JPH0293084A - Anticorrosive injector - Google Patents

Anticorrosive injector

Info

Publication number
JPH0293084A
JPH0293084A JP24074388A JP24074388A JPH0293084A JP H0293084 A JPH0293084 A JP H0293084A JP 24074388 A JP24074388 A JP 24074388A JP 24074388 A JP24074388 A JP 24074388A JP H0293084 A JPH0293084 A JP H0293084A
Authority
JP
Japan
Prior art keywords
seawater
carboxylic acid
pipe
ferrous sulfate
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24074388A
Other languages
Japanese (ja)
Inventor
Kenji Ueda
健二 植田
Akihiro Sakanishi
彰博 坂西
Mitsuru Sakimura
充 崎村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHIYOURIYOU ENG KK
Mitsubishi Heavy Industries Ltd
Choryo Engineering Co Ltd
Original Assignee
CHIYOURIYOU ENG KK
Mitsubishi Heavy Industries Ltd
Choryo Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHIYOURIYOU ENG KK, Mitsubishi Heavy Industries Ltd, Choryo Engineering Co Ltd filed Critical CHIYOURIYOU ENG KK
Priority to JP24074388A priority Critical patent/JPH0293084A/en
Publication of JPH0293084A publication Critical patent/JPH0293084A/en
Pending legal-status Critical Current

Links

Landscapes

  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

PURPOSE:To form a uniform and good-quality anticorrosive iron coating film on the inner surface of a copper contg. pipe by mixing an appropriate amt. of the carboxylic acid soln. controlled in conformity to the chlorine concn. and temp. of seawater with a ferrous sulfate soln. and injecting the mixture into the seawater to be passed through the pipe. CONSTITUTION:The carboxylic acid soln. and the ferrous sulfate soln. are supplied respectively from a carboxylic acid soln. tank 1a and a ferrous sulfate soln. tank 1b through fixed delivery pumps 3a and 3b, and mixed in a mixing tank 10. The mixture is injected into the seawater in a seawater inlet pipe 6 through an injection nozzle 5, and then passed through a copper alloy pipe 7. In the anticorrosive agent injector, a chlorine concn. detector 13 and a seawater temp. detector 14 are set in the seawater inlet pipe 6 on the upstream side of the insertion position for the nozzle 5. The detection signals therefrom are received by a controller 12, the pump 3a is controlled in conformity to the chlorine concn. and temp. of seawater, and the amt. of the carboxylic acid soln. to be injected is adjusted. By this method the optimum injection condition is maintained at all times, and a uniform and good-quality iron coating film can be formed on the inner wall surface of the pipe 7.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は海水利用設備に使用される銅又は鋼合金管への
防食剤の注入装置に関し、船舶、化学プラント、発電プ
ラント等の海水利用熱交換器、復水器などの銅合金管及
び特に海水淡水化装置の熱放出部鋼合金製伝熱管内面へ
防食剤を注入する際に有利に適用することができる同装
置に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a device for injecting anticorrosive agent into copper or steel alloy pipes used in seawater utilization equipment, and relates to a device for injecting anticorrosive agent into copper or steel alloy pipes used in seawater utilization equipment, and is used for seawater utilization heat generation in ships, chemical plants, power generation plants, etc. The present invention relates to a device that can be advantageously applied when injecting an anticorrosive agent into the inner surface of copper alloy tubes such as exchangers and condensers, and especially into the inner surfaces of heat-dissipating steel alloy heat exchanger tubes of seawater desalination equipment.

〔従来の技術〕[Conventional technology]

現在、各種プラントの海水利用熱交換器、復水器類の銅
合金管の防食対策としては、冷却海水中に微量の鉄イオ
ンを注入する方法が広く実用化されている。この鉄イオ
ン注入法は、鉄源として硫酸第一鉄を用いるものと、鉄
材を電解しその電解液を用いるものの二つに大別できる
Currently, a method of injecting a small amount of iron ions into cooling seawater is widely used as a corrosion prevention measure for copper alloy pipes in seawater heat exchangers and condensers in various plants. This iron ion implantation method can be roughly divided into two types: those that use ferrous sulfate as an iron source, and those that electrolyze an iron material and use the resulting electrolyte.

注入条件は通常下記の通りである。The injection conditions are usually as follows.

