JPS63145788A - Anticorrosive - Google Patents
AnticorrosiveInfo
- Publication number
- JPS63145788A JPS63145788A JP29159686A JP29159686A JPS63145788A JP S63145788 A JPS63145788 A JP S63145788A JP 29159686 A JP29159686 A JP 29159686A JP 29159686 A JP29159686 A JP 29159686A JP S63145788 A JPS63145788 A JP S63145788A
- Authority
- JP
- Japan
- Prior art keywords
- seawater
- iron
- copper alloy
- ion
- ferrous sulfate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- -1 iron ion Chemical class 0.000 claims abstract description 25
- 235000003891 ferrous sulphate Nutrition 0.000 claims abstract description 16
- 239000011790 ferrous sulphate Substances 0.000 claims abstract description 16
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 claims abstract description 16
- 229910000359 iron(II) sulfate Inorganic materials 0.000 claims abstract description 16
- 239000003795 chemical substances by application Substances 0.000 claims description 11
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 abstract description 99
- 229910052742 iron Inorganic materials 0.000 abstract description 55
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 abstract description 39
- 239000013535 sea water Substances 0.000 abstract description 30
- 229910000881 Cu alloy Inorganic materials 0.000 abstract description 21
- 238000005260 corrosion Methods 0.000 abstract description 10
- 230000007797 corrosion Effects 0.000 abstract description 10
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 abstract description 6
- 150000002500 ions Chemical class 0.000 abstract description 5
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 abstract description 5
- 238000012546 transfer Methods 0.000 abstract description 4
- 235000019253 formic acid Nutrition 0.000 abstract description 3
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 abstract description 2
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 abstract description 2
- 230000007613 environmental effect Effects 0.000 abstract description 2
- 239000011975 tartaric acid Substances 0.000 abstract description 2
- 235000002906 tartaric acid Nutrition 0.000 abstract description 2
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 abstract 1
- 235000011054 acetic acid Nutrition 0.000 abstract 1
- 239000002253 acid Substances 0.000 abstract 1
- 150000007513 acids Chemical class 0.000 abstract 1
- 235000015165 citric acid Nutrition 0.000 abstract 1
- 238000011033 desalting Methods 0.000 abstract 1
- 238000000576 coating method Methods 0.000 description 17
- 238000002347 injection Methods 0.000 description 17
- 239000007924 injection Substances 0.000 description 17
- 239000011248 coating agent Substances 0.000 description 16
- 239000000243 solution Substances 0.000 description 14
- 238000005468 ion implantation Methods 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- 238000000034 method Methods 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 238000005536 corrosion prevention Methods 0.000 description 5
- 238000010612 desalination reaction Methods 0.000 description 5
- 238000009826 distribution Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- 241000287828 Gallus gallus Species 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 150000002505 iron Chemical class 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23F—NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
- C23F11/00—Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
- C23F11/08—Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Preventing Corrosion Or Incrustation Of Metals (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は防食剤、特に銅又は銅合金の防食剤に関し、更
に詳しくは、船舶、化学プラント、発電プラント等の海
水利用熱交換器、復水器などの銅合金管及び特に海水淡
水化装置の熱放出部銅合金製伝熱管内面の防食剤に関す
る。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a corrosion inhibitor, particularly a corrosion inhibitor for copper or copper alloys. The present invention relates to an anticorrosive agent for copper alloy tubes such as water vessels, and especially for the inner surface of copper alloy heat exchanger tubes in the heat release section of seawater desalination equipment.
現在、各種プラントの海水利用熱交換器、復水器類の銅
合金管の防食対策としては、冷却海水中に微量の鉄イオ
ンを注入する方法が広く実用化されている。この鉄イオ
ン注入法は、鉄源として硫酸第一鉄を用いるものと、鉄
材を電解しその電解液を用いるものの二つに大別できる
。Currently, a method of injecting a small amount of iron ions into cooling seawater is widely used as a corrosion prevention measure for copper alloy pipes in seawater heat exchangers and condensers in various plants. This iron ion implantation method can be roughly divided into two types: those that use ferrous sulfate as an iron source, and those that electrolyze an iron material and use the resulting electrolyte.
この他に鉄配管系の自然溶解によるものがあるが、はと
んど用いられていない。Another method is the natural dissolution of iron piping systems, but this is rarely used.
