には。While attached to the tundish, the tundish is generally heated from the inside using combustion heat from kerosene, propane, etc. However, since the nozzle diameter is small and its cross section is small, the amount of high-temperature gas flowing through this cross section is small and the temperature of the nozzle is kept low. It cannot be held high enough and before feeding more molten metal.
加熱が中止される。したがって、加熱中止から溶融金属
の供給を受けるまでの時間内にノズルの温度は低下して
しまう。他方、本発明では電気的な加熱が可能であるた
め、必要に応じて溶融金属の有無に無関係にノズルの加
熱ができ、従来問題となっていたノズルの閉塞を防止で
きる。Heating is stopped. Therefore, the temperature of the nozzle decreases within the time from when heating is stopped until when molten metal is supplied. On the other hand, since electrical heating is possible in the present invention, the nozzle can be heated as necessary regardless of the presence or absence of molten metal, and the nozzle clogging, which has been a problem in the past, can be prevented.
本発明のうち、特に誘導加熱を使用する場合には、次の
利点がある。Of the present invention, particularly when induction heating is used, there are the following advantages.
(イ)トランス等からの大電流を供給する場合に比し、
端子部およびブスイ(が不要であり、取扱いが容易であ
る。(b) Compared to the case where a large current is supplied from a transformer, etc.
No terminals or bushies are required, making it easy to handle.
(ロ)絶縁体製ノズル外に設けたリアクタを介してノズ
ル内の溶融金属を誘導加熱する場合、リアクタ内の溶融
金属の占める面積率が小さく、両者間に十分な結合を得
ることができず、このため例えば1周波数を上げると、
容器を構成する鉄皮と結合し、十分な加熱効果を得るこ
とができない。(b) When inductively heating the molten metal inside the nozzle through a reactor installed outside the insulating nozzle, the area ratio occupied by the molten metal inside the reactor is small, making it impossible to obtain a sufficient bond between the two. , Therefore, for example, if you increase the frequency by one,
It combines with the iron skin that makes up the container, making it impossible to obtain a sufficient heating effect.
本発明のノズルは、ノズル本体またはその外周部が導電
体で構成され、リアフタ内に占める面積率は十分大きく
、また、適当な材質を選定し、またはさらに超耐熱合金
製リング等の導電性補助部材を併用することにより、見
掛は上の導電性を向上することにより、リアフタとの結
合を十分大きくすることができる。In the nozzle of the present invention, the nozzle body or its outer periphery is made of a conductive material, the area ratio occupied in the rear lid is sufficiently large, and an appropriate material is selected, or a conductive aid such as a ring made of a super heat-resistant alloy is used. By using the members together, the apparent conductivity is improved, and the connection with the rear lid can be made sufficiently large.
サイアロンは、特に熱膨張係数が小さく、このため、耐
熱衝撃性に優れた耐熱セラミックスである。導電性サイ
アロンは、これに、それ自身が導電性を有するTiN等
の導電性付与剤を添加したもので、サイアロンの優れた
熱的性質を保持しており、本発明に使用する材質として
適当である。Sialon is a heat-resistant ceramic that has a particularly small coefficient of thermal expansion and therefore has excellent thermal shock resistance. Conductive sialon is made by adding a conductivity imparting agent such as TiN, which itself has conductivity, and retains the excellent thermal properties of sialon, making it suitable as a material for use in the present invention. be.
4rrnの径を持つノズルを用いて溶融金属の供給を実
施した結果を説明する。The results of supplying molten metal using a nozzle with a diameter of 4 rrn will be explained.
100kgの溶融金属を受容できるルツボの底中央に、
第1図に示すように、A(従来例)およびB(実施例)
のノズル1′および1をそれぞれ設置した。ルツボを内
部よりプロパンバーナを用いて1時間加熱し、内面を約
1ooo℃に加熱したのち、高周波誘導炉で溶解され、
過熱度を100℃に調整された溶融金属をルツボに移し
、それぞれのノズルを介して流出した溶融金属の重量を
測定した。At the center of the bottom of the crucible, which can hold 100 kg of molten metal,
As shown in FIG. 1, A (conventional example) and B (embodiment)
Nozzles 1' and 1 were installed, respectively. The crucible was heated from the inside using a propane burner for 1 hour to heat the inner surface to about 100°C, and then melted in a high frequency induction furnace.
The molten metal whose superheating degree was adjusted to 100° C. was transferred to a crucible, and the weight of the molten metal flowing out through each nozzle was measured.