(1)  硫酸第一鉄溶液の場合 ■ l 5〜L Oppm (1Fe”として)×1〜
2Hr 7日 @ [LO3〜α1 ppm (Fe”として)連続注
入 (2)鉄電解の場合 ■ CL 05〜CL 1 ppm (Fe”として)
連続注入 これらは発電プラントの復水器等の海水供給が一過式で
あシ、伝熱管長が比較的短かい銅合金管の腐食を防止す
る点に主眼をおいたものであり鉄イオンの注入は数ケ月
行なわれる。
(1) In the case of ferrous sulfate solution■ l 5~L Oppm (as 1Fe'') x 1~
2Hr 7 days @ [LO3~α1 ppm (as Fe”) continuous injection (2) For iron electrolysis ■ CL 05~CL 1 ppm (as Fe”)
Continuous injection These methods are mainly aimed at preventing corrosion of copper alloy pipes where the seawater supply to condensers etc. in power plants is a one-time system and the heat transfer pipe length is relatively short. The injections are carried out for several months.

これに対して、海水淡水化装置では熱放出部伝熱管に供
給された海水はそのまま放流されるのではなく、その一
部が熱回収部にて使用される。また熱放出部は3つのス
テージから構成されている。このため次の問題がある。
On the other hand, in a seawater desalination device, the seawater supplied to the heat exchanger tubes in the heat release section is not discharged as is, but a portion of it is used in the heat recovery section. Furthermore, the heat dissipation section is composed of three stages. This causes the following problem.

(1)  鉄を含んだ海水が蒸発水として利用されると
、蒸発室にスケールの析出が起こる。このため、プラン
トを運転しながら数ケ月連続して鉄イオン注入を行なう
ことができないので短期間で良好な鉄被膜を形成する必
要がある(短期間なら熱回収部への海水の供給をストッ
プすることが可能)。
(1) When seawater containing iron is used as evaporation water, scale deposits occur in the evaporation chamber. For this reason, iron ion implantation cannot be performed continuously for several months while the plant is operating, so it is necessary to form a good iron coating in a short period of time (for a short period, the seawater supply to the heat recovery section must be stopped). possible).

(2)伝熱管長すなわち銅合金管長が復水器の場合の数
倍となる( 18 m X 3 ステージ=54m)。
(2) The length of the heat transfer tube, that is, the length of the copper alloy tube is several times that of a condenser (18 m x 3 stages = 54 m).

このため遠距離部まで均一な鉄被膜を生成させることが
必要である。
Therefore, it is necessary to generate a uniform iron coating over a long distance.

このように、船舶、発心プラント等の復水器と海水淡水
化装置の構成・愼北は本質的に異なっており、復水器へ
の従来の鉄イオン注入方法をそのまま退出できない。
As described above, the configurations and configurations of condensers in ships, originating plants, etc. and seawater desalination equipment are essentially different, and the conventional iron ion implantation method into condensers cannot be used as is.

鉄イオン注入による鉄被膜の装柱として、■ 鉄被膜の
付潮状悪(均一性、密着性)が良好なこと。
As a pillar of iron coating by iron ion implantation, ■ The iron coating should have good adhesion (uniformity and adhesion).

■ 鉄材yi=iflがFe としてα2 my/υ2
以上あること。
■ Iron material yi=ifl is Fe, α2 my/υ2
That's all there is to it.

■ 但し、付着過多は伝熱効率を低下させるため]lF
e  として[150197cm”以下が好ましい。
■ However, excessive adhesion reduces heat transfer efficiency] 1F
It is preferable that e is [150197 cm” or less.

が要求される。is required.

謁4図に、復水器に適用されている億酸第−鉄溶NIL
注入法を60WIの鋼合金管に適用した場合の管内面の
鉄材着址の分布を示す。
Figure 4 shows the ferric acid molten NIL applied to the condenser.
This figure shows the distribution of iron deposits on the inner surface of a 60WI steel alloy pipe when the injection method is applied.

〔注入方法コ 中 硫酸第一鉄溶液の調製 水(市水)にP e S O4・7H,Oを俗解して調
製し、Fθ8+イオン濃度tfFe”+とじて20,0
00ppmとした。溶液のpHは五2であった。
[Injection method] Preparation of ferrous sulfate solution Prepare water (city water) by adding P e S O4.7H,O, Fθ8 + ion concentration tfFe'' + 20,0
00 ppm. The pH of the solution was 52.

(11)注入濃度及び注入日数 短期間で鉄被膜を形成する必要があるため、Fe とし
てi、 Oppmとし、注入は5日間連続して行なった
(11) Injection Concentration and Injection Days Since it is necessary to form an iron film in a short period of time, Fe was set at i, Oppm, and the injection was carried out for 5 consecutive days.