鉄イオン注入による防食は海水中に注入された鉄イオン
が酸化物状態、コロイド状態となり管内面に鉄被膜を形
成することによる。注入条件として、
(υ 硫酸第一鉄溶液の場合
■ 0.5〜1.0 PPM (Fa として)×
1〜2Hr/日
(ロ)O,O3〜0.I PPM (Fa とし
て)連続注入(2)鉄電解の場合
(10,03〜0.I PPM (Fa として
)連続注入これらは、発電プラントの復水器等の海水供
給が一過式であり、伝熱管長が比較的短かい銅合金管の
腐食を防止する点に主眼t−おいたものであり鉄イオン
の注入は数ケ月行なわれる。Corrosion prevention by iron ion implantation is achieved by the iron ions injected into seawater turning into oxides and colloids to form an iron coating on the inner surface of the tube. As injection conditions, (υ For ferrous sulfate solution■ 0.5-1.0 PPM (as Fa)×
1-2Hr/day (b) O, O3-0. Continuous injection of I PPM (as Fa) (2) In the case of iron electrolysis (10,03~0. Continuous injection of I PPM (as Fa) In these cases, the seawater supply to the condenser etc. of the power plant is a one-time type, The main focus is on preventing corrosion of copper alloy tubes with relatively short heat exchanger tube lengths, and iron ion implantation is carried out for several months.
と九に対して、海水淡水化装置では熱放出部伝熱管に供
給された海水はその1ま放流されるのではなく、その一
部が熱回収部にて使用される。″1次熱放出部は3つの
ステージから構成されている。このため、次の問題があ
る。In contrast, in a seawater desalination device, the seawater supplied to the heat transfer tube in the heat release section is not entirely discharged, but a portion of it is used in the heat recovery section. ``The primary heat dissipation section is composed of three stages.Therefore, there is the following problem.
(1) 鉄を含んだ海水が蒸発水として利用されると
、蒸発室にスケールの析出が起こる。このため、プラン
トを運転しながら数ケ月連続して鉄イオン注入を行なう
ことができない。短期間(2〜3日)で良好な鉄被膜を
形成する必要がある。(短期間なら熱回収部への海水の
供給をストップすることが可能)。(1) When seawater containing iron is used as evaporation water, scale deposits occur in the evaporation chamber. For this reason, iron ion implantation cannot be performed continuously for several months while the plant is operating. It is necessary to form a good iron coating in a short period of time (2 to 3 days). (It is possible to stop the supply of seawater to the heat recovery section for a short period of time).
(2) 伝熱管長すなわち銅合金管長が復水器の場合
の数倍となる。このため遠距離部まで均一な鉄被膜全生
成させることが必要である。(2) The length of the heat transfer tube, that is, the length of the copper alloy tube, is several times that of a condenser. For this reason, it is necessary to generate a uniform iron coating over the entire area, even over long distances.
このように、船舶、発電プラント等の復水器と海水淡水
化装置の熱放出部の構成・機能は本質的に異なっており
、復水器への従来の鉄イオン注入方法をそのままそのま
ま適用できない。As described above, the configurations and functions of condensers in ships, power generation plants, etc. and the heat release parts of seawater desalination equipment are essentially different, and the conventional method of implanting iron ions into condensers cannot be applied as is. .
鉄イオン注入による鉄被膜の要件として、■ 鉄被膜の
付着状態(均一性、密着性)が良好なこと。The requirements for iron coating by iron ion implantation are: ■ The adhesion state (uniformity, adhesion) of the iron coating must be good.
■ 鉄性itがFe、とじて0.2m9/crW2以上
あること。■ Ferrous IT must be Fe, 0.2m9/crW2 or more.
■ 但し、付着過多は伝熱効率を低下させるためFeと
してa、smg/−以下が好ましい。(2) However, since excessive adhesion lowers the heat transfer efficiency, it is preferable that Fe is less than a, smg/-.
が要求される。is required.
第3図に、復水器に適用されている硫酸第一鉄溶液注入
法を6(IIの銅合金管に適用した場合の管内面の鉄性
着量の分布を示す。FIG. 3 shows the distribution of the amount of iron deposited on the inner surface of a pipe when the ferrous sulfate solution injection method applied to a condenser is applied to a 6(II) copper alloy pipe.