A(従来ノズル)はマグネシア材質である。B(実施例
1)に用いた導電性セラミックスはサイアロン材質であ
り、前記プロパンバーナー加熱を行なうとともに、高周
波電流により、溶融金属をルツボに受ける5分前より誘
導加熱を併用実施した。A (conventional nozzle) is made of magnesia material. The conductive ceramic used in Example B (Example 1) was a sialon material, and in addition to heating with the propane burner, induction heating was also performed using a high-frequency current for 5 minutes before the molten metal was received in the crucible.
各溶融金属の流出量は、A、Bそれぞれ18.76−で
あった。この結果から明らかなように、電気的加熱が可
能な導電性セラミックノズルはノズル閉塞を防止するた
めに極めて有効な方法であることがわかる。本発明の実
施例において、ルツボ内に約20kgの金属が残ったが
、この原因は、ルツボ内で7分以上保持されたために、
溶融金属の熱がルツボおよび大気へ逃げ、金属の温度が
液相線温度以下に下がったためと思われる。The outflow amount of each molten metal was 18.76 - for each of A and B. As is clear from these results, it can be seen that a conductive ceramic nozzle that can be electrically heated is an extremely effective method for preventing nozzle clogging. In the example of the present invention, about 20 kg of metal remained in the crucible, but this was because it was kept in the crucible for more than 7 minutes.
This is thought to be because the heat of the molten metal escaped to the crucible and the atmosphere, and the temperature of the metal fell below the liquidus temperature.
以上、アトマイズ法を中心に述べたが、本発明の予熱は
、連続鋳造等アトマイズ以外の用途に適用してよく、ま
た誘導加熱のみならず、トランス等の電源装置からの電
流を利用するものも含む。Although the above description has focused on the atomization method, the preheating method of the present invention may be applied to applications other than atomization, such as continuous casting. include.
本発明によれば、従来安定していなかった小径ノズルを
介した溶融金属の供給が可能となり、溶融金属の流下流
の直径を小さくすることが要求されるアトマイズにおい
て、本発明のノズルを用いることによって安定した微粉
末の製造が可能となる。。According to the present invention, it is possible to supply molten metal through a small diameter nozzle, which has not been stable in the past, and the nozzle of the present invention can be used in atomization where it is required to reduce the downstream diameter of molten metal. This makes it possible to produce stable fine powder. .
第1図は実験に用いたタンデイツシュのノズル部を示す
ものであり、従来のノズル系(A)および本発明による
高周波誘導加熱が可能な導電性セラミックノズル系(B
)の断面図である。
1:実施例のノズル、1′ :従来ノズル、2:内張り
耐火物、3:断熱層、4:インダクタ1− ;、i/
第 1 図
A BFigure 1 shows the nozzle part of the tandye dish used in the experiment, including a conventional nozzle system (A) and a conductive ceramic nozzle system (B) capable of high-frequency induction heating according to the present invention.
) is a cross-sectional view of. 1: Example nozzle, 1': Conventional nozzle, 2: Lining refractory, 3: Heat insulating layer, 4: Inductor 1-;, i/ Fig. 1 A B
Claims (1)
ルを介して流下する方法において、ノズル本体およびそ
の近傍の少なくともいずれかを導電性材料で構成し、前
記容器へ前記溶融金属を収容する以前に前記ノズルをジ
ュール熱で予熱することを特徴とする溶融金属の流下方
法。 2 流下する溶融金属をガスまたは液体のジェットで微
細粒化するアトマイズ装置用ノズルにおいて、ノズル本
体およびその近傍の少なくともいずれかを導電性材料で
構成したことを特徴とするアトマイズ装置用ノズル。 3 導電性材料は導電性サイアロンであることを特徴と
する請求項第2項記載のアトマイズ装置用ノズル。[Scope of Claims] 1. A method in which molten metal flows down through a nozzle provided at the bottom of a container containing the molten metal, in which at least one of the nozzle body and its vicinity is made of a conductive material, and the molten metal flows into the container. A method for flowing molten metal, characterized in that the nozzle is preheated with Joule heat before accommodating the molten metal. 2. A nozzle for an atomizing device that atomizes flowing molten metal into fine particles using a jet of gas or liquid, characterized in that at least one of the nozzle body and its vicinity is made of a conductive material. 3. The nozzle for an atomizing device according to claim 2, wherein the conductive material is conductive sialon.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8056688A JPH01255608A (en) | 1988-04-01 | 1988-04-01 | Method for flowing down molten metal and nozzle for atomizing device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8056688A JPH01255608A (en) | 1988-04-01 | 1988-04-01 | Method for flowing down molten metal and nozzle for atomizing device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01255608A true JPH01255608A (en) | 1989-10-12 |
Family
ID=13721887
