JPH0292894A - Method for feeding raw material in vapor-phase crystal growth process - Google Patents

Method for feeding raw material in vapor-phase crystal growth process

Info

Publication number
JPH0292894A
JPH0292894A JP24672788A JP24672788A JPH0292894A JP H0292894 A JPH0292894 A JP H0292894A JP 24672788 A JP24672788 A JP 24672788A JP 24672788 A JP24672788 A JP 24672788A JP H0292894 A JPH0292894 A JP H0292894A
Authority
JP
Japan
Prior art keywords
raw material
material gas
gas
organometallic compound
pressure drop
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24672788A
Other languages
Japanese (ja)
Inventor
Tetsuro Ijichi
哲朗 伊地知
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP24672788A priority Critical patent/JPH0292894A/en
Publication of JPH0292894A publication Critical patent/JPH0292894A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To perform the growth of a crystal using a raw material gas containing organometallic compound while controlling the thickness and composition of the crystal by placing a fluid barrier in a flow path of the raw material gas and supplying the raw material gas while monitoring the pressure drop of the raw material gas, thereby monitoring the feeding rate of the organometallic compound. CONSTITUTION:In the subject method to perform a vapor-phase crystal growth using a raw material gas containing an organometallic compound, a fluid barrier composed of e.g., a conductance line 8' having decreased diameter and a needle valve 9' is placed in the flow path of said raw material gas. A carrier gas (e.g., H2) is passed through the organometallic compound 4' contained in a stainless steel container 3' maintained at a low temperature with a refrigerant 6' in a thermostatic bath 5' and the pressure drop of the raw material gas at the conductance line 8' is measured by manometers 2', 7'. The content of the organometallic compound gas in the carrier gas is monitored from the above pressure drop and the pressure drop of the carrier gas passing through a by-pass line 10'.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、水素等のキャリアガスを用いて原料の蒸気を
反応管に輸送する気相結晶成長法において、原料の供給
量をモニタしながら原料を供給する方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a vapor phase crystal growth method in which raw material vapor is transported to a reaction tube using a carrier gas such as hydrogen, while monitoring the amount of raw material supplied. Concerning a method of supplying raw materials.

〔従来の技術〕[Conventional technology]

■−■族、m−V族の化合物半導体のエピタキシャル成
長法の一つであるMOCVD法(有機金属気相成長法)
では、Ga、In、Aj!等■族元素、Zn、Mg等■
族の元素の有機化合物を原料として用いる。
MOCVD (metal-organic chemical vapor deposition), which is one of the epitaxial growth methods for ■-■ group and m-V group compound semiconductors.
So, Ga, In, Aj! Group elements, Zn, Mg, etc.■
Organic compounds of group elements are used as raw materials.

m−v族化合物半導体のMOCVD法成長は、一般にV
麹原料(AsHs 、PHs )の過剰供給状態で行わ
れ、成長速度は■族の有機金属の供給量によって決定さ
れる。
MOCVD growth of m-v group compound semiconductors is generally performed at V
The process is carried out in the presence of an excess supply of koji raw materials (AsHs, PHs), and the growth rate is determined by the amount of group II organic metals supplied.

また、Ga1l I n+−、As、Ca、l n+−
x Aim P+−y 、Aim Ga+−11Asの
ように二種類以上の■族元素を含む結晶の■族組成比X
は、はぼ■麹原料供給量比によって決定される。従って
、有機金属の供給量の制御は、成長速度および組成を制
御するうえで、きわめて重要である。
Also, Ga1l I n+-, As, Ca, l n+-
x Group ■ composition ratio X of a crystal containing two or more types of Group ■ elements such as x Aim P+-y, Aim Ga+-11As
is determined by the ratio of supply of raw material to koji. Therefore, controlling the amount of organometallic supplied is extremely important in controlling the growth rate and composition.

従来の有機金属の供給方法の一例を第2図に示す、ステ
ンレス容器(3)内に封入した有機金属(4)を恒温槽
(5)中で低温(−30°C〜100°C)に保ち、マ
スフローコントローラ(1)で流量制御した水素、窒素
等のキャリアガスを、液体あるいは粉状結晶となってい
る有機金属(4)中に通じ、原料の蒸気を前記キャリア
ガス中に飽和させて反応管へ導入する。なお、(2)は
圧力計、(6)は冷媒、(9)はニードルバルブである
An example of a conventional method for supplying an organic metal is shown in Fig. 2, in which an organic metal (4) sealed in a stainless steel container (3) is heated to a low temperature (-30°C to 100°C) in a constant temperature bath (5). A carrier gas such as hydrogen or nitrogen whose flow rate is controlled by a mass flow controller (1) is passed through the organic metal (4) which is a liquid or powdered crystal, and the vapor of the raw material is saturated in the carrier gas. Introduce into reaction tube. Note that (2) is a pressure gauge, (6) is a refrigerant, and (9) is a needle valve.