■ 硫酸第一鉄溶液の調製
水(市水)にFe SOa・7H20i溶解して調製し
Fe イオン濃度はFe として20,000 P
PMとした。溶液の…は3.2であった。■ Preparation of ferrous sulfate solution Prepared by dissolving FeSOa・7H20i in water (city water), and the Fe ion concentration was 20,000 P as Fe.
It was designated as PM. The... of the solution was 3.2.
■ 注入濃度及び注入日数
短期間で鉄被膜を形成する必要があるため、Fe と
して1.0PPMとし、注入は3日間連続して行なった
。(2) Injection Concentration and Injection Days Since it is necessary to form an iron film in a short period of time, the Fe concentration was set at 1.0 PPM, and the injection was carried out for three consecutive days.
■ 銅合金管径及び管内海水流速
管径;34φ、管内海水流速;2”/式■ 硫酸第一鉄
溶液の注入
銅合金管に海水を連続的に通水し、定量ポンプにより硫
酸第一鉄溶液を海水ラインに注入する。3日間連続注入
後、定量ポンプ及び海水の通水をストップし、銅合金管
内表面への鉄封着状況を調査した。■ Copper alloy pipe diameter and seawater flow rate in the pipe Pipe diameter: 34φ, seawater flow rate in the pipe: 2”/formula ■ Injection of ferrous sulfate solution Seawater is continuously passed through the copper alloy pipe, and ferrous sulfate is added using a metering pump. The solution was injected into the seawater line. After continuous injection for 3 days, the metering pump and seawater flow were stopped, and the state of iron sealing on the inner surface of the copper alloy pipe was investigated.
第3図において、硫酸第一鉄溶液の注入点から10rr
L地点ではFeとして1.8rn9/crn2.55m
地点ではFeとして0.11n9/m2以下の鉄性着量
であり、注入点から30重付近までは付着過多、40m
以降は防食に必要な鉄性着量以下であり、かつ付着状態
もしわ状であり良くなかった。In Figure 3, 10rr from the injection point of the ferrous sulfate solution.
At point L, 1.8rn9/crn2.55m as Fe
At the point, the amount of iron adhesion was less than 0.11n9/m2 as Fe, and there was excessive adhesion from the injection point to around 30m.
After that, the amount of iron deposited was less than the amount required for corrosion protection, and the state of the deposit was wrinkled, which was not good.
第3図の結果から明らかなように復水器に適用されてい
る方法では長管で短期処理が要求される海水淡水化装置
の熱放出部のような長大鋼合金管の防食には適さない。As is clear from the results in Figure 3, the method applied to condensers is not suitable for corrosion protection of long steel alloy pipes, such as the heat release section of seawater desalination equipment, which requires short-term treatment. .
本発明は長大で短期処理が要求される銅合金管の防食可
能は防食剤を提供することを目的とする。An object of the present invention is to provide an anticorrosive agent capable of preventing corrosion of long copper alloy pipes that require short-term treatment.
本発明者らは、一定範囲の鉄封着11有し、均一で密着
性が良好な鉄被膜を形成できる防食剤について鋭意研究
を行なつ念結果、鉄被膜が形成されるのは鉄イ蒼ンが酸
化されて酸化物からコロイド状態となり、それから管内
面に付着する現象より、鉄イオンがコロイド状態になる
のを抑制し、鉄イオンが単独で存在しないようにすれば
よいことに着目し、それについて種々の物質について調
査検討した結果、カルボン酸イオン−aoo−6有する
物質を添加することにより、鉄イオンのコロイド化が抑
制でき、鉄被膜の付着量をコントロールできることを確
認した。The present inventors conducted intensive research on anticorrosive agents that have a certain range of iron seals 11 and can form iron coatings that are uniform and have good adhesion. Based on the phenomenon in which iron ions are oxidized and change from oxide to colloidal state and then adhere to the inner surface of the tube, we focused on the fact that it is sufficient to suppress iron ions from becoming colloidal and prevent iron ions from existing alone. As a result of investigating various substances regarding this, it was confirmed that by adding a substance having carboxylic acid ion -aoo-6, colloidalization of iron ions can be suppressed and the amount of deposited iron coating can be controlled.
本発明はこの知見に基づいて完成されたものである。The present invention was completed based on this knowledge.
すなわち、本発明は硫酸第一鉄溶液中にカルボン酸イオ
ンを共存させてなることを特徴とする防食剤である。That is, the present invention is an anticorrosive agent characterized by containing carboxylic acid ions in a ferrous sulfate solution.