(1■)  銅合金管径及び管内海水流速管径;34φ
、管内海水流速; 2 m / 8θCIv)  硫酸
第一鉄溶液の注入 ★間合金管に海水を連続的に通水し、定量ポンプによυ
硫酸第一鉄溶液を海水ラインに注入する。6日間連続注
入後、定量ポンプ及び海水の通水をストップし、鋼合金
・a内表面への鉄材看状況を調査した。
(1■) Copper alloy pipe diameter and seawater flow rate inside the pipe Pipe diameter: 34φ
, seawater flow rate in the pipe; 2 m / 8θCIv) During the injection of ferrous sulfate solution, seawater was continuously passed through the alloy pipe, and υ was pumped using a metering pump.
Inject the ferrous sulfate solution into the seawater line. After continuous injection for 6 days, the metering pump and seawater flow were stopped, and the condition of the iron material on the inner surface of the steel alloy a was investigated.

第4図において、硫酸第一鉄溶液の注入点から10m地
点ではFe  として1.8 q/cm” 、  55
m地点ではFe としてCL 1.147cm”以下の
鉄性着量であり、注入点から50m付近までは付着過多
、40m以降は防食に必要な鉄性着量以下であシ、かつ
付層状態もしわ状でありよくなかった。
In Figure 4, at a point 10 m from the injection point of the ferrous sulfate solution, the amount of Fe is 1.8 q/cm'', 55
At point m, the amount of iron deposition was less than CL 1.147cm'' as Fe, and there was excessive adhesion up to around 50m from the injection point, and after 40m, the amount of iron deposition was less than the amount required for corrosion protection, and there was no adhesion. It was wrinkled and not good.

第4図の結果から明らかなように復水器に適用されてい
る方法では長管で短期処理が要求葛れる海水淡水化装置
の長大鋼合金・aの防食には適さない。
As is clear from the results shown in Figure 4, the method applied to the condenser is not suitable for corrosion protection of long steel alloys in seawater desalination equipment, which require short-term treatment due to long pipes.

この沈め本発明者らは、一定4α囲の鉄材jli it
を有し、均一で@層性が良好な鉄被膜を形成できる防食
剤について鋭意研究を行なった結果、鉄被膜が形成され
るのは鉄イオンが酸化されて酸化物からコロイド状態と
なシ、それから管内面に付着する現象よシ、鉄イオンが
、コロイド状態になるのを抑制し、鉄イオンが単独で存
在しないようにすればよいことに看目し、それについて
種々の物質について調査検討した結果、カルボン酸イオ
ン−COO−を有する物質を添加することによシ、鉄イ
オンのコロイド化が抑制でき、鉄被膜の付着量をフント
ロールできることを確認し、先に、硫酸第一鉄溶液中に
カルボン酸イオンを共存させてなることを特徴とする特
食剤を提案した(特願昭61〜291596号)。
This submerged iron material jli it with a constant 4α circumference
As a result of extensive research into anticorrosive agents that can form iron coatings that are uniform and have good layer properties, we found that iron coatings are formed when iron ions are oxidized and change from oxide to colloidal state. To address the phenomenon of iron ions adhering to the inner surface of tubes, we realized that it would be a good idea to suppress iron ions from entering a colloidal state and prevent iron ions from existing alone, so we investigated and considered various substances for this purpose. As a result, it was confirmed that by adding a substance containing carboxylic acid ions -COO-, it was possible to suppress the colloidalization of iron ions and to control the amount of iron coating deposited. proposed a special food agent characterized by the coexistence of carboxylic acid ions with (Japanese Patent Application No. 61-291596).

鉄イオンを化合物形感にしてしまうと、その化合物の平
衡濃度に応じた分だけしか鉄イオンが存在しなくなるた
め一度に消費されることがなく、消費されたら化合物が
S離し鉄イオンを供給するようになる。この結果、注入
点から遠距離部まで有効な鉄イオンを保持することが可
能である。
When iron ions are made into a compound form, only the amount of iron ions that correspond to the equilibrium concentration of the compound will exist, so they will not be consumed at once, and once they are consumed, the compound will release S and supply iron ions. It becomes like this. As a result, it is possible to retain effective iron ions far from the injection point.

カルボン酸イオン−COO−を有する物質の代表例とし
ては、クエン酸、酢酸、ギ酸、酒石mなどがあげられる
Representative examples of substances having a carboxylic acid ion -COO- include citric acid, acetic acid, formic acid, and tartaric acid.

しかしながら、カルボン酸イオンを添加する注入方法で
も以下の問題があることが判明した。
However, it has been found that the implantation method of adding carboxylic acid ions also has the following problems.