原料の供給Ig (cc/win)は、使用温度(恒温
槽温度)での原料の蒸気圧P (Torr) 、キャリ
アガスの流!!kf (cc/5in)  (標準状態
換算値)、ステンレス容器(3)内の圧力P、  (T
orr) 、飽和度kを用いて下式で表せる。
The raw material supply Ig (cc/win) is the vapor pressure P (Torr) of the raw material at the operating temperature (thermal chamber temperature), the carrier gas flow! ! kf (cc/5in) (standard state conversion value), pressure P in the stainless steel container (3), (T
orr) and the saturation degree k can be expressed by the following formula.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

有機金属の供給量を示した(11式の中で、Poおよび
rはAPC(圧力制御装置)、マスフローコントローラ
等の部品が高性能化してきており比較的高度の制御が可
能である。一方Pは、原料の温度の関数であり、原料自
体は恒温槽中に保持されていても、キャリアガスの持ち
込みがあるために環境温度の変動の影響を受ける。
The amount of organic metal supplied (in equation 11, Po and r can be controlled to a relatively high degree as parts such as APC (pressure controller) and mass flow controllers have become more sophisticated.On the other hand, P is a function of the temperature of the raw material, and even if the raw material itself is kept in a thermostatic chamber, it is affected by fluctuations in the environmental temperature because carrier gas is brought in.

また、飽和度には、はぼ1の値をとるが、原料残量の低
下に従って、徐々に低下する。これは、TMI(トリメ
チルインジウム)のような固体(粉体)原料において顕
著である。従って、上記(1)式において、kPの項を
正確に把握することは困難であり、原料供給量をモニタ
することも出来ないという問題が生じる。
Further, the degree of saturation takes a value of approximately 1, but gradually decreases as the remaining amount of raw material decreases. This is remarkable in solid (powder) raw materials such as TMI (trimethylindium). Therefore, in the above equation (1), it is difficult to accurately grasp the term kP, and the problem arises that it is impossible to monitor the raw material supply amount.

〔課題を解決するための手段) 本発明は以上のような点にかんがみてなされたもので、
その目的とするところは、有機金属の供給量をモニタし
ながら有機金属を供給する気相結晶成長の原料供給方法
を提供することにあり、その要旨は、有機金属を含む原
料ガスを用いて気相結晶成長を行う気相結晶成長の原料
供給方法において、前記原料ガスの流路に流体抵抗物を
設置し、該流体抵抗物による前記ガスの圧力損失をモニ
タしながら原料ガスを供給することを特徴とする気相結
晶成長の原料供給方法である。
[Means for Solving the Problems] The present invention has been made in view of the above points.
The purpose is to provide a raw material supply method for vapor phase crystal growth that supplies organic metals while monitoring the amount of organic metals supplied. In a raw material supply method for vapor phase crystal growth that performs phase crystal growth, a fluid resistor is installed in the flow path of the raw material gas, and the raw material gas is supplied while monitoring the pressure loss of the gas due to the fluid resistor. This is a characteristic material supply method for vapor phase crystal growth.

〔作用〕[Effect]

流体抵抗物による流体の圧力損失は、速度を一定にすれ
ば密度に比例する。
The pressure loss of a fluid due to a fluid resistance object is proportional to the density if the velocity is constant.

上記の原料供給方法はこの性質を利用し、圧力損失から
キャリアガスに含まれる原料の割合(含有率)を知ろう
とするものである。例えば、TMIは分子量160の粉
状結晶であり、25°Cにおける蒸気圧は約2.5To
rrである。従って、25℃、760Torrのキャリ
アガスH!中において、TMIの体積含有率は約0.3
%であるが、TMIを含有することによって、キャリア
ガスの密度すなわち圧力損失は約25%変化する。この
ように、わずかな有機金属の含有率の変化が大きな圧力
損失の変化をもたらすため、上記の方法によれば、既存
の圧力計で圧力損失の変化をモニタし、原料の供給状況
を確認しながら原料を供給することができる。
The above raw material supply method utilizes this property to determine the ratio (content) of the raw material contained in the carrier gas from the pressure loss. For example, TMI is a powder crystal with a molecular weight of 160, and its vapor pressure at 25°C is approximately 2.5 To
It is rr. Therefore, carrier gas H at 25°C and 760 Torr! Among them, the volume content of TMI is about 0.3
%, but by including TMI, the density of the carrier gas, that is, the pressure drop changes by about 25%. In this way, a slight change in the content of organic metals causes a large change in pressure drop, so according to the above method, changes in pressure drop are monitored using existing pressure gauges to check the raw material supply status. raw materials can be supplied at the same time.