鉄イオンを化合形態にしてしまうと、その化合物の平衡
濃度に応じた分だけしか鉄イオンが存在しなくなるため
一度に消費されることがなく、消費されたら化合物が解
離し鉄イオンを供給するようになる。この結果、注入点
から遠距部まで有効な鉄イオンを保持することが可能で
あり、遠くまで鉄被膜を形成させることができる。この
場合、カルボン酸イオン−〇〇〇″″を有する物質のt
’を変えることにより、鉄イオンの解離する量が変化す
るため、環境条件(海水温度、銅合金管の長さ等)に適
した鉄イオン注入が可能である。When iron ions are made into a compound, there are only as many iron ions as the equilibrium concentration of the compound, so they are not consumed at once, and once they are consumed, the compound dissociates to supply iron ions. become. As a result, it is possible to retain effective iron ions from the injection point to a long distance, and it is possible to form an iron coating over a long distance. In this case, t of a substance having carboxylic acid ion −〇〇〇″″
By changing ', the amount of dissociated iron ions changes, so it is possible to implant iron ions that are suitable for environmental conditions (seawater temperature, length of copper alloy tube, etc.).
カルボン酸イオン−〇〇〇″″’t7にする物質の代表
例を次に示す。Representative examples of substances that convert carboxylic acid ions to −〇〇〇″″t7 are shown below.
■クエン酸−0001(OH2C(OH)(111:0
OH)OH2000H■酢 酸・・・OH,0OOH
■ギ 酸・・・HCOOH
■酒石酸・・・C00HCH20CH20COOH〔実
施例〕
第1図は本発明実施例における試験装置の70−図であ
る。■Citric acid-0001 (OH2C(OH) (111:0
OH)OH2000H ■Acetic acid...OH,0OOH ■Formic acid...HCOOH ■Tartaric acid...C00HCH20CH20COOH [Example] Fig. 1 is a 70-diagram of a test apparatus in an example of the present invention.
海水タンク1に汲み上げられた海水2t−海水2t−海
水ポンプ3で塩化ビニル管4を経て銅合金管5へ供給す
る。鉄イオンの注入は硫酸第一鉄溶液槽6内の硫酸第一
鉄溶液7を定量ポンプ8でビニールホース9を経て塩化
ビニル管4の末端に注入する。2 tons of seawater pumped into a seawater tank 1, 2 tons of seawater, and a seawater pump 3 are supplied to a copper alloy pipe 5 through a vinyl chloride pipe 4. To inject iron ions, the ferrous sulfate solution 7 in the ferrous sulfate solution tank 6 is injected into the end of the vinyl chloride pipe 4 via the vinyl hose 9 using the metering pump 8.
(イ) 銅合金管内の海水流速・・・2 m / 5e
c(ロ)海水温度・・・・・・・・・20C(ハ)銅合
金管形状・・・・・・34鵡φ×60mに)注入濃度及
び時間・・・・・・Faとして1.OPPMX40Hr
以上の試験装置及び条件下で本発明を具体的に説明する
。(a) Seawater flow velocity inside the copper alloy pipe...2 m/5e
c (b) Seawater temperature: 20C (c) Copper alloy tube shape: 34mmφ x 60m) Injection concentration and time: 1. OPPMX40Hr
The present invention will be specifically explained using the above test equipment and conditions.
カルボン酸イオンを有する物質としてクエン酸を用いた
場合について説明する。A case will be described in which citric acid is used as a substance having carboxylic acid ions.
まず、市水を溶液槽6に182入れ、クエン酸全添加し
溶解した。クエン酸の添加量としては、300C1と6
0([1の2種類について実施した。First, 182 ml of city water was put into the solution tank 6, and citric acid was completely added and dissolved. The amount of citric acid added is 300C1 and 6
0 ([Implemented for two types of 1.
これに、硫酸第一鉄(Fe3O3−7H20) ’i
3000I加え溶解し、更に市水を加えて全2を502
とした。この溶液の鉄イオン濃度は201 asFe/
ぶである。In addition, ferrous sulfate (Fe3O3-7H20) 'i
Add 3000I and dissolve, then add city water to make the total 2 to 502
And so. The iron ion concentration of this solution is 201 asFe/
It is.
このようにして調製したクエン酸を含む硫酸第一鉄溶液
を用いて鉄イオンの注入を行ない、銅合金管内表面の鉄
被膜の状態を調査した。Iron ions were implanted using the thus prepared ferrous sulfate solution containing citric acid, and the state of the iron coating on the inner surface of the copper alloy tube was investigated.