(1)  実際のプラントでは海洋生物の付着による管
の閉塞等による異常腐食を防止するため取水口に塩素の
注入が行なわれる。海水淡水化装置では通常■10ユニ
ット程度建設され、偵次運転開始されること、@発電プ
ラントと一緒に建設されること、お上びθ海水取水口は
共用であることである。このため、建設されたユニット
の運転停止、発電プラントの運転・停止によシ取水口に
注入される塩累澁をコントロールする必要があるが、1
g理が悪く海水中の塩素濃度が変動することが多い。塩
素は酸化剤であるため、鉄イオンのコロイド化を促進す
ることになる。その結果、仮に塩素濃度を[lL2 p
pmとして、カルボン1″11イオンの添加量を決め、
鉄イオン注入を開始した場合において、途中で塩素濃度
が1.0 ppmと高くなると酸化が促進され遠距離部
の鉄の付着が悪くなるし、逆に塩素濃度が殆んどOpp
mになると、鉄イオンのコロイド化が遅延され近距離部
に鉄が付着しなくなる。
(1) In actual plants, chlorine is injected into the water intake to prevent abnormal corrosion caused by blockage of pipes due to adhesion of marine organisms. In a seawater desalination plant, approximately 10 units are usually constructed and operations are started on a rolling basis; it is constructed together with a power generation plant; and the top and θ seawater intakes are shared. For this reason, it is necessary to control the salt concentration injected into the water intake when the constructed unit is stopped and the power plant is started or stopped.
The chlorine concentration in seawater often fluctuates due to poor management. Since chlorine is an oxidizing agent, it promotes colloidalization of iron ions. As a result, if the chlorine concentration is [lL2 p
Determine the amount of carboxylic 1″11 ion added as pm,
When iron ion implantation is started, if the chlorine concentration becomes as high as 1.0 ppm midway through, oxidation will be promoted and iron adhesion in long distance areas will deteriorate; conversely, if the chlorine concentration is almost Opp
When the distance reaches m, the colloidalization of iron ions is delayed and iron no longer adheres to the short distance area.

第2図にカルボン酸としてクエン酸を用いて、鉄イオン
注入を行なった場合の注入点から10m、60rn地点
の鉄被膜付7aI量の塩素濃度依存性を示す。また、第
3図は前記の鉄イオン注入における試験装置の構成図で
ある。
FIG. 2 shows the dependence of the amount of iron-coated 7aI on the chlorine concentration at a point 10 m and 60 rn from the injection point when iron ions were implanted using citric acid as the carboxylic acid. Moreover, FIG. 3 is a configuration diagram of a test apparatus for the above-mentioned iron ion implantation.

〔注入方法] ■ 鉄イオン注入溶液の調製 まず、市水を溶液槽01に18を入れ、クエン酸t−1
0001F添加し溶解した。これに硫酸第一鉄(Fe5
0.−71110 )を30001F加え溶解し、更に
市水を加えて全量を306とした。
[Injection method] ■ Preparation of iron ion injection solution First, put city water into solution tank 01 and add citric acid t-1.
0001F was added and dissolved. Ferrous sulfate (Fe5
0. -71110) was added and dissolved at 30001F, and city water was further added to bring the total amount to 306.

■ 注入濃度及び時間・・・Fe  として1.0 p
pmX  5 0  Hr ■ 銅合金管内流速・・・2m/aec■ 海水温度・
・・18℃ ■ 銅合金管径及び長さ・・・34−φX 60 m悪
かった。これらのことから、塩素濃度の変動に対応でき
る防食剤注入装置が必要である。
■ Injection concentration and time...1.0 p as Fe
pmX 50 Hr ■ Flow velocity in copper alloy pipe...2m/aec■ Seawater temperature・
...18℃ ■ Copper alloy pipe diameter and length ...34-φX 60 m was poor. For these reasons, there is a need for an anticorrosive injection device that can respond to changes in chlorine concentration.

(2)  Wttuil第一鉄溶液槽の大きさ、注入ボ
ンダの能力を決めるため〔カルボン酸+F e S O
,・7B、0〕の溶解試験を実施した。その結果ft第
1表に示す。カルボン酸としては大盆入手が容易なりエ
ン酸を用いた。
(2) To determine the size of the Wttul ferrous solution tank and the capacity of the injection bonder [carboxylic acid + Fe SO
, 7B, 0] was conducted. The results are shown in Table 1. As the carboxylic acid, enoic acid was used because it was easily available.

以上の条件下で、海水タンク06aに汲み上げられた海
水を海水ボンダ06bで塩化ビニール管06Cf:経て
銅合金f07へ供給し、溶液槽01内のクエン酸を添加
した硫酸第一鉄m液を定量ポンプ05でビニールホース
04を経て塩化ビニル管06aの末端に注入した。
Under the above conditions, the seawater pumped into the seawater tank 06a was supplied to the copper alloy f07 via the vinyl chloride pipe 06Cf by the seawater bonder 06b, and the ferrous sulfate m solution containing citric acid in the solution tank 01 was quantified. It was injected into the end of the vinyl chloride pipe 06a through the vinyl hose 04 using the pump 05.