〔実施例〕〔Example〕

以下図面に示した実施例に基づいて本発明を説明する。 The present invention will be described below based on embodiments shown in the drawings.

第1図は本発明にかかる一実施例の説明図である。水素
などのキャリアガスはマスフローコントローラ(1′)
で流量制御された後、ステンレス容器(3′)内に封入
された有機金属(4′)に通じて有機金属を含有する。
FIG. 1 is an explanatory diagram of an embodiment according to the present invention. For carrier gas such as hydrogen, use a mass flow controller (1')
After the flow rate is controlled in the stainless steel container (3'), the organic metal is contained in the organic metal (4') sealed in the stainless steel container (3').

有機金属(4′)は恒温槽(5′)中で冷媒(6′)に
より低温に保たれている。有機金属を含むガスは、配管
径を小さくしたコンダクタンスライン(8′)およびニ
ードルバルブ(9′)によって構成される流体抵抗物を
通って、図示されていないリアクタに導入される。有機
金属(4′)内における圧力は圧力計(2′)により測
定され、一定値(本実施例では760Torr)となる
ようにニードルバルブ(9′)の開度が自動調節される
。圧力計(2′)および(7′)の測定値の差から、コ
ンダクタンスライン(8′)における圧力損失を知るこ
とができる。この場合、ステンレス容器(3′)内にお
ける圧力損失はコンダクタンスライン(8′)内に比較
して無視できる程度になっている。一方、キャリアガス
のみのコンダクタンスライン(8′)における圧力損失
は、キャリアガスをバイパスライン(10’)に通し、
圧力計(2′)および(7′)の測定値の差から知るこ
とができる。この二つの圧力損失から、キャリアガスに
含まれる有機金属ガスの含有重重1%)を知ることがで
きる。
The organic metal (4') is kept at a low temperature by a refrigerant (6') in a constant temperature bath (5'). The organic metal-containing gas is introduced into a reactor (not shown) through a fluid resistor constituted by a conductance line (8') with a reduced piping diameter and a needle valve (9'). The pressure inside the organic metal (4') is measured by a pressure gauge (2'), and the opening degree of the needle valve (9') is automatically adjusted so as to maintain a constant value (760 Torr in this example). The pressure loss in the conductance line (8') can be determined from the difference between the measured values of the pressure gauges (2') and (7'). In this case, the pressure loss within the stainless steel container (3') is negligible compared to that within the conductance line (8'). On the other hand, the pressure loss in the conductance line (8') of only the carrier gas can be reduced by passing the carrier gas through the bypass line (10').
This can be determined from the difference between the measured values of pressure gauges (2') and (7'). From these two pressure losses, it is possible to know the weight (1%) of the organometallic gas contained in the carrier gas.

なお、流体抵抗物はコンダクタンスラインのほか、オリ
フィス、ベントなどの多様な抵抗物でもよく、ニードル
バルブは流れに対する抵抗物が可変であるオリフィスで
もよい。
The fluid resistance object may be not only a conductance line but also various resistance objects such as an orifice and a vent, and the needle valve may be an orifice whose resistance to flow is variable.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、原料ガスの波路に
流体抵抗物を設置し、該流体抵抗物による前記ガスの圧
力損失をモニタしながら原料ガスを供給するため、有機
金属の供給量をモニタしながら、成長膜厚および結晶組
成の制御ができるという優れた効果がある。
As explained above, according to the present invention, a fluid resistor is installed in the wave path of the raw material gas, and the raw material gas is supplied while monitoring the pressure loss of the gas due to the fluid resistor, so that the supply amount of the organic metal can be controlled. This has the excellent effect of being able to control the grown film thickness and crystal composition while monitoring.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明にかかる気相結晶成長の原料供給方法の
一実施例の説明図、第2図は従来例の説明図である。 1.1′・・・マスフローコントローラ、  2.2’
7′・・・圧力計、 3.3′・・・ステンレス容器、
4.4′・・・有機金属、 5.5′・・・恒温槽、 
6゜6′・・・冷媒、  8′・・・コンダクタンスラ
イン、9、9′・・・ニードルバルブ、  10′・・
・バイパスライン。
FIG. 1 is an explanatory diagram of an embodiment of the raw material supply method for vapor phase crystal growth according to the present invention, and FIG. 2 is an explanatory diagram of a conventional example. 1.1'...mass flow controller, 2.2'
7'...Pressure gauge, 3.3'...Stainless steel container,
4.4'...Organic metal, 5.5'...Thermostatic chamber,
6゜6'... Refrigerant, 8'... Conductance line, 9, 9'... Needle valve, 10'...
・Bypass line.