第2図に鉄被膜付着量の硫酸第一鉄溶液の注入点からの
距離による分布を示した。FIG. 2 shows the distribution of the amount of iron coating deposited depending on the distance from the injection point of the ferrous sulfate solution.
第2図において実線Aはクエン酸t−s o o 。In FIG. 2, solid line A represents citric acid t-soo.
I添加した場合、破線Bはクエン酸を600I岳加した
場合の結果である。The broken line B shows the result when 600 I of citric acid was added.
クエン酸’6goooIi添加した場合には、注入点か
ら遠くなるほど鉄被膜付着量が多く、クエン酸t−60
011添加した場合には注入点近傍が鉄被膜付着量が多
くなる結果が得られ念。このことは、クエン酸の添加量
によって鉄被膜付着i1″f:コントロールできること
を示しており、銅合金管の長さあるいは管内流速等に応
じた鉄イオン注入が可能である。When citric acid '6goooIi was added, the farther from the injection point the larger the amount of iron film attached.
When 011 was added, the amount of iron coating near the injection point increased. This shows that the iron film adhesion i1''f can be controlled by the amount of citric acid added, and iron ion implantation can be performed depending on the length of the copper alloy tube, the flow rate in the tube, etc.
第2図において、鉄イオン注入点からの距離により鉄被
膜の付itは異なっているが、60mの位置までA、B
とも防食有効範囲の付着量を有しており、密着性も非常
に良好であった。In Figure 2, the attachment of the iron coating differs depending on the distance from the iron ion implantation point, but up to a position of 60 m, A, B
Both had coating amounts within the effective corrosion prevention range, and the adhesion was also very good.
第3図に示し友クエン酸等のカルボン酸イオンを有する
物質を添加しなかった場合の結果と比較して、本発明の
防食剤は鉄被膜を長管に短期間で均一に形成させること
ができ、極めて優れている。Compared to the results shown in Figure 3 when a substance containing carboxylic acid ions such as citric acid was not added, the anticorrosive agent of the present invention was able to uniformly form an iron coating on a long pipe in a short period of time. Yes, it is very good.
又、クエン酸を添加した防食剤で鉄被膜を形成させた銅
合金管に約6ケ月間海水を通水後、管内面を調査し九と
ころ腐食の発生はなく防食効果は良好であった。In addition, after passing seawater through a copper alloy tube on which an iron coating was formed using an anticorrosive agent containing citric acid for about 6 months, the inner surface of the tube was examined and no corrosion occurred and the anticorrosion effect was good.
なお、クエン酸以外のカルボン酸イオンを有する物質を
添加した場合も、添加t′(il−コントロールするこ
とにより、防食有効範囲内の鉄被膜付着量を得ることが
でき次。Note that even when a substance containing carboxylic acid ions other than citric acid is added, by controlling the addition t'(il-), it is possible to obtain the amount of iron coating within the effective corrosion prevention range.
海水淡水化装置の熱放出部のように伝熱管長が長く、且
つ短期処理が要求される熱交換器類の防食対策として極
めて有効である。さらに、伝熱管に何らかの原因で腐食
が発生した場合、早急な防食対策が必要であるが、本発
明防食剤によって短期間で良好な鉄被膜を生成させるこ
とができる。It is extremely effective as a corrosion prevention measure for heat exchangers that have long heat exchanger tubes and require short-term treatment, such as the heat release section of seawater desalination equipment. Furthermore, if corrosion occurs in the heat exchanger tube for some reason, immediate anticorrosion measures are required, but the anticorrosive agent of the present invention can form a good iron coating in a short period of time.
以上のことがら、海水利用熱交換器類の信頼性が向上す
る。As a result of the above, the reliability of seawater heat exchangers is improved.