第2図において明らかなように、塩素濃度によシ鉄4膜
付膚量が左右されることが判る。又、塩素濃度t Op
pmの場合には付層状態は著しく第1表 ネ1−度=ppm  as  Fe 申2  重量比 溶解は以下の手1@で行なった。
As is clear from FIG. 2, it can be seen that the amount of iron 4 film deposited on the skin depends on the chlorine concentration. Also, the chlorine concentration t Op
In the case of pm, the state of layering was remarkable in the first table.

■ 1tビーカに市水600C1:、を入れる。この時
の水温は20℃であった。
■ Pour 600C1 of city water into a 1t beaker. The water temperature at this time was 20°C.

■ クエン酸を添加し、溶解させる(クエン酸は完全に
溶ける)。
■ Add citric acid and dissolve (citric acid will dissolve completely).

■ PeSO4・7H20を添加し、溶解させる。■ Add PeSO4・7H20 and dissolve it.

■ 市水で全址を1tとする。■ The total area is 1 ton with city water.

第1表において、PeSO4・7 H,O溶解量が大き
いと(テスト−1〜3)硫酸第一鉄がビーカ底に沈降す
る現象が認めら几た。このため、場合によっては溶液槽
01内に硫酸第一鉄が沈降析出し、注入不能になる恐れ
がある。Wc酸第−鉄溶解量を低くすれば完全に溶解す
るが、タンク容量のアップ、注入ポンプの能力アップが
必要となってくる。又、硫di−鉄のみではFθ とし
て7 S OOOppmは溶解可能であるが(20℃で
は7瓜000 ppmまで溶解)、クエン酸が存在する
と溶解しにくくなることが判った。
In Table 1, when the amount of PeSO4.7H,O dissolved was large (tests 1 to 3), a phenomenon in which ferrous sulfate settled to the bottom of the beaker was observed. Therefore, in some cases, ferrous sulfate may precipitate in the solution tank 01, making it impossible to pour the solution. If the amount of ferrous iron dissolved in Wc acid is lowered, it will be completely dissolved, but it will be necessary to increase the tank capacity and the capacity of the injection pump. Furthermore, it was found that although di-iron sulfate alone can dissolve 7 S OOO ppm as Fθ (dissolving up to 7000 ppm at 20° C.), the presence of citric acid makes it difficult to dissolve.

これらのことから、クエン酸を添加する鉄イオン注入法
において、硫酸第一鉄の沈降析出しない防食剤注入装置
が必要であることが理解されよう。
From these facts, it will be understood that in the iron ion implantation method in which citric acid is added, an anticorrosive injection device that does not cause precipitation of ferrous sulfate is required.

〔発明の目的〕[Purpose of the invention]

上記従来の技術水準及び先に提案した方法の問題点に鑑
み、海水を利用する銅又は−合金管内への防食剤の注入
条件を常時適正に維持でき、ムラのない良質な鉄の防食
被膜を銅又は銅合金管内表面に形成させることができる
防食剤注入装置を提供しようとするものでおる。
In view of the above-mentioned conventional state of the art and the problems of the previously proposed method, it is possible to always maintain appropriate conditions for injection of anti-corrosion agent into copper or -alloy pipes using seawater, and to produce an even and high-quality anti-corrosion coating on iron. It is an object of the present invention to provide an anticorrosive injection device that can be formed on the inner surface of copper or copper alloy pipes.

〔目的を達成するための手段〕[Means to achieve the purpose]

すなわち、本発明は各々が独立したカルボン酸溶解槽及
び硫酸第一鉄溶解槽と、上記カルボン酸の溶液と上記硫
酸第一鉄の溶液とを混合する混合槽と、上記カルボン酸
溶解槽と上記混合槽とをポンプを介装して接続する管路
と、上記硫酸第一鉄溶解槽と上記混合槽とをポンプを介
装して接続する管路と、一端が上記混合槽に接続され、
他端が海水導入管に挿入されたノズルと接続する注入管
路と、上記ノズルの挿入位置よりも上流側の海水導入管
に配設された海水中の塩素濃度検出器及び海水温度検出
器と、上記検出器の信号を受け上記カルボン酸浴液の上
記混合槽への注入量を制御する制御装置とを備えてなる
ことを特徴とする防食剤注入装置である。
That is, the present invention provides a carboxylic acid dissolving tank and a ferrous sulfate dissolving tank, each independent of the other, a mixing tank for mixing the carboxylic acid solution and the ferrous sulfate solution, and the carboxylic acid dissolving tank and the ferrous sulfate dissolving tank. a pipe line connecting the mixing tank via a pump; a pipe line connecting the ferrous sulfate dissolving tank and the mixing tank via a pump; one end connected to the mixing tank;
An injection pipe whose other end connects to a nozzle inserted into the seawater introduction pipe, and a seawater chlorine concentration detector and a seawater temperature detector arranged in the seawater introduction pipe upstream from the insertion position of the nozzle. and a control device that receives a signal from the detector and controls the amount of the carboxylic acid bath liquid to be injected into the mixing tank.