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8056688A Pending JPH01255608A (en) | 1988-04-01 | 1988-04-01 | Method for flowing down molten metal and nozzle for atomizing device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01255608A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0622335U (en) * | 1992-05-29 | 1994-03-22 | 日新技研株式会社 | Powder production equipment |
JPH0622336U (en) * | 1992-05-29 | 1994-03-22 | 日新技研株式会社 | Powder production equipment |
US5366204A (en) * | 1992-06-15 | 1994-11-22 | General Electric Company | Integral induction heating of close coupled nozzle |
JP2022160116A (en) * | 2021-04-06 | 2022-10-19 | 東京窯業株式会社 | Method for manufacturing atomizing nozzle, atomizing nozzle, and atomizing device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5813449A (en) * | 1981-07-13 | 1983-01-25 | Nippon Steel Corp | Immersion nozzle for electrical heating |
JPS59218246A (en) * | 1983-05-26 | 1984-12-08 | Nippon Steel Corp | Prevention of clogging in molten metal charging nozzle in continuous casting |
-
1988
- 1988-04-01 JP JP8056688A patent/JPH01255608A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5813449A (en) * | 1981-07-13 | 1983-01-25 | Nippon Steel Corp | Immersion nozzle for electrical heating |
JPS59218246A (en) * | 1983-05-26 | 1984-12-08 | Nippon Steel Corp | Prevention of clogging in molten metal charging nozzle in continuous casting |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0622335U (en) * | 1992-05-29 | 1994-03-22 | 日新技研株式会社 | Powder production equipment |
JPH0622336U (en) * | 1992-05-29 | 1994-03-22 | 日新技研株式会社 | Powder production equipment |
JPH086008Y2 (en) * | 1992-05-29 | 1996-02-21 | 日新技研株式会社 | Powder production equipment |
US5366204A (en) * | 1992-06-15 | 1994-11-22 | General Electric Company | Integral induction heating of close coupled nozzle |
JP2022160116A (en) * | 2021-04-06 | 2022-10-19 | 東京窯業株式会社 | Method for manufacturing atomizing nozzle, atomizing nozzle, and atomizing device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW201703902A (en) | Methods and apparatuses for producing metallic powder material | |
US5479438A (en) | Apparatus for fusing a solid layer of electrically conductive material | |
JP2015513613A (en) | Metal spray powdering system and method for spray manufacturing metal powder | |
EP0420393B1 (en) | System and method for atomizing a titanium-based material | |
JP3054193B2 (en) | Induction skull spinning of reactive alloys | |
EP1978320A1 (en) | INDUCTION MELTING APPARATUS EMPLOYING HALIDE TYPE CRUCIBLE, PROCESS FOR PRODUCING THE CRUCIBLE, METHOD OF INDUCTION MELTING, AND PROCESS FOR PRODUCING INGOT OF ULTRAHIGH-PURITY Fe-, Ni-, OR Co-BASED ALLOY MATERIAL | |
CN106334799A (en) | Method for producing metal powder | |
US1378189A (en) | Method and apparatus for melting oxids, &c., without contamination | |
US6350293B1 (en) | Bottom pour electroslag refining systems and methods | |
EP0857932B1 (en) | Apparatus for discharging molten matter from cold crucible induction melting furnace | |
CN112393588A (en) | Induction smelting cold crucible with full suspension and strong stirring capacity | |
JPH01255608A (en) | Method for flowing down molten metal and nozzle for atomizing device | |
US5963579A (en) | Method of heating a molten metal in a continuous casting tundish using a plasma torch, and tundish for its implementation | |
GB2117417A (en) | Producing high-purity ceramics- free metallic powders | |
JPS5847300A (en) | Method and apparatus for solidifying radioactive waste by ceramics | |
JP7313122B2 (en) | Hot water tapping method in induction heating melting device and induction heating melting device | |
JPH0139993B2 (en) | ||
US6763877B2 (en) | Method for the controlled tempering of a casting trough and a casting trough for carrying out the method | |
JP4496791B2 (en) | Electromagnetic hot water nozzle and metal melting / hot water device using the same | |
JPH03180432A (en) | Melting method and melting device of metal | |
JPH06246409A (en) | Heating type immersion nozzle device for discharging half-soldified metal | |
KR20170077948A (en) | Apparatus for producing an alloy powder for dental | |
JPH0293287A (en) | Melting device and melting method | |
JP2005055017A (en) | Molten metal tapping device | |
KR100335605B1 (en) | Heat controllable tundish |