第1図は本発明実施例における試験装置のフロー図。
第2図は本発明実施例としてのクエン酸を添加した場合
の鉄被膜付着量の分布を示す図第3図は従来の方法によ
る鉄被膜付着量の分布を示す図。
復代理人 内 1) 明
復代理人 萩 原 亮 −
復代理人 安 西 篤 夫
第1図
第2図
妖イスン5王入点力ゝらO武り准 (鶏)第3図FIG. 1 is a flow diagram of a test apparatus in an embodiment of the present invention. FIG. 2 shows the distribution of the amount of iron film deposited when citric acid is added as an example of the present invention. FIG. 3 shows the distribution of the amount of iron film deposited according to the conventional method. Sub-agents 1) Meifuku agent Ryo Hagiwara - Sub-agent Atsuo Anzai Fig. 1 Fig. 2 Yoisun 5-point power and others O Takeri Jun (Chicken) Fig. 3
Claims (1)
ことを特徴とする防食剤。An anticorrosive agent characterized by having carboxylic acid ions coexisting in a ferrous sulfate solution.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29159686A JPS63145788A (en) | 1986-12-09 | 1986-12-09 | Anticorrosive |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29159686A JPS63145788A (en) | 1986-12-09 | 1986-12-09 | Anticorrosive |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63145788A true JPS63145788A (en) | 1988-06-17 |
Family
ID=17770986
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29159686A Pending JPS63145788A (en) | 1986-12-09 | 1986-12-09 | Anticorrosive |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63145788A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5034784A (en) * | 1989-06-22 | 1991-07-23 | Semiconductor Energy Laboratory Co., Ltd. | Diamond electric device on silicon |
JP2002371393A (en) * | 2001-06-14 | 2002-12-26 | Nakabohtec Corrosion Protecting Co Ltd | Mobile device for supplying electrolytic iron ion |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6137984A (en) * | 1984-07-27 | 1986-02-22 | Katayama Chem Works Co Ltd | Method for preventing corrosion os nonferrous metal |
-
1986
- 1986-12-09 JP JP29159686A patent/JPS63145788A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6137984A (en) * | 1984-07-27 | 1986-02-22 | Katayama Chem Works Co Ltd | Method for preventing corrosion os nonferrous metal |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5034784A (en) * | 1989-06-22 | 1991-07-23 | Semiconductor Energy Laboratory Co., Ltd. | Diamond electric device on silicon |
JP2002371393A (en) * | 2001-06-14 | 2002-12-26 | Nakabohtec Corrosion Protecting Co Ltd | Mobile device for supplying electrolytic iron ion |
JP4549577B2 (en) * | 2001-06-14 | 2010-09-22 | 株式会社ナカボーテック | Mobile electrolytic iron ion supply device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Bianchi et al. | “Horse shoe” corrosion of copper alloys in flowing sea water: mechanism, and possibility of cathodic protection of condenser tubes in power stations | |
Merrill et al. | Corrosion control by deposition of CaCO₃ films: part 1, A practical approach for plant operators | |
US4387027A (en) | Control of iron induced fouling in water systems | |
US3580934A (en) | Corrosion prevention with sodium silicate and soluble zinc salts | |
JPS63145788A (en) | Anticorrosive | |
Weisstuch et al. | An electrochemical study of heteropoly molybdates as cooling water corrosion inhibitors | |
JP3646385B2 (en) | Method for inhibiting corrosion of water-based metals | |
Larson | Chemical control of corrosion | |
JPH0293083A (en) | Method for preventing corrosion of inner surface of copper alloy pipe | |
US3963472A (en) | Process for preventing corrosion by incorporative soluble metal chromates in fertilizer solutions | |
JPH1128461A (en) | Method for suppressing corrosion of metal in water system | |
KR890001377B1 (en) | Corrosion inhibitor | |
GB1579217A (en) | Her closed circuit water system composition for addition to a central heating system or ot | |
JPH01212780A (en) | Method for preventing corrosion of copper alloy tube | |
JPS63121681A (en) | Method for preventing corrosion of copper alloy pipe | |
US2728726A (en) | Treatment of water with magnesium and sulfur dioxide | |
US2169584A (en) | Prevention of corrosion | |
JP2919765B2 (en) | Underwater corrosion inhibitor | |
JPH07506626A (en) | Method and apparatus for forming coatings by deposition on internal surfaces of tanks and pipe equipment | |
JPH07316848A (en) | Method for inhibiting corrosion of metal in water line | |
Perez et al. | Scale prevention at high LSI, high cycles, and high pH without the need for acid feed | |
JPH0353080A (en) | Method for preventing corrosion of inside of copper alloy tube | |
JPH0293084A (en) | Anticorrosive injector | |
JP3389064B2 (en) | Water-based anticorrosion agent and anticorrosion method | |
JPS5835268B2 (en) | Anticorrosion agent for highly concentrated water in the circulation system |