そして、好ましい態様としては上記構成における混合槽
に加温手段を、注入管路に保温手段を設けることがあげ
られる。
A preferred embodiment is to provide a heating means in the mixing tank and a heat retaining means in the injection pipe in the above-mentioned configuration.

〔実施列〕[Implementation row]

以下、本発明の一実施例を第1図によって説明する。 An embodiment of the present invention will be described below with reference to FIG.

第1図は本発明に係る一実施例である防食剤注入装置の
構成図である。第1図において、1aはカルボン酸溶解
槽で、カルボン酸溶液の供給管路2a、カルボン酸溶液
供給定−ポンプ3a1カルボン酸溶液の供給管路4aを
経て混合槽10と接続されている。一方、1bIIi硫
酸第一鉄溶解槽で、硫酸第一鉄溶液の供給管路2b。
FIG. 1 is a configuration diagram of an anticorrosive injection device that is an embodiment of the present invention. In FIG. 1, reference numeral 1a denotes a carboxylic acid dissolving tank, which is connected to a mixing tank 10 via a carboxylic acid solution supply pipe 2a, a carboxylic acid solution supply constant pump 3a, and a carboxylic acid solution supply pipe 4a. On the other hand, in the 1bIIi ferrous sulfate dissolution tank, the ferrous sulfate solution supply pipe 2b.

硫r:a第−鉄溶液供給定量ポンプ5tl、硫酸第一鉄
溶液の供給管路4bを経て混合槽10と接続されている
。当該カルボン酸浴液と硫酸第一鉄溶液とを混合する混
合槽10には加温装置15を設けるのが好ましい。11
は混合槽10内の混合溶液を海水中に導くための注入管
路であ)、海水導入管6内に設けられた注入ノズル5と
接続されており、注入管路11には保温材等により保温
処理を施しておくのが好ましい。
It is connected to the mixing tank 10 via a sulfur r:a ferrous solution supply metering pump 5tl and a ferrous sulfate solution supply pipe line 4b. It is preferable that a heating device 15 is provided in the mixing tank 10 for mixing the carboxylic acid bath liquid and the ferrous sulfate solution. 11
is an injection pipe for introducing the mixed solution in the mixing tank 10 into seawater), and is connected to the injection nozzle 5 provided in the seawater introduction pipe 6. It is preferable to perform heat insulation treatment.

これらのことから、硫酸比−鉄とカルボン酸とを第3図
に示す従来列の溶解槽01内において見られたような硫
酸第一鉄の沈降析出を防止することができる。すなわち
、独立した溶解槽Ia、11)でカルボン酸と偵C酸第
−鉄とを溶解量せることができるため、それぞれの溶解
可能な濃度を調製でき、カルボン酸溶液と硫酸第一鉄溶
液とが混合される混合槽10は加温装置15で沈降析出
が生じない温度に必要に応じて加温でき、かつ又、混合
溶液が注入される注入管路11は沈降析出が生じないよ
う必要に応じて保温できる。
From these facts, it is possible to prevent the precipitation of ferrous sulfate as observed in the conventional dissolving tank 01 shown in FIG. In other words, since the amount of carboxylic acid and ferrous sulfate can be dissolved in the independent dissolution tank Ia, 11), the dissolvable concentration of each can be adjusted, and the carboxylic acid solution and ferrous sulfate solution can be The mixing tank 10 in which the mixed solution is mixed can be heated by a heating device 15 as necessary to a temperature that does not cause sedimentation, and the injection pipe 11 into which the mixed solution is injected can be heated as necessary to prevent sedimentation from occurring. It can be kept warm according to your needs.

ちなみに、硫rR第一鉄とカルボ:yrIR類の水に対
する溶解度は第2表の通邊であり、液温の上昇により溶
解量が多くなることが判る。
Incidentally, the solubility of ferrous sulfur rR and carbo:yrIR in water is as shown in Table 2, and it can be seen that the amount dissolved increases as the liquid temperature increases.