Claims (1)

【特許請求の範囲】[Claims] 有機金属を含む原料ガスを用いて気相結晶成長を行う気
相結晶成長の原料供給方法において、前記原料ガスの流
路に流体抵抗物を設置し、該流体抵抗物による前記ガス
の圧力損失をモニタしながら原料ガスを供給することを
特徴とする気相結晶成長の原料供給方法。
In a raw material supply method for vapor phase crystal growth in which gas phase crystal growth is performed using a raw material gas containing an organic metal, a fluid resistance object is installed in the flow path of the raw material gas, and the pressure loss of the gas due to the fluid resistance object is reduced. A raw material supply method for vapor phase crystal growth characterized by supplying raw material gas while monitoring.
JP24672788A 1988-09-30 1988-09-30 Method for feeding raw material in vapor-phase crystal growth process Pending JPH0292894A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24672788A JPH0292894A (en) 1988-09-30 1988-09-30 Method for feeding raw material in vapor-phase crystal growth process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24672788A JPH0292894A (en) 1988-09-30 1988-09-30 Method for feeding raw material in vapor-phase crystal growth process

Publications (1)

Publication Number Publication Date
JPH0292894A true JPH0292894A (en) 1990-04-03

Family

ID=17152748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24672788A Pending JPH0292894A (en) 1988-09-30 1988-09-30 Method for feeding raw material in vapor-phase crystal growth process

Country Status (1)

Country Link
JP (1) JPH0292894A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023047087A (en) * 2021-09-24 2023-04-05 株式会社Kokusai Electric Gas supply system, wafer processing device, manufacturing method of semiconductor device and program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023047087A (en) * 2021-09-24 2023-04-05 株式会社Kokusai Electric Gas supply system, wafer processing device, manufacturing method of semiconductor device and program

Similar Documents

Publication Publication Date Title
US6607785B2 (en) Bubbler
US20040159005A1 (en) Sub-atmospheric pressure delivery of liquids, solids and low vapor pressure gases
US4783343A (en) Method for supplying metal organic gas and an apparatus for realizing same
JP6565645B2 (en) Raw material gas supply apparatus, raw material gas supply method and storage medium
JP2538042B2 (en) Method and apparatus for vaporizing and supplying organometallic compound
TW201107525A (en) Method and apparatus
EP3458626B1 (en) Sublimated gas supply system
US5431733A (en) Low vapor-pressure material feeding apparatus
WO1993003196A1 (en) Method for deposition of a metal
JP3219184B2 (en) Organometallic supply and organometallic vapor phase epitaxy
JPH0292894A (en) Method for feeding raw material in vapor-phase crystal growth process
JP2008218760A (en) Manufacturing method for semiconductor device, and manufacturing apparatus for semiconductor device
Gerrard et al. An improved method of trimethylindium transport for the growth of indium phosphide and related alloys by MOVPE
Yamamoto et al. Reproducible growth of metalorganic chemical vapor deposition derived YBa2Cu3Ox thin films using ultrasonic gas concentration analyzer
Jordan et al. Equilibrium gas-phase composition and thermodynamic properties including subhydrides in the pyrolysis of AsH3 and PH3
JPH03141192A (en) Device and method for gaseous phase growth
JPH0362790B2 (en)
US20230068384A1 (en) Precursor delivery systems, precursor supply packages, and related methods
JPH07161638A (en) Organometallic compound gas feeding device of vapor growth device
Koi et al. The Behaviour of Zinc in GaP Synthesis by the SSD Technique
KR20230017145A (en) System and method for monitoring precursor delivery to a process chamber
JP2009231428A (en) Method and device for manufacturing semiconductor device
JP2584633B2 (en) Superconducting thin film production equipment
JPH0360493A (en) Bubbler and its temperature control method
GB1586083A (en) Growth of semiconductor materials