第 2 表 13#′i海水中の塩素濃度を検出する的えばガルバニ
電極方式の塩素濃度検出器で、この塩素濃度検出器13
にはカルボン酸浴液供給用定量ポンプ5aの供給能力を
制御する1till飢装置12が′電気的に連係されて
いる。14は(i5水温度を検出する例えば白金抵抗測
温体式の海水温度検出器で、この海水温度検出器14に
は制御装置12が電気的に連係されている。
Table 2 13#'i A galvanic electrode type chlorine concentration detector is used to detect the chlorine concentration in seawater, and this chlorine concentration detector 13
A still starvation device 12 for controlling the supply capacity of the metering pump 5a for supplying the carboxylic acid bath liquid is electrically linked. Reference numeral 14 denotes a seawater temperature detector (for example, a platinum resistance thermometer type) for detecting the water temperature, and the control device 12 is electrically linked to the seawater temperature detector 14.

割φ1装置12はカルボン酸溶液供給用定遣ポンプ3a
と電気的に連係されており、塩素11k度検出器13、
海水温度検出a14からの検出情報に基づいてカルボン
酸溶液供給用定量ボング5乙の供給能力を制御できる例
えばストローク数コントロール方式の制御装置であり、
海水中の塩Xl#度、海水温度に最適な量のカルボン酸
浴液を混合槽10へ供給でき、最適な硫酸第一鉄注入溶
液を注入ノズル5から海水中に注入できる。
The split φ1 device 12 is a fixed pump 3a for supplying carboxylic acid solution.
It is electrically connected to the chlorine 11k degree detector 13,
For example, it is a control device of a stroke number control type that can control the supply capacity of the quantitative bong 5B for supplying carboxylic acid solution based on the detection information from the seawater temperature detection a14,
The optimum amount of carboxylic acid bath liquid for the salt Xl# degrees and seawater temperature in the seawater can be supplied to the mixing tank 10, and the optimum ferrous sulfate injection solution can be injected into the seawater from the injection nozzle 5.

すなわち、硫酸第一鉄注入をスタートし九後、海水性状
が変動しても常時最適な注入条件を維持することができ
、鋼合金管7群管内表面ヘムラの無い良好な鉄の防食破
膜を形成することができるのである。
In other words, even after ferrous sulfate injection starts, it is possible to maintain optimal injection conditions at all times even if the seawater properties fluctuate, and to maintain a good corrosion-resistant rupture of the iron without hemulation on the inner surface of steel alloy pipes in group 7. It can be formed.

なお、海水温度が高い程鉄イオンの酸化、コロイド化が
促進さnることがら海水温度検出によるカルボン酸溶液
供給用定量ポンプ3aの制御を組込んだものである。
Note that the higher the seawater temperature is, the more oxidation and colloidalization of iron ions are promoted, so the control of the metering pump 3a for supplying the carboxylic acid solution by detecting the seawater temperature is incorporated.

本発明において、混合槽1oK/JO温装置15を、注
入管路11に保温処理を設けているが、硫酸第一鉄溶液
濃度が低く沈降析出の恐れが全くない場合には、省略し
て実施すること本可能である。
In the present invention, the mixing tank 1oK/JO temperature device 15 and the injection pipe 11 are provided with heat insulation treatment, but this may be omitted if the ferrous sulfate solution concentration is low and there is no risk of sedimentation. It is possible to do this.

〔発明の効果〕〔Effect of the invention〕

(1)  カルボン酸の溶解槽と硫酸第一鉄の溶解槽を
別個に設け、海水性状に応じてカルボン酸溶液の供給量
を制御できるようにしたので、常時最適な注入条件を維
持でき、ムラのない良質の鉄の防食被膜を銅合金骨内表
面に形成できる。
(1) The dissolution tank for carboxylic acid and the dissolution tank for ferrous sulfate are installed separately, making it possible to control the amount of carboxylic acid solution supplied according to the seawater properties, making it possible to maintain optimal injection conditions at all times and eliminate uneven injection. A high-quality iron anti-corrosion coating can be formed on the inner surface of the copper alloy bone.

(2)  カルボン酸の溶解槽と硫酸第一鉄の溶解槽を
別個に設け、且つ沈降析出の恐れのある混合槽と注入流
路を加温、保温したことにより、流路等の閉塞がなくス
ムーズな注入が行なえる。
(2) The carboxylic acid dissolution tank and the ferrous sulfate dissolution tank were installed separately, and the mixing tank and injection flow path, where there is a risk of sedimentation, were heated and kept warm, so there was no blockage of the flow path, etc. Allows for smooth injection.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る一実施例である防食剤注入装置の
構成図、第2図は従来の防食剤注入装置を用い九場合の
鉄被膜付漬量と海水中の塩素濃度の関係を示すグラフ、
第3図は従来の防食剤注入装置の構成図、第4図は従来
の防食剤を注入した場合の鉄被膜付着量の分布を示すグ
ラフである。
Fig. 1 is a block diagram of an anticorrosive injection device according to an embodiment of the present invention, and Fig. 2 shows the relationship between the amount of iron coating and the chlorine concentration in seawater when using a conventional anticorrosion injection device. Graph showing,
FIG. 3 is a block diagram of a conventional anticorrosive injection device, and FIG. 4 is a graph showing the distribution of the amount of iron film deposited when a conventional anticorrosive is injected.

Claims (1)

【特許請求の範囲】[Claims] 各々が独立したカルボン酸溶解槽及び硫酸第一鉄溶解槽
と、上記カルボン酸の溶液と上記硫酸第一鉄の溶液とを
混合する混合槽と、上記カルボン酸溶解槽と上記混合槽
とをポンプを介装して接続する管路と、上記硫酸第一鉄
溶解槽と上記混合槽とをポンプを介装して接続する管路
と、一端が上記混合槽に接続され、他端が海水導入管に
挿入されたノズルと接続する注入管路と、上記ノズルの
挿入位置よりも上流側の海水導入管に配設された海水中
の塩素濃度検出器及び海水温度検出器と、上記検出器の
信号を受け上記カルボン酸溶液の上記混合槽への注入量
を制御する制御装置とを備えてなることを特徴とする防
食剤注入装置。
A carboxylic acid dissolving tank and a ferrous sulfate dissolving tank, each of which is independent, a mixing tank for mixing the carboxylic acid solution and the ferrous sulfate solution, and a pump for the carboxylic acid dissolving tank and the mixing tank. A pipe line that connects the ferrous sulfate dissolving tank and the mixing tank via a pump, one end of which is connected to the mixing tank, and the other end of which is connected to the mixing tank. An injection pipe line connected to the nozzle inserted into the pipe, a seawater chlorine concentration detector and a seawater temperature detector installed in the seawater introduction pipe upstream of the insertion position of the nozzle, and the detector. A control device for receiving a signal and controlling the amount of the carboxylic acid solution to be injected into the mixing tank.
JP24074388A 1988-09-28 1988-09-28 Anticorrosive injector Pending JPH0293084A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24074388A JPH0293084A (en) 1988-09-28 1988-09-28 Anticorrosive injector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24074388A JPH0293084A (en) 1988-09-28 1988-09-28 Anticorrosive injector

Publications (1)

Publication Number Publication Date
JPH0293084A true JPH0293084A (en) 1990-04-03

Family

ID=17064041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24074388A Pending JPH0293084A (en) 1988-09-28 1988-09-28 Anticorrosive injector

Country Status (1)

Country Link
JP (1) JPH0293084A (en)

Similar Documents

Publication Publication Date Title
Bianchi et al. “Horse shoe” corrosion of copper alloys in flowing sea water: mechanism, and possibility of cathodic protection of condenser tubes in power stations
JP5295819B2 (en) Sea life adhesion prevention method
JPH0293084A (en) Anticorrosive injector
JP3523864B1 (en) Water treatment method and water treatment device
JP3257450B2 (en) Chemical injection control method and chemical injection control device for hydrogen sulfide remover
JP4283870B1 (en) Metal Au recovery method
Larson Chemical control of corrosion
JP2001259690A (en) Method for preventing scaling in water system
JPS63145788A (en) Anticorrosive
JPH01212780A (en) Method for preventing corrosion of copper alloy tube
BG61918B1 (en) Method for the application of metal coating by the settlement on the internal surfaces of tanks and pipelines
JP2006231199A (en) Seawater-electrolyzing chlorine injection device and method
JPH1128461A (en) Method for suppressing corrosion of metal in water system
JP3834781B2 (en) Electrolytic antifouling device and method for small diameter seawater pipes
CN221093995U (en) Sulfate spring scale inhibition and corrosion prevention system
CA2092421C (en) Method for corrosion-proofing of a water system
JPS63121681A (en) Method for preventing corrosion of copper alloy pipe
JP3349816B2 (en) Method for preventing red rust in piping and apparatus therefor
CN217323513U (en) Raw water pretreatment chlorination system of hydrodynamic source
JP2919765B2 (en) Underwater corrosion inhibitor
JPH0353080A (en) Method for preventing corrosion of inside of copper alloy tube
CN209178152U (en) A kind of circular water treating system
JP3521896B2 (en) Water treatment method for cooling water system
CN116282594A (en) Control method for corrosion prevention of cooling water of continuous casting crystallizer
JPH03274298A (en) Method for controlling electrolyte in diaphragm-electrode device